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Abstract. We study the probability distribution of the solution to the
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1. INTRODUCTION

In this work we study the probability distribution and other properties of the
solution to the fractional stochastic heat equation driven by an additive Gaussian
noise which is white in time and white or correlated in space. Here, the word “frac-
tional” concerns the appearance of the fractional Laplacian operator in the equation
and it does not refer to the noise.

Fractional stochastic (partial) differential equations are used to model various
phenomena in a large number of scientific branches, including statistical mechan-
ics, theoretical physics, hydrology or economics. For instance, the (deterministic)
fractional heat equation (i.e. the deterministic counterpart of (3.1) and (4.1) below)
describes the heat propagation in inhomogeneous media being related to anoma-
lous diffusion (see e.g. [17], [5]). Their stochastic counterparts (3.1) and (4.1) are
valuable models for similar phenomena with random effects, including random ef-
fects with thermal memory (see [5], [16], [17]). The link between the fractional
(stochastic) differential equations and the conservation law has been studied in [1]
or [22] among many others. See also the monograph [13] for an extensive list of
references.

∗ The author acknowledges support from LABEX CEMPI (ANR-11-LABX-0007-01) and
MATHAMSUD PROJECT SARC (19-MATH-06).
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Several recent and less recent papers showed an interesting connection be-
tween the solution to the classical stochastic linear heat equation and some stochas-
tic processes related to the (bi)fractional Brownian motion. Consider the stochastic
partial differential equation

(1.1)
∂

∂t
u(t, x) = ∆u(t, x) + Ẇ (t, x), t ­ 0, x ∈ Rd,

with vanishing initial condition u(0, x) = 0 for every x ∈ Rd. In (1.1), we denoted
by ∆ the standard Laplacian on Rd and by W the random noise which is defined
as a centered Gaussian process

(
W (t, A), t ­ 0, A ∈ Bb(Rd)

)
with covariance

EW (t, A)W (s,B) = (t ∧ s)
∫
A

∫
B

‖x− y‖−γdxdy if γ ∈ (0, d)

and
EW (t, A)W (s,B) = (t ∧ s)λ(A ∩B) if γ = 0.

We denoted by ‖ · ‖ the Euclidean norm in Rd and by Bb(Rd) the class of bounded
Borel sets in Rd.

In the first case, the noise is said to be white in time and correlated in space
with spatial correlation given by the Riesz kernel. In the second case, we have a
time-space white noise, i.e. the noise behaves as a Wiener process both in time and
in space.

The solution to (1.1) is usually defined in the mild sense, i.e. as the Wiener
integral with respect to the noise W , by

(1.2) u(t, x) =
t∫
0

∫
Rd

G(t− s, x− y)W (ds, dy),

where G is the fundamental solution of the heat equation, i.e. the deterministic
function which solves ∂

∂tu(t, x) = ∆u(t, x).
We say that the solution to (1.1) exists if the Wiener integral in (1.2) is well-

defined in L2(Ω). We know (see e.g. [23]) that the necessary and sufficient condi-
tion for the existence of the solution is

d < 2 + γ,

which means d = 1 in the case of the time-space white noise (γ = 0).
Also, the solution is connected to the bifractional Brownian motion. Recall

that (see [9]), given constants H ∈ (0, 1) and K ∈ (0, 1], the bifractional Brown-
ian motion (bi-fBm for short) (BH,K

t )t∈[0,T ] is a centered Gaussian process with
covariance
(1.3)

RH,K(t, s) := R(t, s) =
1

2K
(
(t2H + s2H)K − |t− s|2HK

)
, s, t ∈ [0, T ].
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In particular, for K = 1, BH,1 := BH is the fractional Brownian motion with
Hurst parameter H ∈ (0, 1).

It is known that for every fixed x ∈ Rd, the process
(
u(t, x), t ­ 0

)
given by

(1.2) coincides in distribution, modulo a constant, with the bifractional Brownian
motion with parameters H = 1

2 and K = 1− (d− γ)/2 (so H = K = 1
2 if γ = 0

and d = 1).
Concerning the behavior with respect to the space variable, we know from [4]

that for fixed t > 0 and for d = 1, the process
(
u(t, x), x ∈ R

)
has the same law as

a Brownian motion plus an independent Gaussian process with C∞ sample paths.
When the noise is correlated in time, for example when the noise behaves as

a fractional Brownian motion with respect to the time variable, there are also links
between the law of the solution to the heat equation and the fractional processes,
see e.g. [7] or [24].

All these connections are very useful to deduce various properties of the so-
lution to the heat equation by using known results for the fractional Brownian
motion.

In this work, our purpose is to do a similar analysis for the solution to the
fractional stochastic heat equation, i.e. when the Laplacian is replaced by the frac-
tional Laplacian of order α ∈ (1, 2], denoted by −(−∆)α/2, in equation (1.1). We
want to understand the influence of the parameter α on the law and on the sample
paths regularity of the solution. We give a necessary and sufficient condition for the
existence of the solution for the fractional heat equation and study the connection
with fractional Brownian motion and related processes. We prove the following re-
sults: while with respect to the time variable the solution still remains a bifractional
Brownian motion (whose Hurst parameters will be explicitly given), the behavior
of the solution in space will be related to the isotropic fractional Brownian sheet.
The result was known for dimension d = 1 from [4], but for dimension d ­ 2,
we notice the appearance, for the first time in the literature, of the multiparameter
fractional Brownian motion of isotropic type.

