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EMBEDDED MARKOV CHAIN APPROXIMATIONS
IN SKOROKHOD TOPOLOGIES
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Abstract. We prove a J1-tightness condition for embedded Markov
chains and discuss four Skorokhod topologies in a unified manner.

To approximate a continuous time stochastic process by discrete time
Markov chains, one has several options to embed the Markov chains into
continuous time processes. On the one hand, there is a Markov embedding
which uses exponential waiting times. On the other hand, each Skorokhod
topology naturally suggests a certain embedding. These are the step function
embedding for J1, the linear interpolation embedding for M1, the multistep
embedding for J2 and a more general embedding for M2. We show that
the convergence of the step function embedding in J1 implies the conver-
gence of the other embeddings in the corresponding topologies. For the con-
verse statement, a J1-tightness condition for embedded time-homogeneous
Markov chains is given.

Additionally, it is shown that J1 convergence is equivalent to the joint
convergence in M1 and J2.
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1. INTRODUCTION

The space of right continuous functions with left limits plays a prominent role
in the theory of stochastic processes. Skorokhod [15] was the first to consider this
space with various metrics. He introduced four topologies: J1, J2,M1 and M2.
The main focus in the literature is on the J1 topology (e.g. [3], [7], [9]) and more
recently on M1 (e.g. [2], [17]). We will be concerned with all four. But note that
there are further topologies on the Skorokhod space: e.g. the sequential topology
of Jakubowski [10] and the pseudo-path topology by Meyer and Zheng [12].

Given the relations of Skorokhod’s topologies, for a fixed sequence the con-
vergence in a stronger topology implies the convergence in a weaker topology,
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i.e., J1-convergence implies M1- and J2-convergence, and either of these implies
M2-convergence. But when one starts with discrete time processes there are many
ways to embed these into continuous time processes, and most embeddings do not
converge in all four topologies. Actually, each of the four Skorokhod topologies
suggests a particular embedding, the weaker the topology is the “wilder” the em-
bedding can be (see Section 3). Thus a natural question arises: can we switch the
topology and the corresponding embedding without losing convergence?

Consider Markov chains with time steps of size 1
n and let n tend to infinity. In

order to discuss a continuous time limit, it is necessary to embed the chains into
continuous time processes. In our general setting the limit can be a process with
jumps. For processes with continuous paths Sato [14] discussed a closely related
problem: he showed that linearly interpolated Markov chains converge with respect
to the uniform topology (in the space of continuous functions) if and only if the step
function embedded Markov chains converge to a continuous process with respect
to the J1 topology (in the Skorokhod space). Our result allows us in particular (cf.
Example 4.1) to extend Markov chain approximations for Feller processes (cf. [5],
[6]) to different embeddings. More general, we provide a J1-tightness condition
for Markov chains, see Theorem 4.6.

It turns out that, in the above setting, convergence is always preserved when
switching from a topology to a weaker topology (and to the corresponding embed-
ding), see Corollary 3.1 and Theorem 3.1. For the converse direction naturally
some additional assumption is needed, see (Counter-)Examples 3.1 and Corol-
lary 4.1.

In the next section we introduce the Skorokhod space and the topologies
J1, J2, M1 and M2 in a unified framework, which consolidates the literature, e.g.
[15], [17], [13]. In particular, we recall their relations and several representations.
The relation between J1 and the combination of J2 and M1 (Lemma 2.1) seems
to be neglected in the literature. It goes back to a remark without proof of Sko-
rokhod [15], 2.2.10–13. In Section 3, the embeddings are introduced and their
relations are discussed. In Section 4, a J1-tightness condition (Theorem 4.6) for
embedded Markov chains is presented, it enables us to switch from a weaker to a
stronger topology (and to the corresponding embedding; see Corollary 4.1). The
paper closes with the proof of Lemma 2.1.

2. THE SKOROKHOD SPACE AND ITS TOPOLOGIES

Throughout the paper segments between points x, y ∈ Rd are denoted by

[[x, y]] := {z ∈ Rd | z = αx+ (1− α)y for some α ∈ [0, 1]},

and ‖ · ‖∞ denotes the supremum norm. Limits without superscript, e.g. fn → f ,
are meant in the Euclidean distance. Unless stated otherwise, limits are considered
for the index tending to infinity, e.g. n→∞, and the dimension d ∈ N is arbitrary.
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DEFINITION 2.1. A function f : [0, 1]→ Rd is right continuous with left lim-
its (rcll) if

f(s+) := lim
t↓s

f(t) = f(s) and f(s−) := lim
t↑s

f(t) exist in Rd.

The Skorokhod space is

D[0, 1] := Dd[0, 1] :=
{
f : [0, 1]→ Rd

∣∣ f is rcll and f is left continuous at 1
}
.

On the Skorokhod space several metrics can be defined.

DEFINITION 2.2. Let f, f1, f2 ∈ D[0, 1].
The incomplete graph of f is

Γf := {(z, t) ∈ Rd × [0, 1] | z = f(t−) or z = f(t)}.

The complete graph of f is

Γf := {(z, t) ∈ Rd × [0, 1] | z ∈ [[f(t−), f(t)]]}.

