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Abstract. Hausdorff dimension results are a classical topic in the study
of path properties of random fields. This article presents an alternative ap-
proach to Hausdorff dimension results for the sample functions of a large
class of self-affine random fields. The aim is to demonstrate the following
interesting relation to a series of articles by U. Zähle (1984, 1988, 1990,
1991). Under natural regularity assumptions, we prove that the Hausdorff
dimension of the graph of self-affine fields coincides with the carrying di-
mension of the corresponding self-affine random occupation measure in-
troduced by U. Zähle. As a remarkable consequence we obtain a general
formula for the Hausdorff dimension given by means of the singular value
function.
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1. INTRODUCTION

Let U ∈ Rd×d and V ∈ Rm×m be contracting, non-singular matrices, i.e.
|ρ| ∈ (0, 1) for all eigenvalues ρ of U , respectively V . According to [53], Defi-
nition 4.1, a random field X = {X(t)}t∈Rd on Rm defined on a probability space
(Ω,A, P ) is said to be (U, V )-self-affine if the following four conditions hold:

(i) The field obeys the scaling relation

{X(Ut)}t∈Rd
fd
= {V X(t)}t∈Rd ,

where fd
= denotes equality of all finite-dimensional marginal distributions.

∗ This work has been partially supported by Deutsche Forschungsgemeinschaft (DFG) under
grant KE1741/6-1.
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(ii) X has stationary increments, i.e. X(t)−X(s)
d
= X(t− s) for all s, t ∈

Rd, where d
= denotes equality in distribution.

(iii) X is proper, i.e. X(t) is not supported on any lower dimensional hyper-
plane of Rm for all t 6= 0.

(iv) The mapping X : Rd ×Ω→ Rm is
(
B(Rd)⊗A

)
−B(Rm)-measurable

with respect to the Borel-σ-algebras of Rd and Rm.
Several examples of such random fields are discussed in Section 4 below. Note

that (i) implies X(0) = 0 almost surely and that (iv) is fulfilled if X has continuous
sample functions (or right-continuous sample paths in case d = 1). Inductively,
from (i) we get {X(Unt)}t∈Rd

fd
= {V nX(t)}t∈Rd for every n ∈ Z and thus self-

affinity weakens the assumption of self-similarity (see [31], [30], [17], [12]) to a
discrete scaling property, which is also called semi-selfsimilarity [35] in the context
of stochastic processes, where d = 1 and we usually have the restriction t ­ 0.

Over the last decades there has been an increasing attention to such random
fields in theory as well as in applications. Possible applications can be found in
such diverse fields as engineering, finance, physics, hydrology, image processing or
network analysis; see, e.g., [2], [3], [8], [10], [13], [14], [22], [32], [40], [42], [48]
and the literature cited therein. Particularly, in the study of sample function behav-
ior, it is of considerable interest to determine fractal dimensions such as Hausdorff
dimension of random sets depending on the sample functions of a self-affine ran-
dom field. For example, we refer to [19] and [37] for a comprehensive introduction
to fractal geometry and the notion of Hausdorff dimension.

The main objective of this paper is the occupation measure τX of a self-affine
random field X , measuring the size in Rd the graph of X spends in a Borel set
of Rd × Rm with respect to Lebesgue measure. In a series of papers [51]–[53]
Zähle investigated this object in detail, which serves as a starting point of our con-
siderations. In particular, Zähle [53] showed that the occupation measure τX of a
self-affine random field X is Palm distributed and itself a self-affine random mea-
sure, see Section 2 for details. This allows us to study Hausdorff dimension results
through the notion of carrying dimension of τX introduced in [51]. Heuristically,
the carrying dimension of a Borel measure is the minimal Hausdorff dimension
for Borel sets assigning positive measure; see Definition 2.1 below for the precise
mathematical description. In this article we are able to show that under a natural
condition the carrying dimension of τX always exists and indeed almost surely co-
incides with the Hausdorff dimension of the graph of X . Under the mild additional
assumption of boundedly continuous intensity (see Definition 2.2 below) Zähle’s
result [53] shows that the carrying dimension of τX can be calculated by means
of the singular value function, which has already been used as a tool in fractal ge-
ometry to derive the Hausdorff dimension of self-affine sets arising from iterated
function systems [18], [20], [21]. This also enables us to show the applicability of
the singular value function to derive dimension results for the range and graph of
sample functions given by self-affine random fields.
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Much effort has been made in the last decades to calculate the Hausdorff di-
mension of the range and the graph of the paths arising from several special classes
of self-affine random fields. Classically, the Hausdorff dimension is determined by
calculating an upper and a lower bound separately. This approach requires an a pri-
ori educated guess on the true value of the Hausdorff dimension. A typical method
in the calculation of an upper bound is to find an efficient covering of the graph,
for example, by using sample function properties such as Hölder continuity or in-
dependent increments, whereas the calculation of a lower bound is usually related
to potential theoretic methods. Let us mention that for various special cases of
self-affine random fields the Hausdorff dimensions of the graph and the range have
been calculated separately case by case, with expression that at first sight seem not
to fit consistently into a master formula. As a consequence of our main result, we
provide a general formula in closed form for these expressions in case the con-
tracting non-singular operators U and V are given by exponential matrices, that is,
U = cE and V = cD, where 0 < c < 1 and E ∈ Rd×d, D ∈ Rm×m are matrices
with positive real parts of their eigenvalues. In many situations the appearance of
exponential scaling matrices is quite natural in the context of self-similar or self-
affine random fields and processes; see [25], [38], [33], [12]. Thus we also provide
candidates for the Hausdorff dimension of the graph and the range of general self-
affine random fields, useful to be applied to open cases. Under the condition of
boundedly continuous intensity these candidates always serve as lower bounds for
the Hausdorff dimension of the graph and the range of self-affine random fields.
Known methods to derive corresponding upper bounds heavily depend on further
properties of the field such as Hölder continuity or independent increments and
should be derived individually elsewhere. In our approach we particularly eluci-
date the intuition that the Hausdorff dimension of the graph and the range over
sample functions of self-affine random fields should only depend on the real parts
of the eigenvalues of E and D as well as their multiplicity.