We apply these findings to study the q-variations of the solution to the frac-
tional heat equation. For a stochastic process (Xt)t­0, we will consider two types
of variations:

• the exact q-variations (q ∈ (0,∞)) over an interval [A1, A2], meaning the
limit in probability of the sequence

V q,n(X) =
n−1∑
i=0

|Xti+1 −Xti |q

if ti = A1 +
i
n(A2 −A1), i = 0, . . . , n, constitutes a partition of [A1, A2];

• the renormalized q-variations (which are usually defined for self-similar
stochastic processes and for q ­ 1 integer) as the limit in distribution, as n→∞,
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of the sequence

Vq,n(X) =
n−1∑
i=0

[
(Xti+1 −Xti)

q

E(Xti+1 −Xti)
q
− µq

]
,

where µq = EZq with Z ∼ N(0, 1) (we will use this notation throughout the pa-
per).

More details on these notions will be given below in Section 2. In the same
Section 2, we also prove some new results concerning the variations of the per-
turbed fractional Brownian motion. In Section 3 we study the solution to the frac-
tional heat equation with time-space white noise while Section 4 is devoted to the
analysis of the white-colored noise case.

2. VARIATIONS OF THE PERTURBED FRACTIONAL BROWNIAN MOTION

In this section we introduce the notion of exact q-variation and of renormalized
q-variation for stochastic processes. We will also recall some known results for the
fractional Brownian motion and bifractional Brownian motion. In the last part, we
obtain the q-variation for a perturbed fBm, i.e. the sum of an fBm and of a smooth
process. This result for the perturbed fBm will be applied several times in this
work.

2.1. Exact and renormalized q-variations for stochastic processes. We first
define the concept of exact q-variation for stochastic processes.

DEFINITION 2.1. LetA1 < A2 and, for n ­ 1, let ti = A1 +
i
n(A2 −A1) for

i = 0, . . . , n. A continuous stochastic process (Xt)t­0 admits a q-variation (or a
variation of order q) over the interval [A1, A2] if the sequence

V n,q
[A1,A2]

(X) =
n−1∑
i=0

|Xti+1 −Xti |q

converges in probability as n → ∞. The limit, when it exists, is called the exact
q-variation of X over the interval [A1, A2].

If [A1, A2] = [0, t], we will simply write V n,q
[A1,A2]

(X) := V n,q
t (X). Moreover,

if t = 1, we write V n,q
t (X) := V q,n. In the case q = 2 the limit of V 2,n is called

the quadratic variation, while for q = 3 we have the cubic variation.

Let us recall the following result concerning the q-variation of the bifractional
Brownian motion (see Proposition 1 in [14]).

PROPOSITION 2.1. If (BH,K
t )t­0 is a bi-fBm with Hurst parameters H ∈

(0, 1),K ∈ (0, 1], then BH,K admits a variation of order 1/(HK) over any in-
terval [A1, A2], which is equal to CH,K(A2 − A1), where Z is a standard normal
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random variable and

(2.1) CH,K = 2(1−K)/2E|Z|1/(HK).

By taking K = 1, we notice that the fractional Brownian motion has 1/H-
variation over the interval [A1, A2] given by E|Z|1/H(A2 −A1).

We will also study the asymptotic behavior of the normalized q-variation of
the solution to the fractional heat equation. Even if this notion is usually studied
for self-similar stochastic processes, one can discuss it for more general stochastic
processes. To define this object, let us recall the case of the fractional Brownian
motion. Let BH be an fBm with Hurst parameter H ∈ (0, 1) and define

Vq,n(B
H) :=

n−1∑
i=0

[
nHq

(A2 −A1)Hq
(BH

ti+1
−BH

ti )
q − µq

]
.

This is called the (centered) renormalized q-variation because the random
variable (BH

ti+1
−BH

ti )
q is normalized, i.e. the expectation of

nHq

(A2 −A1)Hq
(BH

ti+1
−BH

ti )
q

is µq = E|Z|q. Many papers treated recently the limit behavior in distribution of
the renormalized q-variations for various stochastic processes, see e.g. [23] and the
references therein.

We recall the following result concerning the variations of the fractional Brow-
nian motion (see [2], [3], [6]; the reader may also consult Section 1 in [18] for a
survey of these results). We will restrict ourselves below to the case when the Hurst
parameter H is less than or equal to 1

2 since only this case will be needed in the
sequel. That is, if q ­ 2 is an integer and H ∈

(
0, 12

]
, then

(2.2)
1√
n
Vq,n(B) :=

1√
n

n−1∑
i=0

[
nHq

(A2 −A1)Hq
(Bti+1 −Bti)

q − µq
]
→ N(0, σ2H,q),

where σ2H,q denotes a strictly positive constant depending on q and H .
We will analyze the asymptotic behavior of the renormalized q-variation for

various stochastic processes, not necessarily self-similar. For a general process
(Xt)t­0, by studying the asymptotic behavior of the renormalized q-variation we
will generally mean to find a constant µ ∈ R and two deterministic sequences f(n)
and g(n) which converge to zero as n→∞ such that E[f(n)−1(Xti+1 −Xti)]

2 is
close to one and

g(n)
n−1∑
i=0

[
(Xti+1 −Xti)

q

f(n)
− µq

]
converges in distribution to a non-trivial limit as n→∞. We illustrate below the
case of the perturbed fBm.
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2.2. q-variation of the perturbed fractional Brownian motion. In the next
sections, we will see that the solution to the fractional heat equation can be de-
composed as the sum of an fBm (with Hurst parameter less than or equal to one
half) and a smooth process. Therefore, we need to understand the variations of such
stochastic processes. This can be relatively easily obtained from the results known
for the fBm and recalled above.

Concerning the asymptotic behavior of the exact and renormalized q-variation
of the sum of an fBm and a smooth process, we have the following lemma.