An order is defined on Γf by

(z1, t1) ¬ (z2, t2) if

{
either t1 < t2

or t1 = t2, |f(t1−)− z1| ¬ |f(t2−)− z2|,

and the families of parametric representations of Γf are given by

π(Γf ) = {(u, r) |u : [0, 1]→ Rd continuous, r : [0, 1]→ [0, 1] continuous,

(u, r) is non-decreasing and (u, r)[0, 1] = Γf},

π̃(Γf ) = {(u, r) |u : [0, 1]→ Rd continuous, r : [0, 1]→ [0, 1] continuous,

r is non-decreasing and (u, r)[0, 1] = Γf}.
The sets of time transformations are Λ := {λ : [0, 1]→ [0, 1] |λ is bijective}

and Λc := Λ ∩ C[0, 1]. Let id denote the identity function on [0, 1]; then metrics
on Skorokhod space are given by

dJ1(f1, f2) := inf
λ∈Λc

{‖f1 ◦ λ− f2‖∞ ∨ ‖λ− id‖∞},

d̃J2(f1, f2) := inf
λ∈Λ
{‖f1 ◦ λ− f2‖∞ ∨ ‖λ− id‖∞},

dM1(f1, f2) := inf
(uj ,rj)∈π(Γfj

)

j=1,2

{‖u1 − u2‖∞ ∨ ‖r1 − r2‖∞},

d̃M2(f1, f2) := inf
(uj ,rj)∈π̃(Γfj

)

j=1,2

{‖u1 − u2‖∞ ∨ ‖r1 − r2‖∞},

dJ2(f1, f2) := mH(Γf1 ,Γf2),

dM2(f1, f2) := mH(Γf1 ,Γf2),
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where mH(A,B) = inf{ε > 0 : A ⊂ Bε, B ⊂ Aε} is the Hausdorff distance with
Bε := {(x, t) ∈ Rd × [0, 1] | ∃(y, s) ∈ B : |x− y| ∨ |t− s| ¬ ε}.

In the following, T will always denote one of J1, J2,M1,M2. Note that dT is
a metric on D[0, 1]. This is clear by the definition for J2 and M2, for J1 see [3],
and for M1 see [17]. For f, fn ∈ D[0, 1] (n ∈ N) we say that fn converges to f in
T (in T -topology) if dT (fn, f)→ 0. The convergence is denoted by

fn
T−→ f.

REMARK 2.1. Skorokhod [15] used d̃J2 , d̃M2 to introduce the topologies J2
and M2, respectively. But dJ2 , dM2 yield the same topologies ([13], II.4.1, p. 82,
II.4.2, p. 83). Note that on Rd with d > 1 one could also define a complete graph by
including for each coordinate the whole interval between the start and endpoints of
the jumps, i.e.×d

i=1[[fi(t−), fi(t)]], where fi denotes the ith component of f . The
definition above only uses the linear interpolation, i.e., [[f(t−), f(t)]], thus here
the M topologies are strong in the sense of Whitt ([17], Sections 12.3 and 12.10).

Regarding completeness of the corresponding metric spaces see Remark 4.1(1).

The convergence in these topologies can also be characterized by oscillation
functions.

DEFINITION 2.3 (Oscillation functions). Define for x, x1, x2 ∈ Rd

(2.1)
J(x, x1, x2) := |x− x1| ∧ |x− x2|,
M(x, x1, x2) :=

∣∣x− [[x1, x2]]
∣∣ := inf

y∈[[x1,x2]]
|x− y|,

and for δ > 0

T1(δ) := {(t, t1, t2) | (t− δ) ∨ 0 ¬ t1 < t < t2 ¬ (t+ δ) ∧ 1},
T2(δ) := {(t, t1, t2) | t ∈ [0, 1], t1 ∈ [(t− δ) ∨ 0, (t− δ) ∨ 0 + δ/2],

t2 ∈ [(t+ δ) ∧ 1− δ/2, (t+ δ) ∧ 1]}.

The oscillation functions for f : [0, 1]→ Rd, δ > 0 and i = 1, 2 are

(2.2)

∆Ji(δ, f) := sup
(t,t1,t2)∈Ti(δ)

J
(
f(t), f(t1), f(t2)

)
,

∆Mi(δ, f) := sup
(t,t1,t2)∈Ti(δ)

M
(
f(t), f(t1), f(t2)

)
,

∆
{0,1}
U (δ, f) := sup

0<t<δ
|f(0)− f(t)|+ sup

1−δ<t<1
|f(1)− f(t)|.

The following theorem states the fundamental relation of the oscillation func-
tions and the metrics.
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THEOREM 2.1. Let fn, f ∈ D[0, 1]. Then

fn
T−→ f ⇔


(i) fn(t)→ f(t),∀t ∈ B, where 0, 1 ∈ B and

B is a dense subset of [0, 1],
(ii) limδ↓0 lim supn→∞∆T (δ, fn) = 0.

P r o o f. The proofs can be found for M2 in [15], 2.3.4, for M1 in [15], 2.4.1,
for J2 in [13], II.4.4, [15], 2.5.3, and for J1 in [15], 2.6.1. �

Note that the oscillation functions satisfy the following relations.

LEMMA 2.1. Let δ > 0 and f : [0, 1]→ Rd. Then

(2.3) ∆M2(δ, f)
¬
¬

∆J2(δ, f)

∆M1(δ, f)

¬
¬

∆J1(δ, f) ¬ ∆M1(δ, f) + ∆J2(δ, f).

P r o o f. The first four inequalities follow directly from the definition of the
oscillation functions, since M(x, x1, x2) ¬ J(x, x1, x2) and T2(δ) ⊂ T1(δ). The
last inequality is proved in Section 5. �

Thus we have the following relations of the convergences:

(2.4) M2
⇐
⇐

J2

M1

⇐

⇐
J1 ⇔ M1 + J2.