The rest of this article is structured as follows. Section 2 basically serves as an
introduction to self-affine random measures as given in [26], [51]–[53], which will
be applied to establish the main result of this paper. Here, we adopt some notation
and repeat fundamental notions and results from [51]–[53] concerning self-affine
random measures, Palm distributions, the carrying dimension and the boundedly
continuous intensity condition. Section 3 is the core part of this article, where we
formulate and prove the above-mentioned main result. Finally, in Section 4 we
show that our results can be applied to large classes of self-affine random fields,
namely to operator-self-similar stable random fields introduced by Li and Xiao
[33], and to operator semistable Lévy processes. For these particular classes of
self-affine random fields, our candidates derived by means of the singular value
function in Section 3 are in fact the true values for the Hausdorff dimension of
the graph and the range as recently shown in [45]–[47], [28]. Furthermore, our
results may be useful to derive Hausdorff dimension results for classes of ran-
dom processes and fields, for which this still remains an open question,
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for example for multiparameter operator semistable Lévy processes or certain semi-
selfsimilar Markov processes.

2. PRELIMINARIES

In this section we recall some basic facts on random measures and Palm dis-
tributions which will be needed for our approach. Further, the occupation measure
of a self-affine random field and its carrying dimension are introduced. Main parts
of this section can be found in the articles [51]–[53] by Zähle and are presented
here for the readers’ convenience.

2.1. Random measures, Palm distributions and occupation measures. Let
MRn be the set of all locally finite measures on Rn equipped with the corre-
sponding σ-algebra B(MRn) generated by the mappingsMRn 3 µ 7→ µ(B) for
all bounded Borel sets B ⊂ Rn; see, e.g., [26] for details. A random variable ξ :
Ω→MRn is called a random measure on Rn. For any random measure ξ denote
by Pξ its distribution. Note that Pξ is a probability measure on

(
MRn ,B(MRn)

)
.

Furthermore, it is clear that the mapping

E[ξ] : B(Rn)→ [0,∞], A 7→ E[ξ(A)] =
∫
MRn

µ(A) dPξ(µ)

is a (deterministic) Borel measure called the intensity measure of ξ.
For any measure µ ∈ MRn and z ∈ Rn let Tzµ be the translation measure

given by Tzµ(B) = µ(B − z) for all B ∈ B(Rn). We say that a random measure
on Rn is stationary if Pξ = PTzξ for all z ∈ Rn. Let x > 0 and W ∈ Rn×n be a
non-singular operator. A random measure ξ is called (W,x)-self-affine if

ξ(A)
d
= x · ξ(W−1A) for all A ∈ B(Rn).

We now turn to the definition of Palm distributions. A σ-finite measure on(
MRn ,B(MRn)

)
shall be called a quasi-distribution. Again, a translation invari-

ant quasi-distribution Q satisfying

dQ(µ) = dQ(Tzµ) for every z ∈ Rn

is said to be stationary. For a stationary quasi-distribution it is easy to see that
the Borel measure A 7→

∫
MRn

µ(A) dQ(µ) is translation invariant and thus there
exists a constant cQ ∈ [0,∞] such that∫

MRn

µ(A) dQ(µ) = cQ · λn(A) for all A ∈ B(Rn),

where λn denotes the Lebesgue measure on Rn. Note that for a stationary random
measure ξ this implies that there is a constant cξ ∈ [0,∞] such that the intensity
measure satisfies E[ξ] = cξ · λn. Throughout this paper, we will refer to cξ and cQ
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as the intensity constants of ξ, respectively Q. For a stationary quasi-distribution
Q the measure Q0 defined by

(2.1) Q0(G) =
1

λn(A)

∫
MRn

∫
A

1G(T−zµ) dµ(z) dQ(µ) for all G ∈ B(MRn)

is independent of the choice of A ∈ B(Rn) as long as 0 < λn(A) < ∞ and it is
called the Palm measure of Q; see [51], p. 85. Note that Q0 � Q by (2.1), i.e. any
Q-nullset is also a Q0-nullset. A random measure ξ is said to be Palm distributed
if there exists a stationary quasi-distribution Q with Palm measure Q0 such that

(2.2) Pξ = c−1Q ·Q
0,

where cQ = Q0(MRn) ∈ (0,∞) is the intensity constant of Q.
Let f : Rd → Rm be a Borel-measurable function. Then the occupation mea-

sure of f is a Borel measure τf on Rd × Rm uniquely defined by

τf (A×B) = λd{t ∈ A : f(t) ∈ B}

for all A ∈ B(Rd), B ∈ B(Rm). Note that τf is concentrated on the graph of f
and, to be more precise, we may also say that τf is the occupation measure of the
graph. For any (U, V )-self-affine random field {X(t)}t∈Rd on Rm we get, by the
transformation rule,

τX(A×B) =
∫
A

1B

(
X(t)

)
dλd(t) = (detU) ·

∫
U−1(A)

1B

(
X(Ut)

)
dλd(t)

d
= (detU) ·

∫
U−1(A)

1B

(
V X(t)

)
dλd(t)

= (detU) ·
∫

U−1(A)

1V −1(B)

(
X(t)

)
dλd(t)

= (detU) · τX
(
U−1(A)× V −1(B)

)
= (detU) · τX

(
(U ⊕ V )−1(A×B)

)
,

where U ⊕ V ∈ R(d+m)×(d+m) denotes the block-diagonal matrix. Hence the oc-
cupation measure τX defines a (U ⊕ V, detU)-self-affine random measure. More-
over, it is Palm distributed by the following lemma due to Zähle [53].