LEMMA 2.1. Let (BH
t )t­0 be an fBm with H ∈

(
0, 12

]
and consider a cen-

tered Gaussian process (Xt)t­0 such that

(2.3) E |Xt −Xs|2 ¬ C|t− s|2 for every s, t ­ 0.

Define
Y H
t = BH

t +Xt for every t ­ 0.

Then:
(1) The process Y has 1/H-variation over the interval [A1, A2] which is

equal to
E|Z|1/H(A2 −A1).

(2) Let

Vq,n(Y
H) :=

n−1∑
i=0

[
nHq

(A2 −A1)qH
(Y H

ti+1
− Y H

ti )
q − µq

]
.

Then, if H ∈
(
0, 12

)
and q ­ 2, we have

(2.4)
1√
n
Vq,n(Y

H) =
1√
n

n−1∑
i=0

[
nHq

(A2 −A1)qH
(Y H

ti+1
− Y H

ti )
q − µq

]
→ N(0, σ2H,q).

If H = 1
2 , q = 2 and the process (Xt)t­0 is adapted to the filtration generated by

B, then
(2.5)

1√
n
V2,n(Y

H) =
1√
n

n−1∑
i=0

[
n2H

(A2 −A1)2H
(Y H

ti+1
− Y H

ti )
2 − 1

]
→ N(0, σ21/2,2).

P r o o f. To prove (1), we use the Minkowski inequality to write

(2.6)
( n−1∑
i=0

|BH
ti+1
−BH

ti |
1/H

)H − ( n−1∑
i=0

|Xti+1 −Xti |1/H
)H

¬
( n−1∑
i=0

|Y H
ti+1
− Y H

ti |
1/H

)H
¬

( n−1∑
i=0

|BH
ti+1
−BH

ti |
1/H

)H
+
( n−1∑
i=0

|Xti+1 −Xti |1/H
)H
.
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Since, by Proposition 2.1, the sequence

n−1∑
i=0

|BH
ti+1
−BH

ti |
1/H

converges in probability, as n → ∞, to the desired limit E|Z|1/H(A2 − A1), it
suffices to show that

∑n−1
i=0 |Xti+1 −Xti |1/H converges to zero. We have, via (2.3)

and Hölder’s inequality, as n→∞,

E
n−1∑
i=0

|Xti+1 −Xti |1/H ¬
n−1∑
i=0

E(|Xti+1 −Xti |2)1/(2H) ¬ n1−1/H → 0.

Let us prove (2). Consider first the situation H ∈
(
0, 12

)
. By using Newton’s

formula we can write

Vq,n(Y
H) = Vq,n(B) +Rn,

where

(2.7) Rn =
nHq

√
n

q−1∑
r=0

Cr
q

n−1∑
i=0

(Bti+1 −Bti)
r(Xti+1 −Xti)

q−r :=
q−1∑
r=0

Rn,r.

Now, it suffices to show that 1√
n
Rn,r converges to zero in L1(Ω) for every r =

0, . . . , q − 1. Using (2.3), we have for every s, t ­ 0 and for r = 0, . . . , q − 1

E|Xt −Xs|2(q−r) ¬ C|t− s|2(q−r)

and then we can write, for r = 0, . . . , q − 1,

E
1√
n
|Rn,r| ¬

1√
n

n−1∑
i=0

(
E(Bti+1 −Bti)

2r
)1/2 (

E(Xti+1 −Xti)
2(q−r))1/2

¬ Cn(H−1)(q−r)+1/2 ¬ CnH−1/2

and this converges to zero as n→∞ since H < 1
2 .

If H = 1
2 and q = 2, we have

1√
n
V2,n(Y

1/2) =
1√
n
V2,n(B) +

2√
n

n−1∑
i=0

n

A2 −A1
(Bti+1 −Bti)(Xti+1 −Xti)

+
1√
n

n

A2 −A1

n−1∑
i=0

(Xti+1 −Xti)
2.

Clearly, by (2.3), we have, as n→∞,

√
nE

n−1∑
i=0

(Xti+1 −Xti)
2 ¬ cn−1/2 → 0,
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and since B is a martingale and X is adapted to the filtration of B, we get, as
n→∞,

E
(√
n

n−1∑
i=0

(Bti+1 −Bti)(Xti+1 −Xti)
)2

= nE
n−1∑
i=0

(Bti+1 −Bti)
2(Xti+1 −Xti)

2

¬ n
n−1∑
i=0

(
E(Bti+1−Bti)

4
)1/2 (

E(Xti+1−Xti)
4
)1/2 ¬ Cn n−1∑

i=0

1

n

1

n2
¬ C 1

n
→ 0,

which completes the proof. �

Notice that when H = 1
2 we need to assume that the process X is adapted in

order to apply the martingale property.

3. HEAT EQUATION WITH FRACTIONAL LAPLACIAN
DRIVEN BY TIME-SPACE WHITE NOISE

We first consider the fractional heat equation driven by a time-space white
noise. We study the existence, the probability distribution and the variations of the
solution both in time and in space.

3.1. The equation and its solution. Consider the stochastic partial differential
equation

(3.1)
∂

∂t
u(t, x) = −(−∆)α/2u(t, x) + Ẇ (t, x), t ­ 0, x ∈ Rd,

with vanishing initial condition u(0, x) = 0 for every x ∈ Rd. In (3.1), −(−∆)α/2

denotes the fractional Laplacian with exponent α/2, α ∈ (1, 2], and W is a time-
space white noise, i.e.