As remarked by Skorokhod [15], 2.2.10–13, there are further equivalent char-
acterizations of the convergence in these topologies for functions in Rd with d = 1.

THEOREM 2.2. Let fn, f ∈ D1[0, 1].
(1) M2 is characterized by the convergence of the local extrema:

fn
M2−−→ f ⇔ inf

t∈[t1,t2]
fn(t)→ inf

t∈[t1,t2]
f(t) and sup

t∈[t1,t2]
fn(t)→ sup

t∈[t1,t2]
f(f)

for all t1, t2 being points of continuity of f .
(2) M1 is characterized by the convergence of the number of oscillations:

fn
M1−−→ f ⇔ ν

[a,b]
[t1,t2]

fn → ν
[a,b]
[t1,t2]

f

for all t1, t2 being points of continuity of f and almost all a < b. Here ν
[a,b]
[t1,t2]

f

is the largest k such that there exist t(0) < . . . < t(k) in [t1, t2] with f(t(0)) ¬ a,
f(t(1)) ­ b, f(t(2)) ¬ a, . . .
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(3) J2 is characterized by the convergence of the first overshoots:

fn
J2−→ f ⇔ γ+[t1,t2],afn → γ+[t1,t2],af

for all t1, t2 being points of continuity of f and almost all a. Here, using the con-
vention inf ∅ = 1, define τa,f := inf{t ∈ [0, 1] | f(t) ­ a} and

γ+[0,1],af :=

{
f(τa,f )− a, τa,f < 1,

−1, otherwise,

and, in general, use

γ+[t1,t2],af := γ+[0,1],af̃ with f̃(t) :=


f(t1+), t ¬ t1,

f(t), t ∈ (t1, t2),

f(t2−), t ­ t2.

(4) J1 is characterized by the convergence of the first overshoots and the num-
ber of oscillations:

fn
J1−→ f ⇔ γ+[t1,t2],afn → γ+[t1,t2],af and ν

[a,b]
[t1,t2]

fn → ν
[a,b]
[t1,t2]

f

for all t1, t2 being points of continuity of f and almost all a < b. For the definition
of γ and ν see (2) and (3).

P r o o f. Statements (1) and (3) are a consequence of the definition of these
metrics via the Hausdorff metric. Statement (2) can be found in Whitt [17], The-
orem 12.7.4, p. 412. Statement (4) is due to the equivalence of the convergences
(Lemma 2.1): J1 ⇔M1 + J2. �

REMARK 2.2. (1) The characterizations in Theorem 2.2 are tailored to d=1.
For higher dimensions Whitt [17], Theorem 12.7.2, showed, for example, that

(2.5) fn
M1−−→ f ⇔ η · fn

M1−−→ η · f as functions in D1[0, 1] for all η ∈ Rd

for fn, f ∈ Dd[0, 1].

(2) Throughout this section we only considered D[0, 1]. By replacing 1 by
T ∈ (0,∞) we have an obvious extension to D[0, T ]. An approach to define con-
vergence for fn, f ∈ D[0,∞) is

(2.6) fn
T−→ f

⇔ fn
∣∣
[0,T ]

T−→ f
∣∣
[0,T ]

in D[0, T ] for all T ∈ {t | f is continuous in t}.

For further details on the extension to D[0,∞) see Lindvall [11].
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3. EMBEDDINGS AND APPROXIMATIONS

Let n ∈ N and y(n) be a sequence (y(n)0 , y
(n)
1 , y

(n)
2 , . . .) in Rd. Define for each

topology T the embeddings xn,T to be functions in D[0, 1] such that for k < n

(3.1) xn,T
(
k
n

)
= y

(n)
k

and for all t ∈
(
k
n ,

k+1
n

)

(3.2)

xn,J1(t) = y
(n)
k (step functions for J1),

xn,M1(t) = y
(n)
k +

(
t− k

n

)
(y

(n)
k+1 − y

(n)
k ) (linear interpolation for M1),

xn,J2(t) ∈ {y(n)k , y
(n)
k+1} (multiple steps for J2),

xn,M2(t) ∈ [[y
(n)
k , y

(n)
k+1]] (any rcll function for M2).

Note that the requirement xn,T ∈ D[0, 1] ensures that xn,T (1) = limt↗1 x
n,T (t).

Clearly, in the above definition only those k with k < n are used, but in the next
section it will be convenient that each y(n) is a countable sequence.

Lemma 2.1 implies the following result.

COROLLARY 3.1. xn,J1 converges in J1 implies that xn,J1also converges in T .

Moreover, in a given topology we can always switch between its embedding
and the J1 embedding.

THEOREM 3.1. xn,T converges in T if and only if xn,J1 converges in T .

P r o o f. By the definition of the metrics and the embeddings we obtain

(3.3) dJ2(x
n,J2 , xn,J1) ¬ 1

n
and dM2(x

n,M2 , xn,J1) ¬ 1

n
.

For M1 we use (2.5) and Theorem 2.2. Note that for all η ∈ Rd and all t1, t2 which
are points of continuity of the limit and almost all a < b

(3.4)
∣∣ν[a,b][t1,t2]

(η · xn,M1)− ν
[a,b]
[t1,t2]

(η · xn,J1)
∣∣ n→∞−−−→ 0,

since for k−1
n < t1 ¬ k

n and l
n ¬ t2 <

l+1
n the number of oscillations coincides for

the segment from k
n to l

n . In the limit, no overshoot appears at the two boundary
segments since t1 and t2 are points of continuity. Thus, if the limit is in D[0, 1],
the statement follows by the triangle inequality. �

We close this section with basic counterexamples which show that the con-
verse implication of Corollary 3.1 fails.
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EXAMPLE 3.1. Let n ­ 4 and k ∈ N ∪ {0}.