LEMMA 2.1 ([53], Proposition 5.2). Let {X(t)}t∈Rd be a (U, V )-self-affine
random field on Rm as defined in Section 1. Denote by τX its occupation measure
on Rd×Rm. Then τX is a Palm distributed and (U ⊕ V, detU)-self-affine random
measure.
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2.2. Carrying dimension. We now introduce the notion of carrying dimension
defined in [51] and recall a result from [53] on how the carrying dimension of the
occupation measure of self-affine random fields, under certain regularity assump-
tions, can be explicitly calculated.

DEFINITION 2.1. Let µ ∈MRn be a Borel measure on Rn. We say that µ has
a carrying dimension d ∈ [0, n], in symbols d = cardimµ, if the following two
conditions are satisfied:

(i) µ(A) > 0 implies dimHA ­ d for all A ∈ B(Rn).
(ii) There exists a set B ∈ B(Rn) with µ(Rn \B) = 0 and dimHB ¬ d.

Note that this definition is closely related to the lower and upper Hausdorff
dimensions of the Borel measure µ given by

dim∗ µ = inf{dimHA : A ∈ B(Rn), µ(A) > 0},
dim∗ µ = inf{dimHB : B ∈ B(Rn), µ(Rn \B) = 0},

and discussed in [9], [24], [15]. Obviously, the carrying dimension of µ exists if
and only if dim∗ µ = dim∗ µ and in this case these values are indeed the same.

The following lemma of Zähle [52] is useful to derive a lower bound of the
carrying dimension. Its proof can be found in [50], Theorem 1.4.

LEMMA 2.2 ([52], Lemma 2.1). Let µ ∈MRn , γ ­ 0 and B ∈ B(Rn). Sup-
pose that ∫

{‖z−x‖<1}
‖z − x‖−γ µ(dz) <∞

for µ-almost all x ∈ B. Then µ(B′ ∩ B) > 0 implies dimHB′ ­ γ for all Borel
sets B′ ∈ B(Rn) and, consequently, cardimµ ­ γ.

For an explicit calculation of the carrying dimension of the occupation mea-
sure τX of a (U, V )- self-affine random field {X(t)}t∈Rd the following condition,
called the boundedly continuous intensity (b.c.i.) condition in [53], is crucial and
sufficient.

DEFINITION 2.2. Let ξ be a (W,x)-self-affine random measure. Then ξ is
said to satisfy the b.c.i. condition (with respect to W ) if there exists a constant
C ∈ (0,∞), not depending on W , such that

E[ξ](A) ¬ C · λd+m(A) for all Borel sets A ⊂ [−1, 1]d+m \W ([−1, 1]d+m).

An easy sufficient condition for the occupation measure to fulfill the b.c.i.
condition is the following (cf. also [53], Chapter 11).

LEMMA 2.3. Suppose that for all t ∈ Rd \ {0} the distribution of X(t) has a
density x 7→ pt(x) with respect to λm. Then for z = (t, x) ∈ Rd × Rm we have

dE[τX ](z) = pt(x) dλd(t) dλm(x).
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Furthermore, if there exists a constant 0 < C < ∞ such that pt(x) ¬ C for all
(t, x) ∈ [−1, 1]d+m \W ([−1, 1]d+m), it follows immediately that the b.c.i. condi-
tion is fulfilled.

P r o o f. For any A ∈ B(Rd), B ∈ B(Rm), by Tonelli’s theorem, we get

E[τX ](A×B) =
∫
Ω

∫
A

1B

(
X(t)

)
dλd(t) dP

=
∫
A

P{X(t) ∈ B} dλd(t) =
∫

A×B
dPX(t)(x) dλd(t),

(2.3)

and in case dPX(t)(x) = pt(x) dλm(x) the assertion follows. �

Zähle [53] showed that under the b.c.i. condition there is a close relation be-
tween the carrying dimension of occupation measures and the singular value func-
tion, which is frequently used as a tool in the study of the Hausdorff dimension of
self-affine fractals; see, e.g., [18], [20], [21]. Following [18], let us briefly introduce
the singular value function ϕW of a contracting, non-singular matrix W ∈ Rn×n.
Let 1 > α1 ­ α2 ­ . . . ­ αn > 0 denote the singular values of W , i.e. the pos-
itive square roots of the eigenvalues of W>W , where W> denotes the transpose
of W . Then the singular value function ϕW : (0, n]→ (0,∞) of W is given by

(2.4) ϕW (s) = α1 · α2 · . . . · αm−1 · αs−m+1
m ,

where m is a unique integer such that m− 1 < s ¬ m.

LEMMA 2.4 ([18], Proposition 4.1). Let W ∈ Rn×n be a contracting and
non-singular matrix, 0 < x < 1 and ϕW the singular value function of W . Then
there exists a unique number s = s(W,x) > 0 given by x−1

(
ϕWk(s)

)1/k → 1 as
k →∞. Moreover, it follows that

s = inf{r ∈ (0, n] : lim
k→∞

x−kϕWk(r) = 0}

= sup{r ∈ (0, n] : lim
k→∞

x−kϕWk(r) =∞}

with the convention that inf ∅ = n.

The following result of Zähle [53] will be important for our approach and
states that under the b.c.i. condition the carrying dimension of the occupation mea-
sure of any self-affine random field can be calculated in terms of the singular value
function.

THEOREM 2.1 ([53], Theorem 5.3). Let X = {X(t)}t∈Rd be a (U, V )-self-
affine random field on Rm and τX its occupation measure. If τX satisfies the b.c.i.
condition with respect to W = U ⊕ V, then with probability one

cardim τX = s(W,detU),

where s(W,detU) is the unique number given by Lemma 2.4.
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3. MAIN RESULT

Throughout this section, let X = {X(t)}t∈Rd be a (U, V )-self-affine random
field on Rm as introduced in Section 1 and denote by τX its occupation measure
for the graph. Moreover, denote by

GrX([0, 1]d) =
{(

t,X(t)
)
: t ∈ [0, 1]d

}
⊂ Rd+m

the graph of X on the unit cube. We now show our main result that, under a natural
additional assumption, the carrying dimension of τX coincides with the Hausdorff
dimension of the graph of X .