(
W (t, A), t ­ 0, A ∈ B(Rd)

)
is a centered Gaussian field

with covariance
EW (t, A)W (s,B) = (t ∧ s)λ(A ∩B),

where λ denotes the Lebesgue measure on Rd. We refer to [10]–[12] for the precise
definition and other properties of the fractional Laplacian operator. We will use
here only the expression of the Green kernel Gα (or the fundamental solution)
associated with the fractional Laplacian, i.e. the deterministic kernel that solves
the heat equation without noise ∂

∂tu(t, x) = −(−∆)α/2u(t, x). This Green kernel
is defined through its Fourier transform

(3.2) FGα(t, ·)(ξ) = e−t‖ξ‖
α
, t > 0, ξ ∈ Rd,

where FGα(t, ·) is the Fourier transform of the function y → Gα(t, y).
The mild solution to (3.1) is understood in the mild sense, i.e.

(3.3) u(t, x) =
t∫
0

∫
Rd

Gα(t− u, x− z)W (du, dz),
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where the integral W (du, dz) is a Wiener integral with respect to the Gaussian
noise W .

First, we notice that the solution exists only in spatial dimension d = 1.

PROPOSITION 3.1. Let
(
u(t, x), t ­ 0, x ∈ Rd

)
be given by (3.3). Then the

solution is well-defined if and only if d = 1. Moreover, in this case, for every T > 0

sup
t∈[0,T ],x∈R

E|u(t, x)|2 <∞.

P r o o f. By the Wiener isometry, the Plancherel identity and the expression
of the Fourier transform (3.2), we have for every t > 0, x ∈ Rd

Eu(t, x)2 =
t∫
0

du
∫
Rd

dz |Gα(t− u, x− z)|2

= (2π)−d
t∫
0

du
∫
Rd

dξ |FGα(u, ·)(ξ)|2

= (2π)−d
t∫
0

du
∫
Rd

dξe−2u‖ξ‖
α
= Cd,α

t∫
0

duu−d/α

with Cd,α = (2π)−d
∫
Rd dξe

−2‖ξ‖α <∞. The integral
∫ t

0
u−d/αdu is finite if and

only if 1− d/α > 0, which means d < α or d = 1 since α ∈ (1, 2]. Moreover, for
every t ∈ [0, T ], x ∈ Rd,

Eu(t, x)2 = C1,α
1

1− 1/α
T 1−1/α <∞. �

Next, we will focus on the probability distribution of the solution in spatial
dimension d = 1. We will treat separately the behavior in time and in space.

3.2. Behavior in time. Let us consider here the process
(
u(t, x), t ­ 0

)
with

x ∈ R fixed. The distribution and the properties of this Gaussian process will fol-
low easily from the computation of its covariance.

PROPOSITION 3.2. For every s, t ­ 0 and x ∈ R we have

Eu(t, x)u(s, y) = c1,α[(t+ s)1−1/α − |t− s|1−1/α],

where

c1,α =
1

2π(α− 1)
Γ

(
1

α

)
.

Consequently, it follows that the process
(
u(t, x)

)
t­0 has the same law as the

process c2,αB1/2,1−1/α, whereB1/2,1−1/α is a bi-fBm with Hurst parametersH =
1
2 and K = 1− 1/α and

(3.4) c22,α = c1,α2
1−1/α.
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P r o o f. We follow the lines of the proof of Proposition 3.1. Assuming that
0 ¬ s ¬ t, we have from (3.2)

Eu(t, x)u(s, x) =
t∧s∫
0

du
∫
R
dzGα(t− u, x− z)Gα(s− u, x− z)

=
t∧s∫
0

du
∫
R
dξFGα(t− u, ·)(ξ)FGα(s− u, ·)(ξ)

= (π)−1
s∫
0

du
∞∫
0

dξe−(t+s−2u)|ξ|α

= (π)−12/α
∞∫
0

dξ | ξ |2/α−1 e−|ξ|2
s∫
0

du(t+ s− 2u)−1/α

and the conclusion is obtained since
∞∫
0

dξ|ξ|2/α−1e−|ξ|2 =
1

2
Γ

(
1

α

)
.

Then

Eu(t, x)u(s, x) =
1

2
(π)−1

2

α

1

2
Γ

(
1

α

)
1

1− 1/α
[(t+ s)1−1/α − |t− s|1−1/α]. �

REMARK 3.1. If α = 2, then c1,α = 1
2
√
π

since Γ
(
1
2

)
=
√
π. We retrieve a

well-known formula (see [21] or [23]).

From Proposition 3.2 we can deduce many properties of the process t →
u(t, x). In particular, for every x ∈ R:

• The process
(
u(t, x)

)
t­0 is self-similar of order 1

2(1− 1/α) and it is Hölder
continuous of order δ for any δ ∈

(
0, 12(1− 1/α)

)
.

• We have the following decomposition in law: u(t, x) + Yt = CB
1
2
(1−1/α)

t ,

where Y is a Gaussian process with absolute continuous paths and B
1
2
(1−1/α) de-

notes an fBm with Hurst index 1
2(1− 1/α) and C > 0 (see [14]).

Let us end this paragraph by stating the result on the behavior of the variation
of the solution in time.

PROPOSITION 3.3. Fix A1 < A2 and x ∈ R. Let tj = A1 +
j
n(A2 − A1),

n ­ 1, j = 0, 1, . . . , n, be a partition of the interval [A1, A2]. Then the process(
u(t, x), t ­ 0

)
admits variation of order 2α/(α− 1) which is equal to

c
2α/(α−1)
2,α C1/2,1−1/α(A2 −A1)

with C1/2,1−1/α(A2 −A1) from (2.1) and c2,α from (3.4).