(1) Let y(n)k = 0 for k
n < 1

2 , y(n)k = 1
2 for k−1

n < 1
2 ¬

k
n and y

(n)
k = 1 other-

wise. Then xn,J1 converges to 1[1/2,1] in M1, but not in J1 and not in J2.

(2) Let y(n)k = 0 for k
n < 1

2 , y(n)k = 1 for k−1
n < 1

2 ¬
k
n , y(n)k = 0 for k−2

n <
1
2 ¬

k−1
n and y

(n)
k = 1 otherwise. Then xn,J1 converges to 1[1/2,1] in J2, but not in

J1 and not in M1.

(3) Let y(n)k = 0 for k
n < 1

2 , y(n)k = 1
2 for k−1

n < 1
2 ¬

k
n , y(n)k = 1 for k−2

n <
1
2 ¬

k−1
n , y(n)k = 0 for k−3

n < 1
2 ¬

k−2
n and y

(n)
k = 1 otherwise. Then xn,J1 con-

verges to 1[1/2,1] in M2, but not in J2 and not in M1, and thus not in J1.

4. CONVERGENCE OF PROCESSES AND MARKOV CHAINS

Let X,X(n) (n ∈ N) be D[0, 1]-valued random variables on some probability
space (Ω,A,P). To fix notation, we recall the following standard definitions.

DEFINITION 4.1. (1) X(n) d−→ X w.r.t. T : E
(
G(X(n))

)
→ E

(
G(X)

)
for all

bounded and T -continuous functions G : D[0, 1]→ R.

(2) X
(n)
t

d−→ Xt: E
(
g(X

(n)
t )

)
→ E

(
g(Xt)

)
for all bounded and continuous

functions g : Rd → Rd.

(3) X(n) P−→ X w.r.t. T : limn→∞ P
(
dT (X

(n), X) > ε
)
= 0 for all ε > 0.

(4) X(n) fdd−−→ X on I: (X
(n)
t1

, . . . , X
(n)
tk

)
d−→ (Xt1 , . . . , Xtk) for all ti ∈ I .

(5) (X(n))n∈N is T -tight: for all ε > 0 there exists a T -compact set K ∈
B(D[0, 1]) such that supn P(X(n) ∈ Kc) ¬ ε.

(6) (X(n))n∈N is relative T -compact: for every subsequence (X(nk))k∈N there
exists a further subsequence (X(nkl

))l∈N and a D[0, 1]-valued random variable Y

such that X(nkl
) d−→ Y w.r.t. T .

The following result is the standard tool to handle convergence on D[0, 1]. We
include a sketch of the proof since we are going to point out a particular detail later.

THEOREM 4.1. We have

X(n) d−→ X w.r.t. T ⇔

{
(i) X(n) fdd−→ X on a dense subset of [0, 1],
(ii) (X(n))n∈N is relatively T -compact.

P r o o f. ⇐. By (ii) every subsequence of X(n) has a converging subsequence
whose limit has, by (i), the same finite-dimensional distributions as X . The finite-
dimensional distributions define uniquely the distribution of a process in D[0, 1],
thus the limit is X .
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⇒. The projection πt : D[0, 1]→Rd, πt(f) :=f(t) is measurable, X(n) d−→X
and the set T := {t : P(|Xt −Xt−|) > 0} is countable. Thus, for all t ∈ T c

P
(
X ∈ {f ∈ D[0, 1] : πt(f) is discontinous at t}

)
= P(|Xt −Xt−| > 0) = 0

and the statement follows by a continuous mapping theorem, see e.g. [17], Theo-
rem 3.4.3. �

REMARK 4.1. (1) A sufficient condition for relative T -compactness is given
by Prokhorov’s theorem:

T -tightness ⇒ relative T -compactness.

The converse holds if D[0, 1] is, with the topology induced by dT , a complete and
separable space. This is the case for J1 and M1, but for J2 and M2 it is still an
open problem. To avoid confusion, note that the metric spaces (D[0, 1], dJ1) and
(D[0, 1], dM1) are not complete – but there exist complete metrics which generate
the same topologies (one approach to construct these complete metrics is to add
to the given metrics the Lévy distance of distributions obtained via the oscillation
functions; see Section 12.8 in [17]).

(2) Note that we assumed that X is D[0, 1]-valued. For condition (i) in The-
orem 4.1 this can be relaxed, at least if J1 is considered. Topsøe [16], Theorem 2,
showed that J1-tightness and the mere convergence of the finite-dimensional dis-
tributions on a dense subset are sufficient to identify a process in D[0, 1] which is
the J1 limit.

(3) Looking at the proof of Theorem 4.1 (see also [9], Theorem 3.14), note
that if the process X is stochastically continuous, i.e.,

(4.1) ∀s ∈ [0, 1] ∀ε > 0 : lim
t→s

P(|Xt −Xs| > ε) = 0,

then the dense subset of [0, 1] can be taken to be the whole set [0, 1]. See also
Proposition 4.1 below.

(4) A necessary condition for Xn d−→ X w.r.t. T is

(4.2) ∀ε > 0 ∃R > 0 : sup
n

P(‖X(n)‖∞ ­ R) < ε,

since otherwise some mass would dissipate and hence X would have, with positive
probability, values not in D[0, 1]. Also note that {f ∈ D[0, 1] | ‖f‖∞ < R} is not
T -compact, since e.g. (1[1/2,1/2+1/n))n­2 has no converging subsequence.