THEOREM 3.1. Assume that

(3.1)
∫

[−1,1]d
E
[(
‖t‖+ ‖X(t)‖

)−γ]
dλd(t) <∞

for all γ < dimHGrX([0, 1]d). Then with probability one the carrying dimension
of τX exists and we have

cardim τX = dimHGrX([0, 1]d).

REMARK 3.1. Note that, by the definition of the carrying dimension, the up-
per bound cardim τX ¬ dimHGrX([0, 1]d) almost surely is immediate. Thus we
only need to prove the lower bound. Further, note that, by stationarity of the
increments, (3.1) is equivalent to∫

[0,1]d×[0,1]d
E
[(
‖t− s‖+ ‖X(t)−X(s)‖

)−γ]
dλd(t) dλd(s) <∞.

The above integral is the expected value of the γ-energy of τX , usually denoted
by Iγ(τX). In case γ < dimHGrX([0, 1]d), an application of Frostman’s lemma
(see, e.g., Theorem 8.8 in [37]), known as the potential theoretic method laid out
in Section 4.2 of [19] to derive lower bounds of the Hausdorff dimension, shows
the almost sure existence of a (random) probability distribution µ on GrX([0, 1]d)
such that Iγ(µ) <∞. However, in general, one does not have the information that
µ = τX , although µ = τX is the canonical candidate for the derivation of a lower
bound.

P r o o f o f T h e o r e m 3.1. As remarked above, we only need to prove the
lower bound

(3.2) cardim τX ­ dimHGrX([0, 1]d) almost surely.

By Lemma 2.1, τX is Palm distributed and thus there exists a stationary quasi-
distribution Q with intensity constant cQ and Palm measure Q0 given by (2.1) such
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that PτX = c−1Q Q0 as in (2.2). Moreover, to prove (3.2), by Lemma 2.2 (applied to
B = GrX([0, 1]d)) it suffices to show that for all γ < dimHGrX([0, 1]d) we
have

(3.3)
∫

{‖z−x‖<1}
‖z − x‖−γ dµ(z) <∞

for PτX -almost all µ and µ-almost all x ∈ GrX([0, 1]d). If we can show that

(3.4) E
[ ∫
{‖z‖<1}

‖z‖−γ dτX(z)
]
<∞,

then for Q0-almost all µ we have∫
{‖z‖<1}

‖z‖−γ dµ(z) <∞,

which by [51], Lemma 3.3, is equivalent to∫
{‖z−x‖<1}

‖z − x‖−γ dµ(z) <∞

for Q-almost all µ and µ-almost all x ∈ GrX([0, 1]d). Since Q0 � Q by (2.1)
and thus PτX � Q by (2.2), it follows that (3.3) holds for PτX -almost all µ and
µ-almost all x ∈ GrX([0, 1]d). Thus, it suffices to show (3.4). By (2.3) and our
assumption (3.1) we get for some constant 0 < K <∞ the relations

E
[ ∫
{‖z‖<1}

‖z‖−γ dτX(z)
]
=

∫
{‖z‖<1}

‖z‖−γ dE[τX ](z)

=
∫

{‖(t,x)‖<1}
‖(t, x)‖−γ dPX(t)(x) dλd(t)

¬ K
∫

[−1,1]d

∫
Rm

(‖t‖+ ‖x‖)−γ dPX(t)(x) dλd(t)

= K
∫

[−1,1]d
E
[(
‖t‖+ ‖X(t)‖

)−γ]
dλd(t) <∞,

which shows (3.4) and completes the proof. �

Combining Theorem 3.1 with Theorem 2.1, we immediately get the following
result.

COROLLARY 3.1. Assume (3.1) is fulfilled and τX satisfies the b.c.i. condi-
tion. Then with probability one

dimHGrX([0, 1]d) = s(W,detU),

where W = U ⊕ V and s(W,detU) is the unique number given by Lemma 2.4.
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REMARK 3.2. Note that to be able to check condition (3.1) one needs infor-
mation on the precise value of dimHGrX([0, 1]d). If one strives to calculate this
value by using general energy type arguments, the only result one can expect in
case of exponential matrices is precisely the value given in formula (3.7) below.

In case the contracting, non-singular operators U and V are given by ex-
ponential matrices U = cE and V = cD for some c ∈ (0, 1) and some matrices
E ∈ Rd×d and D ∈ Rm×m with positive real parts of their eigenvalues, we are
able to calculate s(U ⊕ V, detU) of Lemma 2.4 explicitly in terms of the real
parts of the eigenvalues of E and D as follows.

EXAMPLE 3.1. Let 0 < a1 ¬ . . . ¬ ad and 0 < b1 ¬ . . . ¬ bm denote the
real parts of the eigenvalues of E, respectively D. Write 0 < γ1 ¬ . . . ¬ γd+m for
the union of all these quantities in a common order. Then we have

detU = det cE = cQ,

where Q = trace(E) = a1 + . . . + ad. For the block-diagonal W = cE ⊕ cD =
cE⊕D it follows that the positive square roots of the eigenvalues of the symmetric
matrices (Wn)>Wn asymptotically behave as cnγj for j = 1, . . . , d + m. More
precisely, for all ε > 0 the j-th smallest square root ηn(j) of the eigenvalues of
(Wn)>Wn fulfills

(3.5) cn(γj+ε) ¬ ηn(j) ¬ cn(γj−ε)

for all j = 1, . . . , d+m and n ∈ N large enough; see, e.g., Section 2.2 in [38] for
details. Now let r ∈ {1, . . . , d+m} be a unique integer such that

(3.6)
r−1∑
j=1

γj < Q ¬
r∑

j=1

γj .

Then, by (3.5), for all r − 1 < s ¬ r the singular value function ϕWn(s) in the
above sense asymptotically behaves as

cnγ1 . . . cnγr−1cnγr(s−r+1)

and a comparison with (detU)n = cnQ together with (3.6) readily shows that

(3.7) s(cE⊕D, cQ) = r − 1 +
1

γr

(
Q−

r−1∑
j=1

γj
)
.