P r o o f. This is an immediate consequence of Propositions 2.1 and 3.2. �
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REMARK 3.2. For α = 2, we retrieve a result from [21]: the solution to the
standard heat equation with time-space white noise has non-trivial quartic varia-
tion.

Concerning the renormalized q-variations, we have the following.

PROPOSITION 3.4. Fix A1 < A2 and x ∈ R. Let tj = A1 +
j
n(A2 − A1),

n ­ 1, j = 0, 1, . . . , n, be a partition of the interval [A1, A2]. Then

1√
n

n−1∑
i=0

[(
n(α−1)/(2α)

c2,α21/(2α)(A2 −A1)(α−1)/(2α)

)q(
u(ti+1, x)− u(ti, x)

)q − µq]
→ N(0, σ21

2
(1−1/α),q)

with σ21
2
(1−1/α),q from (2.4).

P r o o f. From [14] we know that(
u(t, x) + C1Xt

)
t­0 ≡

(d) c2,α2
1/(2α)B

1
2
(1−1/α)

t ,

where ≡(d) means the equivalence of finite-dimensional distributions, B
1
2
(1−1/α)

is an fBm with Hurst parameter 1
2(1 − 1/α), C1 > 0 and (Xt)t­0 is a Gaussian

process which satisfies (2.3). Therefore,
(
2−1/(2α)u(t, x), t ­ 0

)
is a perturbed

fBm in the sense of Lemma 2.1. Also note that its Hurst parameter is strictly less
than 1

2 . We can then apply Lemma 2.1 to obtain the conclusion. �

3.3. Behavior in space. An analysis of the process (3.3) with respect to its
space variable has been done in [4]. Let us recall the main facts.

From Proposition 3.1 in [4] we know that for every t > 0 the process
(
u(t, x),

x ∈ R
)

can be decomposed as

(3.5) u(t, x) ≡(d) mαB
(α−1)/2(x) + S(x),

whereB(α−1)/2 is a fractional Brownian motion with Hurst parameter (α− 1)/2 ∈[
0, 12

]
,
(
S(x)

)
x∈R is a centered Gaussian process with C∞ sample paths and mα

is the following numerical constant:

mα =
(
2Γ(α)| cos(απ/2)|

)−1/2
.

From the decomposition (3.5) we notice that the regularity of x→ u(t, x) is given
by the fractional Brownian motion B(α−1)/2. In particular, for every x, y ∈ R and
t > 0

E |u(t, x)− u(t, y)|2 ¬ C|x− y|α−1,
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which implies that the function x → u(t, x) is Hölder continuous of order δ ∈(
0, (α − 1)/2

)
. Actually, we have a more precise result in Lemma 2.1 in [4], i.e.

for every x, y ∈ R and t > 0 and for δ close to zero,

E |u(t, x+ δ)− u(t, x)|2 = m2
αδ

α−1 +O(δ2).

From the decomposition (3.5) we can deduce the q-variation of the solution u
with respect to the space variable.

PROPOSITION 3.5. Fix A1 < A2 and t > 0. Let xj = A1 + j
n(A2 − A1)

for j = 0, . . . , n and n ­ 1. Then the process
(
u(t, x), x ∈ R

)
has 2/(α − 1)-

variation, i.e. we have the following limit in probability:

lim
n→∞

n−1∑
j=0

|u(t, xj+1)− u(t, xj)|2/(α−1) = m2/(α−1)
α E|Z|2/(α−1)(A2 −A1).

P r o o f. Notice that the process S satisfies condition (2.3). This follows
from [4], but also from the proof of Proposition 4.6 below. We can then apply
Lemma 2.1(1). �

From Lemma 2.1 and (3.5) we have the following result.

PROPOSITION 3.6. Fix A1 < A2 and t > 0. Let xj = A1 +
j
n(A2 − A1) for

j = 0, . . . , n and n ­ 1. Then, if α ∈ (1, 2),

(3.6)
1√
n

n−1∑
i=0

[(
n(α−1)/2

mα

)q(
u(t, xi+1)− u(t, xi)

)q − µq]→ N(0, σ2(α−1)/2,q).

If α = 2 (i.e. (α− 1)/2 = 1
2), then

1√
n

n−1∑
i=0

[
nα−1

m2
2

(
u(t, xi+1)− u(t, xi)

)2 − 1

]
→ N(0, σ21/2,2)

with the constant σH,q from (2.4).

P r o o f. It suffices to note that from [4] we obtain E|S(x)−S(y)|2 ¬ c|t−s|2
and that the Hurst index (α− 1)/2 is less than 1

2 . �

Let us make some comments:

REMARK 3.3. (1) When α = 2, we have (exact) quadratic variation in space
for the solution. We retrieve again a known result from [21].

(2) We notice that the regularity in space is α times the regularity in time
(i.e. (α − 1)/(2α)-Hölder continuity in time and (α − 1)/2-Hölder regularity in
space). The phenomenon was known for α = 2.
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4. HEAT EQUATION WITH FRACTIONAL LAPLACIAN AND WHITE-COLORED NOISE

In this section, we will add a new paramter to the heat equation (3.1) by con-
sidering a Gaussian noise which behaves as a fractional Brownian motion in space,
i.e. its spatial covariance is given by the so-called Riesz kernel. More precisely, we
will consider the stochastic heat equation

(4.1)
∂

∂t
u(t, x) = −(−∆)α/2u(t, x) + Ẇ γ(t, x), t ­ 0, x ∈ Rd,

with u(0, x) = 0 for every x ∈ Rd. In (4.1), −(−∆)α/2 denotes the fractional
Laplacian with exponent α/2, α ∈ (1, 2], and W γ is the so-called white-colored
noise, i.e. W γ(t, A), t ­ 0, A ∈ B(Rd), is a centered Gaussian field with covari-
ance