For J1 there are several conditions for tightness, we will start with a standard
result (see e.g. [9], Theorem 3.21).
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THEOREM 4.2. The sequence of processes (X(n))n∈N is J1-tight if and only
if (4.2) holds and

(4.3) ∀ε > 0 : lim
δ↓0

sup
n

P
(
∆J1(δ,X

(n)) + ∆
{0,1}
U (δ,X(n)) > ε

)
= 0.

REMARK 4.2. For M1 a result analogous to Theorem 4.2 holds (cf. [17],
Theorem 12.12.3). For M2 and J2 the corresponding version of condition (4.3) is
not necessary for compactness (cf. [15], 2.7.2–4).

A well-known sufficient J1-tightness condition is due to Aldous [1].

THEOREM 4.3 (Aldous [1]). The sequence (X(n))n∈N is J1-tight if

(4.4) ∀ε > 0 : lim
n→∞

P(|X(n)
(τn+tn)∧1 −X(n)

τn | > ε) = 0

for all sequences (τn)n∈N, with τn being a stopping time for X(n), and all se-
quences (tn)n∈N with tn ­ 0, tn → 0.

As a motivation we also recall a closely related result by Gikhman and Sko-
rokhod [8], Theorem 4, p. 431, formulated here for the time-homogeneous setting:

THEOREM 4.4 (Gikhman and Skorokhod [8]). Let X,X(n) be time-homoge-

neous Markov processes with X(n) fdd−→ X on some dense subset of [0, 1] and

(4.5) ∀ε > 0 : lim
h↓0

lim sup
n→∞

sup
x∈Rd

t¬h

P
(
|X(n)

t − x| > ε
∣∣X(n)

0 = x
)
= 0.

Then X(n) d−→ X w.r.t. J1.

Thus (4.5) is a J1-tightness condition, actually ensuring that the limit is spatial-
uniformly stochastically continuous from the right. The Aldous tightness condition
(4.4) and condition (4.5) are both not necessary for convergence, a counterexample
is a process with a fixed jump, e.g. consider the deterministic time-homogeneous
Markov process whose transition probabilities for t > 0 and x ∈ R are

P
(
Xt = x |X0 = x

)
= 1 for all x ∈ [0, 1),

P
(
Xt = x+ t |X0 = x

)
= 1 for all x ∈ [1,∞) or x ∈

(
−∞, 0 ∧ (−t)

)
,

P
(
Xt = x+ t+ 1 |X0 = x

)
= 1 for all x ∈ (−∞, 0) and t+ x ­ 0.

Incidentally, this counterexample also shows that for time-homogeneous Mar-
kov processes stochastic continuity (4.1) is stronger than stochastic continuity from
the right, i.e., limt↓0 P

(
|Xt − x| > ε | X0 = x

)
= 0 for all ε > 0 and x ∈ Rd. In

fact, the following holds.

PROPOSITION 4.1. Let X be a D[0, 1]-valued process. Then the following are
equivalent:
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(1) X is stochastically continuous:

∀s ∈ [0, 1] ∀ε > 0 : lim
t→s

P(|Xt −Xs| > ε) = 0.

(2) X has no fixed discontinuities: ∀s ∈ [0, 1] : P(|Xs −Xs−| > 0) = 0.
If additionally X is a time-homogeneous Markov process, then properties (1)

and (2) are implied by
(3) X is locally spatial-uniformly stochastically continuous from the right:

(4.6) ∀ε > 0 ∀R > 0 : lim
t↓0

sup
|x|<R

P
(
|Xt − x| > ε |X0 = x

)
= 0.

P r o o f. Let X be a D[0, 1]-valued process. Then it has a right continuous
path with left limits and therefore (1) and (2) are equivalent.

Moreover, for each ε′ > 0 there exists an R > 0 such that P(‖X‖∞ ­ R)
< ε′. For X being a time-homogeneous Markov process and 0 ¬ h ¬ t we find

P(|Xt−h −Xt| > ε) =
∫
P
(
|x−Xh| > ε |X0 = x

)
P(Xt−h ∈ dx)

¬ sup
|x|<R

P
(
|Xh − x| > ε |X0 = x

)
+ ε′,

(4.7)

which implies the result. �

In some sense Proposition 4.1 suggests that it might be possible to localize
condition (4.5). In fact, the following is a simple consequence of Aldous’ result.

THEOREM 4.5. Let X(n) be a time-homogeneous strong Markov process sat-
isfying (4.2) and

(4.8) ∀ε > 0 ∀R > 0 : lim
h↓0

lim sup
n→∞

sup
|x|<R
t¬h

P
(
|X(n)

t − x| > ε |X0 = x
)
= 0.

Then (X(n))n∈N is J1-tight.

P r o o f. Assume that (4.2) for ε′ > 0 and (4.8) hold and let (τn)n∈N be such
that τn is a stopping time for X(n). Furthermore, let ε > 0 and (tn)n∈N be a se-
quence in [0, 1] with tn → 0. Hence

(4.9) P(|X(n)
(τn+tn)∧1 −X(n)

τn | > ε) ¬ ε′ + sup
|x|<R
t¬tn

P
(
|X(n)

t − x| > ε
∣∣X0 = x

)
and Theorem 4.3 implies the result. �



270 B. Böttcher

So far we have discussed conditions for Markov processes. In the following
we will adapt these conditions to the Markov chain setting.