Note that if Q =
∑r

j=1 γj , then s(W,detU) = r, which shows s(W,detU) ­ d.
Note further that the right-hand side of (3.7) is independent of c ∈ (0, 1) and only
depends on the real parts of the eigenvalues of the scaling exponents E and D.
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We now turn to the range X([0, 1]d) = {X(t) : t ∈ [0, 1]d} of the self-affine
random field X . There is an approach analogous to Theorem 3.1 for the graph,
combining the Hausdorff dimension of the range with the carrying dimension of
random measures supported on X([0, 1]d) by using the results in [53], Chapter 10,
which hint that it seems quite natural that the Hausdorff dimension of the range
of the self-affine random field is connected with s(V, detU). In case U = cE and
V = cD are given by exponential matrices for some c ∈ (0, 1) as above, we will
now show that s(V, detU) = s(cD, cQ) with Q = trace(E) always serves as a
lower bound for dimHX([0, 1]d) with probability one, provided that the b.c.i. con-
dition for the occupation measure τX of the graph is fulfilled. We will first calculate
s(cD, cQ) explicitly in terms of the real parts of the eigenvalues of E and D.

EXAMPLE 3.2. Let 0 < a1 ¬ . . . ¬ ad denote the real parts of the eigenval-
ues of E and let 0 < b1 < . . . < bp be the distinct real parts of the eigenvalues of
D with multiplicities m1, . . . ,mp. Then Q = trace(E) =

∑d
k=1 ak and we dis-

tinguish between the following two cases.
C a s e 1. If for some ℓ ∈ {1, . . . , p} we have

(3.8)
ℓ−1∑
i=1

bimi < Q ¬
ℓ∑

i=1

bimi,

then there exists R ∈ {1, . . . ,mℓ} such that

(3.9)
ℓ−1∑
i=1

bimi + bℓ(R− 1) < Q ¬
ℓ−1∑
i=1

bimi + bℓR,

so that for W = cD we have r =
∑ℓ−1

i=1 mi +R in (3.6). From (3.7) it follows that

s(cD, cQ) =
ℓ−1∑
i=1

mi +R− 1 +
1

bℓ

(
Q−

ℓ−1∑
i=1

bimi − bℓ(R− 1)
)

=
1

bℓ

(
Q+

ℓ∑
i=1

(bℓ − bi)mi

)
.

(3.10)

Combining (3.10) with the second inequality in (3.8), we see that

(3.11) s(cD, cQ) ¬
ℓ∑

i=1

mi ¬ m.

C a s e 2. If Q >
∑p

i=1 bimi, we choose ε > 0 such that the relation Q >∑p
i=1(bi + ε)mi holds; then, by (3.5), we get as n→∞

c−nQϕcnD(m) ­ c
−n(Q−

p∑
i=1

(bi+ε)mi) →∞,

showing that s(cD, cQ) = m.
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Altogether, we have shown that irrespectively of c ∈ (0, 1) we have

(3.12) s(cD, cQ) =


1

bℓ

(
Q+

ℓ∑
i=1

(bℓ − bi)mi

)
if

ℓ−1∑
i=1

bimi < Q ¬
ℓ∑

i=1

bimi,

m elsewhere.

THEOREM 3.2. Let X = {X(t)}t∈Rd be a (cE , cD)-self-affine random field
on Rm for some c ∈ (0, 1) such that its occupation measure τX of the graph satis-
fies the b.c.i. condition. Then, with probability one, we have

dimHX([0, 1]d) ­ s(cD, cQ),

where Q = trace(E) and s(cD, cQ) is given by (3.12).

P r o o f. As described in Remark 3.1, by Frostman’s lemma (see, e.g., [19],
[37]) it suffices to show that for all γ < s(cD, cQ) we have

(3.13)
∫

[0,1]d×[0,1]d
E[‖X(t)−X(s)‖−γ ] dλd(t) dλd(s) <∞.

Let 0 < b1 < . . . < bp be the distinct real parts of the eigenvalues of D with
multiplicities m1, . . . ,mp. We will use the spectral decomposition with respect to
D as laid out in [38]. According to this, in an appropriate basis of Rm, we can de-
compose Rm = V1⊕ . . .⊕ Vp into mutually orthogonal subspaces Vi of dimension
mi such that each Vi is Di-invariant, where the real part of any eigenvalue of Di is
equal to bi and D = D1 ⊕ . . .⊕Dp is block-diagonal. With respect to this spectral
decomposition we may write x ∈ Rm as x = x1 + . . . + xp with xi ∈ Vi ' Rmi

and we have ‖x‖2 = ‖x1‖2 + . . .+ ‖xp‖2 in the associated Euclidean norms.
Now let A = [−1, 1]d+m \ cE⊕D([−1, 1]d+m); then

∞⋃
j=0

cj(E⊕D)(A) = [−1, 1]d+m \ {0}

is a disjoint covering. Using a change of variables (x, t) = (cjDy, cjEs) together
with the self-affinity of the random field and the b.c.i. condition, we get for some
unspecified constant K > 0 and every ℓ ∈ {1, . . . , p}∫

[0,1]d×[0,1]d
E[‖X(t)−X(s)‖−γ ] dλd(t) dλd(s)

¬
∫

[−1,1]d
E[‖X(t)‖−γ ] dλd(t)

¬
∫

[−1,1]d

∫
[−1,1]m

‖x‖−γ dPX(t)(x) dλd(t) + 2d
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=
∞∑
j=0

∫
cj(E⊕D)(A)

‖x‖−γ dPX(t)(x) dλd(t) + 2d

=
∞∑
j=0

cjQ
∫
A

‖cjDy‖−γ dPX(s)(y) dλd(s) + 2d

=
∞∑
j=0

cjQ
∫
A

‖cjDy‖−γ dE[τX ](s, y) + 2d

¬ K
∞∑
j=0

cjQ
∫
A

‖cjDy‖−γ dλd+m(s, y) + 2d

¬ K
∞∑
j=0

cjQ
∫

[−1,1]m1

. . .
∫

[−1,1]mℓ

dλm1(x1) . . . dλmℓ
(xℓ)( ℓ∑

i=1
‖cjDixi‖

)γ + 2d.