EW γ(t, A)W γ(s,B) = (t ∧ s)
∫
A

∫
B

f(x− y)dxdy,

where f is the so-called Riesz kernel of order γ given by

(4.2) f(x) = Rγ(x) := gγ,d‖x‖−d+γ , 0 < α < d,

with gγ,d = 2d−γπd/2Γ
(
(d− γ)/2

)
/Γ(γ/2). In this case, if we consider the mea-

sure µ(dξ) = ‖ξ‖−γdξ, we have the identity

(4.3)
∫
Rd

∫
Rd

φ(x)f(x− y)ψ(y)dxdy = (2π)−d
∫
Rd

Fφ(ξ)Fψ(ξ)µ(dξ)

for any φ,ψ ∈ S(Rd) (the Schwartz space on Rd).
As usual, the mild solution to (3.1) is given by

(4.4) u(t, x) =
t∫
0

∫
Rd

Gα(t− u, x− z)W γ(du, dz),

where the integral W γ(du, dz) is a Wiener integral with respect to the Gaussian
noise W γ .

Let us first give the necessary and sufficient condition for the existence of the
mild solution.

PROPOSITION 4.1. The mild solution (4.4) to the heat equation (4.1) is well-
defined if and only if

(4.5) d < α+ γ.

Moreover, in this case, for every T > 0

sup
t∈[0,T ],x∈R

E|u(t, x)|2 <∞.
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P r o o f. Using the identity (4.3), we have for t ­ 0, x ∈ Rd,

Eu(t, x)2 =
t∫
0

du
∫
Rd

∫
Rd

dydzGα(t− u, x− z)Gα(t− u, x− y)|y − z|−(d−γ)

= (2π)−d
t∫
0

du
∫
Rd

dξe−2‖ξ‖
αu‖ξ‖−γ

= C1,α,γ

t∫
0

duu−(d−γ)/α

with C1,α,γ = (2π)−d
∫
Rd dξe

−2‖ξ‖α‖ξ‖−γ < ∞. The integral du is finite if and
only if 1− (d− γ)/α > 0, which implies (4.5). The last bound in the statement is
also trivial by the above computation. �

4.1. Behavior in time. In the next result we deduce the law of the Gaussian
process u(t, x), t ­ 0, with x ∈ Rd fixed.

PROPOSITION 4.2. For every s, t ­ 0 and for every x ∈ Rd, we have

Eu(t, x)u(s, x) = c1,α,γ [(t+ s)1−(d−γ)/α − |t− s|1−(d−γ)/α],

where

(4.6) c1,α,γ = (2π)−d
∫
Rd

dξ‖ξ‖−γe−‖ξ‖α 1

2
(
1− (d− γ)/α

) .
Consequently, it follows that the process

(
u(t, x)

)
t­0 has the same law as

c2,α,γ(B
1/2,1−(d−γ)/α
t )t­0, where B1/2,1−(d−γ)/α is a bi-fBm with H = 1

2 and
K = 1− (d− γ)/α and

(4.7) c22,α,γ = c1,α,γ2
1−(d−γ)/α.

P r o o f. As in the proof of Proposition 3.2 we have for 0 ¬ s ¬ t and for
x ∈ Rd,

Eu(t, x)u(s, x) = (2π)−d
t∧s∫
0

du
∫
Rd

dξ‖ξ‖−γe−(t−u)‖ξ‖αe−(s−u)‖ξ‖α

= (2π)−d
∫
Rd

dξ‖ξ‖−γe−‖ξ‖α
s∫
0

du(t+ s− 2u)−(d−γ)/α

= c1,α,γ
(
(t+ s)1−(d−γ)/α − |t− s|1−(d−γ)/α

)
with c1,α,γ given by (4.6). �
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As a consequence, the process t→ u(t, x) is Hölder continuous of order δ for
every δ ∈

(
0, 1− (d− γ)/α

)
and it is self-similar of order 1

2

(
1− (d− γ)/α

)
.

Now, it is immediate to obtain the q-variations of the process u in time. The
proof is similar to the proof of Proposition 3.3.

PROPOSITION 4.3. Fix A1 < A2 and x ∈ R. Let tj = A1 +
j
n(A2 − A1),

n ­ 1, j = 0, 1, . . . , n, be a partition of the interval [A1, A2]. Then the process(
u(t, x), t ­ 0

)
admits a variation of order (2α)/(α+ γ − d) which is equal to

c
(2α)/(α+γ−d)
2,α,γ C1/2,1−(d−γ)/α(A2 −A1)

with C1/2,1−(d−γ)/α from (2.1) and c2,α,γ from (4.7).

Moreover, from the proof of Proposition 3.4, we have

PROPOSITION 4.4. FixA1<A2 and x∈R. Let tj=A1 +
j
n(A2 −A1), n­1,

j = 0, 1, . . . , n, be a partition of the interval [A1, A2]. Then

1√
n

n−1∑
i=0

[(
n(α+γ−d)/(2α)

c2,α,γ2(d−γ)/(2α)(A2−A1)(α+γ−d)/(2α)

)q(
u(ti+1, x)−u(ti, x)

)q−µq]
→ N(0, σ21

2
(1−(d−γ)/α),q)

with σ21
2
(1−1/α),q from (2.4).

When γ = 0 and d = 1, we retrieve the result in the case of the white noise in
space.

The next step is to study the behavior in space of (4.4). Now, we work in spatial
dimension d ­ 1. In this case the solution will be related to the multiparameter
isotropic fractional Brownian motion. For this reason, let us present below the
definition and the basic properties of this process.