Let Y (n) be a time-homogeneous Markov chain (Y
(n)
0 , Y

(n)
1 , Y

(n)
2 , . . .) on

(Ω,A,P) and define the embeddings Xn,T (ω) analogous to those in the previ-
ous section for each ω. Then each Xn,T is a D[0, 1]-valued random variable. But
in general, Xn,T is not a Markov process!

Starting with a Markov chain, a Markov process can be constructed by subor-
dination: let (Nt)t­0 be a Poisson process with intensity one, which is independent
of the Markov chain. Then one can embed the Markov chain Y (n) into a continuous
time Markov process (Z(n)

t )t­0 by setting

(4.10) Z
(n)
t := Y

(n)
Nnt

for t ∈ [0, 1) and Z
(n)
1 := Z

(n)
1− .

The J1 embedding and the Markov embedding are closely related as the following
(technical) result shows.

LEMMA 4.1. Let

(4.11) sup
k<|n−1−Nn−|

|Y (n)
((n−1)∧Nn−)+k − Y

(n)
(n−1)∧Nn−

| P−→ 0.

Then Xn,J1 converges in distribution w.r.t. J1 if and only if Z(n) converges in
distribution w.r.t. J1.

P r o o f. Recall that Xn,J1
t =Y

(n)
bntc and Z

(n)
t =Y

(n)
Nnt

for t<1. The first (n− 1)
∧Nn− steps of these processes coincide by definition, they just appear at different
times ( kn vs. k-th jump time of Nnt). By a time change with a piecewise linear
function λ ∈ Λc both paths (up to the waiting time after the

(
(n − 1) ∧Nn−

)
-th

jump) can be made to coincide. The value of ‖λ − id‖∞ is attained at one of the
jump times, thus (since Nn. =

⌊
nNn.

n

⌋
) one can show that

(4.12) ‖λ− id‖∞ = sup
s∈[0,1)

∣∣∣∣s− Nns

n

∣∣∣∣ .
The steps after (n − 1) ∧ Nn− cannot be compensated by a time transformation.
They have to be estimated explicitly. Therefore,

dJ1(X
n,J1
. , Z(n)

. ) ¬ sup
s∈[0,1)

∣∣∣∣s− Nns

n

∣∣∣∣
+ sup

k<|n−1−Nn−|
|Y (n)

((n−1)∧Nn−)+k − Y
(n)
((n−1)∧Nn−)

|.

(4.13)
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Since s−Nns/n is a martingale, we find with Doob’s maximal inequality that

E
(

sup
s∈[0,1)

∣∣∣∣s− Nns

n

∣∣∣∣ ) ¬
√√√√E

(
sup

s∈[0,1)

∣∣∣∣s− Nns

n

∣∣∣∣2)

¬ 2

√
E
(
1− Nn

n

)2

=
2√
n
.

(4.14)

This implies with (4.11) that the J1 distance of Xn,J1 and Z(n) converges in prob-
ability to zero. Thus the convergence in distribution of either Xn,J1 or Z(n) implies
also the convergence in distribution of the other, e.g. by [3], Theorem 4.1, p. 25. �

Before analyzing condition (4.11) consider the question we have asked at the
beginning: when does the converse of Corollary 3.1 hold? Suppose a step embed-
ded (i.e., using the J1-embedding of (3.2)) Markov chain converges, for example,
in J2 but not in J1. Then the limit (before identifying it with a D[0, 1]-function)
has to have some states which it reaches by a jump and leaves instantaneously by
another jump. The following condition is sufficient to ensure that such limit points
do not exist:

(4.15) ∀ε > 0 ∀R > 0 : lim
h→0

lim sup
n→∞

sup
|x|<R
t¬h

P
(
|Y (n)
btnc − x| > ε

∣∣Y (n)
0 = x

)
= 0.

Note that this is the Markov chain version of (4.8). It ensures, as (4.8), that the
limit process is locally spatial-uniformly stochastically continuous from the right
and together with the Markov chain version of (4.2), i.e.,

(4.16) ∀ε > 0 ∀m ∈ N ∃R > 0 : sup
n

P(‖Y (n)
b·nmc‖∞ > R) < ε,

we will get a J1-tightness condition, see Theorem 4.6. Note that in (4.16) the extra
m is needed since the subordinated chain might have more than n steps. In the
context of D[0, 1] this might seem surprising, but for processes in D[0,∞) the
condition remains unchanged and becomes natural (cf. the last paragraph of this
section). Now we can relate (4.11) to these conditions.

LEMMA 4.2. Let (4.15) and (4.16) hold. Then for any sequence
(
l(n)

)
n∈N ⊂

[0,∞) with l(n)
n → 0

(4.17) lim
n→∞

sup
|x|<R

P
(

sup
k¬l(n)

|Y (n)
k − x| > ε

∣∣Y (n)
0 = x

)
= 0

and (4.11) hold.
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P r o o f. Let τ (n)Bε(x)
denote the time of the first exit of Xn,J1 from the ball with

center x and radius ε. Then (4.17) becomes

(4.18) lim
n→∞

sup
|x|<R

P
(
τ
(n)
Bε(x)

¬ l(n)

n

∣∣∣Xn,J1
0 = x

)
= 0.