By Theorem 2.2.4 in [38], for all ε > 0 there exists K1 > 0 such that for j ∈
N0 and every i = 1, . . . , ℓ we have ‖cjDixi‖ ­ ‖c−jDi‖−1‖xi‖ ­ K1c

j(bi+ε)‖xi‖,
and hence by a change of variables yi = cj(bi−bℓ)xi we get

∫
[−1,1]m1

. . .
∫

[−1,1]mℓ

dλm1(x1) . . . dλmℓ
(xℓ)( ℓ∑

i=1
‖cjDixi‖

)γ
¬ K

∫
[−1,1]m1

. . .
∫

[−1,1]mℓ

dλm1(x1) . . . dλmℓ
(xℓ)( ℓ∑

i=1
cj(bi+ε)‖xi‖

)γ
¬ K c−jγ(bℓ+ε)

∫
[−1,1]m1

. . .
∫

[−1,1]mℓ

dλm1(x1) . . . dλmℓ
(xℓ)( ℓ∑

i=1
cj(bi−bℓ)‖xi‖

)γ
¬ K c

−j(γ(bℓ+ε)+
ℓ∑

i=1
(bi−bℓ)mi) ∫

[−1,1]m̃
‖y‖−γ dλm̃(y),

where m̃ = m1 + . . . + mℓ and y = y1 + . . . + yℓ with respect to the spectral
decomposition of D̃ = D1 ⊕ . . .⊕Dℓ. We now distinguish between the two cases
considered in Example 3.2.

C a s e 1. Assume that
∑ℓ−1

i=1 bimi < Q ¬
∑ℓ

i=1 bimi. For sufficiently small
ε > 0 we have γ(bℓ + ε) < s(cD, cQ)bℓ. It suffices to consider large values of
γ < s(cD, cQ) so that combining (3.9) and (3.10) we may assume

ℓ−1∑
i=1

mi +R− 1 < γ ¬
ℓ−1∑
i=1

mi +R

for some R ∈ {1, . . . ,mℓ}. Hence, for the singular value function, by (2.4) and
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(3.5) we have for sufficiently large j ∈ N

ϕcD(γ) ­ c
j
ℓ−1∑
i=1

(bi+ε)mi
cj(bℓ+ε)(R−1)c

j(bℓ+ε)(γ−
ℓ−1∑
i=1

mi−r+1)

= c
j((bℓ+ε)γ+

ℓ−1∑
i=1

(bi−bℓ)mi)
.

Note that by (3.11) we have γ < s(cD, cQ) ¬ m̃ and thus∫
[−1,1]m̃

‖y‖−γ dλm̃(y) <∞.

By Lemma 2.4, we further get as j →∞

cjQc
−j(γ(bℓ+ε)+

ℓ∑
i=1

(bi−bℓ)mi) ¬ cjQϕ−1
cD

(γ)→ 0,

which shows that

∞∑
j=0

cjQc
−j(γ(bℓ+ε)+

ℓ∑
i=1

(bi−bℓ)mi) ∫
[−1,1]m̃

‖y‖−γ dλm̃(y) <∞.

C a s e 2. Assume that
∑p

i=1 bimi < q; then s(cD, cQ) = m and we choose
ℓ = p. For sufficiently small ε > 0 we have γ(bp + ε) < s(cD, cQ)bp. It suffices to
consider large values of γ < s(cD, cQ) so that we may assume

p−1∑
i=1

mi +mp − 1 < γ ¬
p−1∑
i=1

mi +mp = m = s(cD, cQ).

Hence, for the singular value function, by (2.4) and (3.5) we have

ϕcD(γ) ­ c
j
p−1∑
i=1

(bi+ε)mi
cj(bp+ε)(mp−1)c

j(bp+ε)(γ−
p−1∑
i=1

mi−mp+1)

= c
j((bp+ε)γ+

p−1∑
i=1

(bi−bp)mi)

for sufficiently large j ∈ N. Note that for ℓ = p we have γ < s(cD, cQ) = m = m̃
and thus

∫
[−1,1]m ‖y‖

−γ dλm(y) <∞. By Lemma 2.4, we further get as j →∞

cjQc
−j(γ(bp+ε)+

p∑
i=1

(bi−bp)mi) ¬ cjQϕ−1
cD

(γ)→ 0,

which shows that

∞∑
j=0

cjQc
−j(γ(bp+ε)+

p∑
i=1

(bi−bp)mi) ∫
[−1,1]m

‖y‖−γ dλm(y) <∞.

Putting things together, we get (3.13) in both cases, completing the proof. �
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In a special situation we are able to get an analogue of Theorem 3.1 for the
range.

COROLLARY 3.2. If in addition to the assumptions of Theorems 3.1 and 3.2
we have bp ¬ a1, where bp and a1 are as in Example 3.2, then with probability one

dimHX([0, 1]d) = s(cD, cQ).

P r o o f. By Theorem 3.2, s(cD, cQ) is a lower bound for dimHX([0, 1]d)
almost surely. If s(cD, cQ) = m in (3.12), there is nothing to prove. Otherwise, if∑ℓ−1

i=1 bimi < Q ¬
∑ℓ

i=1 bimi, a comparison of (3.12) with (3.7) together with
the assumption bp ¬ a1 directly shows that s(cE⊕D, cQ) = s(cD, cQ). Thus, by
Theorems 3.1 and 2.1 we get the upper bound

dimHX([0, 1]d) ¬ dimHGrX([0, 1]d) = s(cE⊕D, cQ) = s(cD, cQ)

almost surely, since we assumed (3.1) and the b.c.i. condition. �

4. EXAMPLES

To demonstrate the applicability of our main result, we give examples of large
classes of self-affine random fields for which (3.1) holds and the precise values of
the Hausdorff dimension of the graph and the range are already known.