4.2. Isotropic fractional Brownian motion. In this paragraph we will use bold
notation to indicate vectors in Rd to differentiate them from real numbers in order
to avoid confusion.

The isotropic multiparameter fBm (also known as the Lévy fBm)
(
BH(x),x ∈

Rd
)

with Hurst parameter H ∈ (0, 1) is defined as a centered Gaussian process,
starting from zero, with covariance function
(4.8)

E
(
BH(x)BH(y)

)
=

1

2
(‖x‖2H + ‖y‖2H − ‖x− y‖2H) for every x,y ∈ Rd,

where ‖ · ‖ denotes the Euclidean norm in Rd. It can be also represented as a
Wiener integral with respect to the Wiener sheet, see [8], [15].

The isotropic multiparameter fBm is self-similar and it has stationary incre-
ments in the following sense:
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for every h ∈ Rd
+

(4.9)
(
BH(x+ h)−BH(h)

)
x∈Rd

+
≡(d)

(
BH(x)

)
x∈Rd

+

and for every a > 0

(4.10)
(
BH(ax)

)
x∈Rd

+
≡(d)

(
BH(x)

)
x∈Rd

+
.

Recall that we denoted by ≡(d) the equivalence in the sense of finite-dimensional
distributions. It is also possible to prove the stationarity of the increments in some
generalized sense by using higher order difference (see Proposition 6 in [8]). An
important property, which makes this Gaussian sheet different from the anisotropic
fractional Brownian motion, is that for every s, t ∈ Rd

E
(
BH(x)−BH(y)

)2
= ‖x− y‖2H ,

which implies, due to the Gaussianity, that for every n ­ 1

(4.11) E
(
BH(x)−BH(y)

)n
= E|Z|n‖x− y‖nH ,

where Z is a standard normal random variable. From (4.11) one can deduce, via a
standard argument, the existence of a continuous version for BH , see e.g. [13].

Following the one-parameter case, we define the α-variation of the isotropic
fBm as the limit in probability, as n→∞, of the sequence

V n,q
[A1,A2]

(BH) =
n−1∑
i=0

|BH(xi+1)−BH(xi)|q,

where xi = (x
(1)
i , . . . , x

(d)
i ) with x(j)i = A1 +

i
n(A2 − A1) for i = 0, . . . , n and

j = 1, . . . , d.
Let us state the result on the variation of the isotropic fractional Brownian

sheet. Even if its proof follows easily from the one-parameter case, it has not been
stated before, as far as we know.

PROPOSITION 4.5. The isotropic fBm
((
BH(x),x ∈ Rd

))
has 1/H-variation

over [A1, A2] which is equal to

(A2 −A1)E|B1|1/H = (A2 −A1)
√
dE|Z|1/H .

P r o o f. Consider the sequence

Yn,q = nqH−1
n−1∑
i=0

|BH(xi+1)−BH(xi)|q.
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By (4.10) and (4.9), it has the same law as

Y ′n,q = (A2 −A1)
qH 1

n

n−1∑
i=0

|BH(j+ 1)−BH(j)|q

with j = (j, . . . , j) ∈ Rd. The sequence
(
BH(j+ 1)−BH(j)

)
j∈Zd is stationary

and has the same law as dH/2(Bj+1 −Bj), where B is a one-parameter fBm with
Hurst parameter H .

By the ergodic theorem, Y ′n,q converges to (A2 − A1)
qHE|B1|q. Taking q =

1/H , we obtain the conclusion. �

Following the proof of Lemma 2.1, we can get the q-variation of the isotropic
fBm perturbed by a regular multiparameter process.

LEMMA 4.1. Let
(
BH(x)

)
x∈Rd be a d-parameter isotropic fBm and consider(

X(x)
)
x∈Rd a d-parameter stochastic process that satisfies

(4.12) E|X(x)−X(y)|2 ¬ C‖x− y‖2 for every x,y ∈ Rd.

Define
Y (x) = BH(x) +X(x) for every x ∈ Rd.

Then:
(1) The process

(
Y (x)

)
x∈Rd has 1/H-variation which is equal to

(A2 −A1)
√
dE|Z|1/H .

(2) If H ∈
(
0, 12

)
and q ­ 2, we have

(4.13)
1√
n
Vq,n(Y

H) =
1√
n

n−1∑
i=0

[
nHqd−Hq/2

(A2 −A1)qH
(
Y H(xi+1)− Y H(xi)

)q − µq]
→ N(0, σ2H,q).

P r o o f. As in the proof of Lemma 2.1, we have the double inequality (2.6)
due to the Minkowski inequality. The sequence

n−1∑
i=0

|BH(xi+1)−BH(xi)|1/H

converges again almost surely and in L1 to the desired limit, by Proposition 4.5. It
remains to show that

∑n−1
i=0 |X(xi+1)−X(xi)|1/H converges to zero in probabil-

ity and this is an easy consequence of the assumption (4.12).
For (2), it suffices to observe that the vector

(
BH(xi+1)−BH(xi)

)
0,1,...,n−1

has the same law as dH/2
(
BH(xj+1) − B(xj)

)
0,1,...,n−1, where B is a one-para-

meter fBm with Hurst parameter H , and to apply Lemma 2.1. �



332 Z. Mahdi Khal i l and C. A. Tudor

4.3. Behavior in space. We go back to the process (4.4) and analyze its behav-
ior in space. We prove the following result.