Suppose that the limit in (4.18) is not zero. Then the limiting process (if it exists)
would not be locally spatial-uniformly stochastically continuous from the right,
and this contradicts (4.15). Hence (4.17) must hold. Alternatively, for a direct proof
note that analogously to [8], Lemma 2, p. 420, one gets for n large

(4.19) P
(

sup
k¬l(n)

|Y (n)
k − x| > ε

∣∣Y (n)
0 = x

)
¬

P
(
|Y (n)

l(n) − x| > ε
2

∣∣Y (n)
0 = x

)
1− sup |y|<R

k¬l(n)
P
(
|Y (n)

k − y| > ε
2

∣∣Y (n)
0 = y

)
− εR

,

where εR ∈ [0, 1) is some constant depending on R. Hence the statement follows
by (4.15) and the estimate

(4.20) lim sup
n→∞

sup
|x|<R

P
(
|Y (n)

l(n) − x| > ε
2

∣∣Y (n)
0 = x

)
¬ lim sup

n→∞
sup
|x|<R

t¬l(n)/n

P
(
|Y (n)
btnc − x| > ε

2

∣∣Y (n)
0 = x

)
¬ lim sup

n→∞
sup
|x|<R
t¬h

P
(
|Y (n)
btnc − x| > ε

2

∣∣Y (n)
0 = x

)
,

which holds for any h ∈ (0, 1].
For the second part of the statement let ε, ε′ > 0, m ∈ N and, using (4.16), R

be such that P(‖Yb·n(m+2)c‖∞ > R) < ε′. Note that P(|n − 1 − Nn−| ­
√
nm)

¬ 1
m . Thus

(4.21) P( sup
k<|n−1−Nn−|

|Y (n)
((n−1)∧Nn−)+k − Y

(n)
(n−1)∧Nn−

| > ε)

¬ ε′ + 1
m + sup

|x|<R
P
(

sup
k¬
√
nm

|Y (n)
k − x| > ε

∣∣Y (n)
0 = x

)
and (4.17) implies (4.11), since

√
nm
n → 0. �

Now we can prove a J1-tightness condition for embedded Markov chains, i.e.,
conditions (2) and (3) in the following theorem.
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THEOREM 4.6. Let Y (n), Xn,J1 and X be as above. Suppose the following
conditions hold:

(1) Xn,J1
fdd−→ X on a dense subset of [0, 1];

(2) condition (4.16), i.e.,

∀ε > 0 ∀m ∈ N ∃R > 0 : sup
n

P(‖Y (n)
b·nmc‖∞ > R) < ε;

(3) condition (4.15), i.e.,

∀ε > 0∀R > 0 : lim
h→0

lim sup
n→∞

sup
|x|<R
t¬h

P
(
|Y (n)
btnc − x| > ε

∣∣Y (n)
0 = x

)
= 0.

Then
Xn,J1 d−→ X w.r.t. J1.

P r o o f. Assume that the conditions hold and let Z(n) be the Markov embed-
ding of Y (n) as defined in (4.10). By Lemmas 4.1 and 4.2,

(4.22) Xn,J1 d−→ X w.r.t. J1 ⇔ Z(n) d−→ X w.r.t. J1.

Next note that

P(‖Y (n)
N.n
‖∞ > R) = P( sup

k¬Nn

|Y (n)
k | > R)

=
∞∑
l=1

P(sup
k¬l
|Y (n)

k | > R)P(Nn = l)

¬ P( sup
k¬nm

|Y (n)
k | > R) + P(Nn ­ mn)

(4.23)

with P(Nn ­ mn) ¬ 1
m and condition (2) implies that Z(n) satisfies (4.2). Fur-

thermore, let ε > 0. Then, as in (4.23),

(4.24) P
(
|Y (n)

Ntn
− x| > ε |Y (n)

0 = x
)

=
∞∑
l=0

P
(
|Y (n)

l − x| > ε |Y (n)
0 = x

)
P(Ntn = l)

¬ sup
l¬btnmc

P
(
|Y (n)

l − x| > ε |Y (n)
0 = x

)
+

1

m
.

Condition (3) and the arbitrary choice of m imply that Z(n) satisfies (4.8),
letting therein h < 1

m . Thus, by Theorem 4.5, the family (Z(n))n∈N is J1-tight.
Hence, for every sequence nk ↗ ∞ there is a subsequence nkl such that

Z(nkl
) converges in distribution w.r.t. J1 to some limit, and X(nkl

) must have the
same limit in distribution. But, by (1), the limit of X(nkl

) is X and it is independent
of the sequence. Thus Xn,J1 d−→ X w.r.t. J1. �
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Furthermore, (4.15) also yields a statement about the convergence of finite-
dimensional distributions when switching the embedding.

LEMMA 4.3. Let (4.15) hold and Xn,T d−→ X w.r.t. T , hence (by Theorem 4.1)

also Xn,T fdd−→ X on some I which is a dense subset of [0, 1]. Then

Xn,J1 fdd−→ X on I.

P r o o f. Let the assumptions be satisfied and note that, by the definition of the
embeddings, Xn,T

t ∈ [[Y
(n)
btnc, Y

(n)
btnc+1]]. Fix ε > 0; then, by Remark 4.1(4), there

exists an R > 0 such that

(4.25) sup
n

P(‖Y (n)
b·nc‖∞ ­ R) < ε.

Thus

(4.26) P(|Xn,J1
t −Xn,T

t | > ε)

= P(|Y (n)
btnc −Xn,T

t | > ε) ¬ P(|Y (n)
btnc − Y

(n)
btnc+1| > ε)

¬ sup
x<R

P
(
|Y n

1 − x| > ε |Y0 = x
)
+ sup

n
P(‖Y (n)

b·nc‖∞ ­ R)

and the first summand converges, by (4.15), to zero as n→ 0. Since ε is arbitrary,
the result follows by Slutsky’s theorem as in Lemma 4.1. �

Finally, we get the following extension to Corollary 3.1.