4.1. Operator-self-similar stable random fields. Let E∈Rd×d and D∈Rm×m

be matrices and assume that the eigenvalues of E and D have a positive real part.
A random field {X(t)}t∈Rd with values in Rm is said to be (E,D)-operator-self-
similar if

{X(cEt)}t∈Rd
fd
= {cDX(t)}t∈Rd for all c > 0.

These fields have been introduced in [33] as a generalization of both operator scal-
ing random fields [6] and operator-self-similar processes [25], [30]. Moreover, for
d = m = 1 one obtains the well-known class of self-similar processes. We say that
a random field {X(t) : t ∈ Rd} is symmetric α-stable (SαS) for some α ∈ (0, 2]
if any linear combination

∑m
k=1 ξkX(tk) is a symmteric α-stable random vector.

In [33], Theorem 2.6, it is shown that a proper, stochastically continuous (E,D)-
operator-self-similar SαS random field X with stationary increments can be given
by a harmonizable representation, provided that 0 < b1 ¬ . . . ¬ bm < 1 for the
real parts of the eigenvalues of D and 1 < a1 < . . . < aq for the distinct real parts
of the eigenvalues of E. This includes the case of operator fractional Brownian mo-
tions studied in [36], [13], [14] and operator scaling stable random fields [6], where
corresponding Hausdorff dimension results were already established in [36], [6],
[4]. Note that, since the real parts of the eigenvalues of E and D are assumed to be
positive, the matrices cE and cD are contracting for all 0 < c < 1. In particular, X
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is a (cE , cD)-self-affine random field for all 0 < c < 1, since its sample functions
are continuous.

We now argue that the occupation measure τX satisfies the b.c.i. condition with
respect to W = cE ⊕ cD = cE⊕D. Recall that any symmetric α-stable random
variable has a smooth and bounded probability density (see [43]) so that the den-
sity y 7→ pt(y) of X(t) exists for all t 6= 0 and the mapping (t, y) 7→ pt(y) is con-
tinuous due to stochastic continuity of the field X . By Lemma 2.3 we only have to
prove that there is a constant K > 0, not depending on t and y, such that pt(y) ¬ K
for all (t, y) ∈ [−1, 1]d+m \W · [−1, 1]d+m. In order to show this, we will use
generalized polar coordinates with respect to E, initially introduced in [6]. For any
t ∈ Rd \ {0} one can uniquely write t = ρE(t)

ElE(t) with E-homogeneous radius
ρE(t) > 0 and direction vector lE(t) ∈ SE = {t ∈ Rd : ρE(t) = 1}. Note that SE

is compact and does not contain zero. The operator self-similarity implies

pt(y) = (det cD)−1pc−Et(c
−Dy) for all c > 0, t ∈ Rd \ {0}, y ∈ Rm,

and for (t, y) ∈ [0, 1]d+m \W · [0, 1]d+m we get

pt(y) = pρE(t)E lE(t)(y) =
(
det ρE(t)

)−D
pρE(t)−EρE(t)E lE(t)

(
ρE(t)

−Dy
)

= ρE(t)
− trace(D)plE(t)

(
ρE(t)

−Dy
)

¬ K1 · max
θ∈SE

sup
y∈Rm

pθ(y) ¬ K,

where K1,K > 0 are constants independent of t and y. Hence, the b.c.i. condition
holds and Theorem 2.1 allows us to compute the carrying dimension of τX as

cardim τX = s(W, cQ) almost surely for all 0 < c < 1,

where W = cE⊕D and Q = trace(E).
The Hausdorff dimension of the graph of X has been computed in [46], Theo-

rem 4.1, for α = 2 and in [45], Theorem 5.1, for α ∈ (0, 2), where the lower bound
in the computation is proven through (3.1). Indeed, it is shown that with probability
one dimHGrX([0, 1]d) coincides with
(4.1)

b−1ℓ

( q∑
k=1

akdk +
ℓ∑

i=1

(bℓ − bi)
)

if
ℓ−1∑
i=1

bi <
q∑

k=1

akdk ¬
ℓ∑

i=1

bi,

ℓ∑
j=1

ãj
ãℓ

d̃j +
q∑

j=ℓ+1

d̃j +
m∑
i=1

(
1− bi

ãℓ

)
if

ℓ−1∑
k=1

ãkd̃k ¬
m∑
i=1

bi <
ℓ∑

k=1

ãkd̃k,

where d1, . . . , dq denote the multiplicities of a1, . . . , aq, respectively, ãj = aq+1−j
and d̃j = dq+1−j for 1 ¬ j ¬ q. Since the assumptions of Theorem 3.1 are ful-
filled, Corollary 3.1 allows us to state that (4.1) coincides with s(cE⊕D, cQ) for
all c ∈ (0, 1), which can also be verified by elementary calculations using Exam-
ple 3.1 as follows.
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If
∑ℓ−1

i=1 bi <
∑q

k=1 akdk ¬
∑ℓ

i=1 bi, then r = ℓ in (3.6), and by (3.7) we get

s(cE⊕D, cQ) = ℓ− 1 +
1

bℓ

(
Q−

ℓ−1∑
i=1

bi
)

= b−1ℓ

( q∑
k=1

akdk +
ℓ∑

i=1

(bℓ − bi)
)
.