PROPOSITION 4.6. Fix t > 0. Then the process
(
u(t, x)

)
x∈Rd has the same

finite-dimensional distribution as

c3,α,γB
(α+γ−d)/2(x) + S(x), x ∈ Rd,

where B(α+γ−d)/2 stands for an isotropic multiparameter fBm with Hurst index
(α+ γ − d)/2, S(x), x ∈ Rd, is a Gaussian process withC∞ paths which satisfies
(4.12) and

(4.14) c23,α,γ = (2π)−d
∫
Rd

dww−(α+γ)
(
1− cos(w · e)

)
.

P r o o f. Define, for x ∈ Rd,

(4.15) S(x) =
∞∫
t

∫
Rd

(
Gα(s, z)−Gα(u, x− z)

)
W γ(ds, dz).

Then we have

E|S(x)|2 =
∞∫
t

ds
∫
Rd

∫
Rd

dzdz′
(
Gα(s, z)−Gα(s, x− z)

)
×
(
Gα(s, z

′)−Gα(s, x− z′)
)
f(z − z′)

= (2π)d
∞∫
t

du
∫
Rd

dξ‖ξ‖−γ
(
FGα(s, ·)(ξ)−FGα(s, x− ·)(ξ)

)
×

(
FGα(s, ·)(ξ)−FGα(s, x− ·)(ξ)

)
= (2π)−d

∞∫
t

du
∫
Rd

dξ‖ξ‖−γe−2u‖ξ‖α |1− e−iξ·x|2,

where we used the Parseval formula (4.3). Now, by using Fubini’s theorem and
computing the integral du, we get

E|S(x)|2 = (2π)−d
∫
Rd

dξ‖ξ‖−γ−α
(
1− cos(ξ · x)

)
e−2t‖ξ‖

α
<∞.

The function under the integral dξ is integrable at infinity because of the presence
of the exponential function, while in the vicinity of zero we use |1− cos(ξ · x)| ¬
c‖ξ‖2 and then

‖ξ‖−γ−α
(
1− cos(ξ · x)

)
e−2t‖ξ‖

α ¬ C‖ξ‖−α−γ+2,

which is integrable for ξ close to zero since −α− γ + 2 + d > 0.
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In the same way we can control the increments of S to prove the relation
(4.12). Indeed, for x1, x2 ∈ Rd,

E |S(x2)− S(x1)|2 = (2π)−d
∞∫
t

du
∫
Rd

dξ‖ξ‖−γe−2u‖ξ‖α |1− e−iξ·(x2−x1)|2

= 2(2π)−d
∞∫
t

du
∫
Rd

dξ‖ξ‖−γe−2u‖ξ‖α
(
1− cos

(
ξ · (x2 − x1)

))
= (2π)−d

∫
Rd

dξ‖ξ‖−γ−α
(
1− cos

(
ξ · (x2 − x1)

))
e−2t‖ξ‖

α

¬ (2π)d‖x2 − x1‖2
∫
Rd

dξ‖ξ‖−γ−α+2e−2t‖ξ‖
α

since 1− cos
(
ξ · (x2 − x1)

)
¬ ‖x2 − x1‖2‖ξ‖2.

Put U(x) = u(t, x)− S(x) for every x ∈ Rd. We will show that
(
U(x)

)
x∈Rd

is, modulo a constant, an isotropic fBm. We can write, for x, y ∈ R, by using the
independence of u and S (because the noise W γ is white in time),

E |U(x)− U(y)|2 = E
[ t∫

0

∫
Rd

(
Gα(u, x− z)−Gα(u, y − z)

)
W γ(du, dz)

]2
+E

[∞∫
t

∫
Rd

(
Gα(u, x− z)−Gα(u, y − z)

)
W γ(du, dz)

]2
= E

[∞∫
0

∫
Rd

(
Gα(u, x− z)−Gα(u, y − z)

)
W γ(du, dz)

]2
= 2(2π)−d

∞∫
0

du
∫
Rd

dξ‖ξ‖−γe−2u‖ξ‖α
(
1− cos

(
ξ · (x− y)

))
= (2π)−d

∫
Rd

dξ‖ξ‖−γ−α
(
1− cos

(
ξ · (x− y)

))
,

where we computed the integral du. By making the change of variables ξ‖y−x‖ =
w and putting e = (y − x)/‖y − x‖, we have

E |U(x)− U(y)|2 = (2π)−d‖y − x‖α+γ−d ∫
Rd

dww−(α+γ)
(
1− cos(w · e)

)
,

which implies that U coincides in law with c3,α,γB(α+γ−d)/2, where B(α+γ−d)/2

is an isotropic fBm and c23,α,γ given by (4.14). �

By Lemma 4.1 and Proposition 4.6, we have the following two propositions.

PROPOSITION 4.7. The process x → u(t, x) has 2/(α + γ − d)-variation
given by c2/(α+γ−d)

3,α,γ (A2 −A1)
√
dE|Z|2/(α+γ−d).
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PROPOSITION 4.8. Fix A1 < A2 and t > 0. Let xkj = A1 +
j
n(A2 − A1)

for j = 0, . . . , n, n ­ 1, and for every k = 1, . . . , d. Also, let xj = (x1j , . . . , x
d
j ).

Then, if α+ γ − d < 1,

1√
n

n−1∑
i=0

[(
n(α+γ−d)/2d−H/2

c3,α,γ

)q(
u(t,xi+1)− u(t,xi)

)q − µq]
→ N(0, σ2(α+γ−d)/2,q)

with c3,α,γ from (4.14) and σ(α+γ−d)/2,q from (3.6).

Notice that we restricted ourselves to the situation α + γ − d < 1, which
means that the parameter of the isotropic fBm associated with the solution is
strictly less than one half, and we can apply Lemma 4.1.
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