COROLLARY 4.1. Let (4.15) and (4.16) hold. Then Xn,T converges in distri-
bution w.r.t. T if and only if Xn,J1 converges in distribution w.r.t. J1.

P r o o f. The direction from J1 to the other topologies is just Theorem 3.1 and
Corollary 3.1.

For the converse, let (4.15) and (4.16) hold and Xn,T d−→ X w.r.t. T . By
Lemma 4.3 we get Xn,J1 fdd−−→ X on some dense subset of [0, 1] and hence (with

Remark 4.1(4)) all conditions of Theorem 4.6 are satisfied. Therefore, Xn,J1 d−→ X
w.r.t. J1. �

EXAMPLE 4.1. If (Y (n))n∈N is the Markov chain approximation to a Feller
process with symbol (x, ξ) 7→ q(x, ξ) (see [5], [6] for the definitions and further
details), then (Y

(n)
Nnt

)t­0 is a Feller process with symbol (x, ξ) 7→ n(e−
1
n
q(x,ξ)− 1).

Thus, by [6], Corollary 5.2, p. 114, there exists a constant c such that

(4.27) P
(
sup
s¬t
|Y (n)

Nns
− x| > r

∣∣Y (n)
0 = x

)
¬ ct sup

|y−x|¬r
sup
|ξ|¬1/r

|n(e−
1
n
q(x,ξ) − 1)|
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for all x ∈ Rd, r, t > 0. Hence for any ε > 0

(4.28) lim sup
n→∞

P
(
sup
s¬t
|Y (n)
bnsc − x| > r

∣∣Y (n)
0 = x

)
¬ lim sup

n→∞
P
(
sup
s¬t+ε

|Y (n)
Nns
− x| > r, Nn(t+ε) ­ nt

∣∣Y (n)
0 = x

)
+ lim sup

n→∞
P(Nn(t+ε) < nt)

¬ c(t+ ε) sup
|y−x|¬r

sup
|ξ|¬1/r

|q(y, ξ)|.

Now (4.15) is satisfied if the supremum is finite, e.g. for q continuous. Assuming

(4.29) lim
r→∞

sup
|y−x|¬r

sup
|ξ|¬1/r

|q(y, ξ)| = 0 for all x ∈ Rd

and using (4.28) and (5.1) from [4], one finds an R such that condition (4.16) holds
for large values of n, say n ­ N . Taking the maximum of this and the finite number
of R’s corresponding to n < N yields (4.16).

Thus, we obtained a new proof of the convergence of the Markov chain ap-
proximation of Feller processes in J1. Moreover, using the introduced embeddings,
the approximations converge in the four Skorokhod topologies.

Finally, we want to emphasize that condition (4.15) ensures the local spatial-
uniform stochastic continuity from the right for the limit. Hence, by Proposition
4.1, the limit is stochastically continuous and therefore, by Remark 4.1(3), we can
consider the convergence of the finite-dimensional distributions on the whole inter-
val [0, 1] (no exceptional times!). Hence, if X(n), X are D[0,∞)-valued processes
and X is stochastically continuous, then the extension from D[0, T ] to D[0,∞)
(cf. Remark 2.2(2)) does not need a restriction of the time set, i.e., we have (see
[11], Theorem 3′):

(4.30) X(n) d−→ X w.r.t. J1

⇔ X(n)
∣∣
[0,T ]

d−→ X
∣∣
[0,T ]

w.r.t. J1 in D[0, T ] for all T ∈ (0,∞).

Additionally, in this setting, X(n) d−→ X w.r.t. T implies (cf. Remark 4.1(4)) that
(4.16) is satisfied.

5. PROOF OF LEMMA 2.1

We start with two elementary inequalities. Let a, b, c, d ∈ R. Then

(5.1) (a+ b) ∧ (c+ d) ¬ (a+ b ∨ d) ∧ (c+ b ∨ d) = a ∧ c+ b ∨ d.
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For x, y, z ∈ Rd let γ ∈ [[x, z]] such that |y − γ| =
∣∣y − [[x, z]]

∣∣. Then

(5.2) |x− y| ¬ |x− γ|+ |y − γ| ¬ |x− z|+
∣∣y − [[x, z]]

∣∣.
Now, let δ > 0 and f : [0, 1] → Rd. Furthermore, let (t, t1, t2) ∈ T1(δ) and

t⋆1 ¬ t1, t
⋆
2 ­ t2 such that (t, t⋆1, t

⋆
2) ∈ T2(δ). Applying (5.2) and (5.1) yields

(5.3) |f(t)− f(t1)| ∧ |f(t)− f(t2)|
¬

(
|f(t)− f(t⋆1)|+

∣∣f(t1)− [[f(t), f(t⋆1)]]
∣∣)

∧
(
|f(t)− f(t⋆2)|+

∣∣f(t2)− [[f(t), f(t⋆2)]]
∣∣)

¬
(
|f(t)− f(t⋆1)| ∧ |f(t)− f(t⋆2)|

)
+
(∣∣f(t1)− [[f(t), f(t⋆1)]]

∣∣ ∨ ∣∣f(t2)− [[f(t), f(t⋆2)]]
∣∣)

¬ ∆J2(δ, f) + ∆M1(δ, f).

Thus

(5.4) ∆J1(δ, f) ¬ ∆J2(δ, f) + ∆M1(δ, f),

since (t, t1, t2) ∈ T1(δ) was arbitrary. �
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