On the other hand, if
∑ℓ−1

k=1 ãkd̃k ¬
∑m

i=1 bi <
∑ℓ

k=1 ãkd̃k or, equivalently,

m∑
i=1

bi +
q−ℓ∑
k=1

akdk < Q ¬
m∑
i=1

bi +
q−ℓ+1∑
k=1

akdk,

then we know that

r = m+
q−ℓ∑
k=1

dk +R for some R ∈ {1, . . . , dq−ℓ+1}

in (3.6), and by (3.7) we get

s(cE⊕D, cQ) = m+
q−ℓ∑
k=1

dk +R− 1

+
1

aq−ℓ+1

(
Q−

m∑
i=1

bi −
q−ℓ∑
k=1

akdk − aq−ℓ+1(R− 1)
)

=
q∑

j=ℓ+1

d̃j +
1

aq−ℓ+1

q∑
k=q−ℓ+1

akdk +
m∑
i=1

(
1− bi

aq−ℓ+1

)

=
ℓ∑

j=1

ãj
ãℓ

d̃j +
q∑

j=ℓ+1

d̃j +
m∑
i=1

(
1− bi

ãℓ

)
.

Further, by [46], Theorem 4.1, for α = 2 and [45], Theorem 5.1, for α ∈ (0, 2) we
have almost surely

dimHX([0, 1]d) =


m if

m∑
i=1

bi < Q,

b−1ℓ

(
Q+

ℓ∑
i=1

(bℓ − bi)
)

if
ℓ−1∑
i=1

bi < Q ¬
ℓ∑

i=1

bi.

In accordance with Corollary 3.2, a comparison with (3.12) directly shows that this
value coincides with s(cD, cQ) for all c ∈ (0, 1), indicating that the lower bound
in Theorem 3.2 is in fact equal to the Hausdorff dimension of the range for the har-
monizable representation of any (E,D)-operator-self-similar stable random field.
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All the above results also hold for a moving average representation of the random
field in the Gaussian case α = 2 as shown in [46]. However, for a corresponding
moving average representation in the stable case α ∈ (0, 2), constructed in [33], it
is questionable if our results are applicable, since these fields do not share the same
Hölder continuity properties and thus the joint measurability of sample functions
(assumption (iv) in the Introduction) may be violated; cf. [4], [5] for details.

4.2. Operator semistable Lévy processes. To give an example of random fields
that are not operator self-similar but have the weaker discrete scaling property of
self-affinity, we will now consider operator semistable Lévy processes for d=1
with the restriction to t ­ 0. Let X = {X(t)}t­0 be a strictly operator-semi-
selfsimilar process in Rm, i.e.

(4.2) {X(ct)}t­0
fd
= {cDX(t)}t­0 for some c ∈ (0, 1),

where D ∈ Rm×m is a scaling matrix. If X is a proper Lévy process, it is called an
operator semistable process and it is known that the real part of any eigenvalue of
D belongs to

[
1
2 ,∞

)
, where 1

2 refers to a Brownian motion component; see [38]
for details. Hence this process can be regarded as a self-affine random field with
d = 1 and non-singular contractions U = c, and V = cD. This includes operator
stable Lévy processes, where (4.2) holds for all c > 0, and multivariate stable Lévy
processes, where additionally D is diagonal. For these particular cases, Hausdorff
dimension results for the range and the graph have been established in [1], [39],
[7], [41], [49], [23]. Let 1

2 ¬ b1 < . . . < bp denote the distinct real parts of the
eigenvalues of E with multiplicity m1, . . . ,mp; then recently Wedrich [47] (cf.
also [27]) has shown that for any operator semistable Lévy process X almost surely

(4.3) dimHGrX([0, 1]) =

{
max{b−11 , 1} if b−11 ¬ m1,

1 + max{b−12 , 1}(1− b1) elsewhere,

where the lower bound in the computation is proven through (3.1). Moreover, in
view of Lemma 2.3 it follows directly from [28], Lemma 2.2, that τX satisfies the
b.c.i. condition. Since the assumptions of Theorem 3.1 are fulfilled, Corollary 3.1
allows us to state that (4.3) coincides with s(c⊕ cD, c) = cardim τX irrespectively
of c ∈ (0, 1), which can also easily be verified by elementary calculations. Further,
by Corollary 3.2 and Theorem 3.3 in [28] we have almost surely

(4.4) dimHX([0, 1]) =


b−11 if b−11 ¬ m1,

1 + b−12 (1− b1) if b−11 > m1 = 1, m ­ 2,

1 if b−11 > m1 = 1, m = 1.

This value coincides with s(cD, c) as will be shown below, indicating that the lower
bound in Theorem 3.2 is in fact equal to the Hausdorff dimension of the range for
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any operator semistable Lévy process. Since (4.4) shows dimHX([0, 1]) ∈ (0, 2]
almost surely, it suffices to consider the singular value function ϕWn(s) of W = cD

for s ∈ (0, 2]. We distinguish between the following cases.
C a s e 1. b1 ­ 1. Then for s ∈ (0, 1] the singular value function ϕWn(s)

asymptotically behaves as cnb1s in the sense of (3.5), showing that s(cD, c) = b−11 .
C a s e 2. b1 < 1 and m = 1. Then as in the first case for s ∈ (0, 1] the singular

value function ϕWn(s) asymptotically behaves as cnb1s in the sense of (3.5). Due
to the restriction s ¬ m = 1 we have s(cD, c) = 1.

C a s e 3. b1 < 1, m1 = 1 and m ­ 2. Then for s ∈ (1, 2] the singular value
function ϕWn(s) asymptotically behaves as cn(b1+b2(s−1)) in the sense of (3.5),
showing that s(cD, c) = 1 + b−12 (1− b1).

The operator semistable Lévy processes may be generalized to multiparameter
operator-semistable processes with d ­ 2 as in [16], [49] or to certain operator-
semi-selfsimilar strong Markov processes as in [34], [11], for which corresponding
Hausdorff dimension results of the sample functions are not yet available in full
generality from the literature. Our approach will give promising candidates for
the Hausdorff dimension of the range and the graph of such fields in terms of
the real parts of the eigenvalues of the scaling exponent. These serve at least as
lower bounds by Theorems 3.1 and 3.2, while corresponding upper bounds should
be pursued elsewhere. We expect that these candidates are the precise Hausdorff
dimension values as mentioned in Remark 3.2.
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