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1. INTRODUCTION

Modern statistics and multivariate analysis require use of models on subcones
of the cone Sym+(n,R) of positive definite symmetric matrices. Such subcones
are obtained for example by prescribing some of the off-diagonal elements to be
zero. One considers two types of Wishart laws on such subcones [24]. The first
type corresponds to the law of the maximum likelihood estimators of covariance
matrices in a sample of size n of a multidimensional normal vector (X1, . . . , Xp)
subject to conditional independence constraints (see [22], [24]). The inverses of the
second type Wishart laws form a conjugate family of priors for the covariance pa-
rameter of the graphical Gaussian model. Some subclasses of second type Wishart
laws, called G-Wishart in [24], are Diaconis–Ylvisaker conjugate priors (see [6])
for the precision matrix.

Many of such subcones are homogeneous, i.e. their automorphism group acts
transitively. Recall that in the theory of graphical models [22], a decomposable
graph generates a homogeneous cone if and only if the graph induced by any
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quadruple of vertices is not the graph • − • − • − •, denoted by A4, cf. [16] and
[24]. Among all decomposable graphs with four vertices, approximately 80 per
cent are homogeneous.

Let us underline one more statistical motivation for developing the theory of
Wishart laws on homogeneous cones. Modern big data statistics concentrates on
the case n � p in the multivariate normal sample of the vector (X1, . . . , Xp),
cf. [13]. This case corresponds to singular Wishart laws, which at the moment are
fully described only on homogeneous cones, cf. Theorems 4.1 and 4.2 below.

Moreover, important recent statistical articles [24], [21] point out the signif-
icance of homogeneous cones among cones corresponding to decomposable and
DAG models and devote much space to multivariate analysis on homogeneous
cones. Further, Wishart laws on homogeneous cones supply many good examples
of exponential families with very explicit calculation. This should be emphasized
as a raison d’être of our research.

The preponderant role of homogeneous cones among subcones of Sym+(n,R)
strongly motivates research on Wishart laws on general homogeneous cones. Fam-
ilies of Wishart laws on homogeneous cones were first studied by Andersson and
Wojnar [2], Boutouria [4] and Letac and Massam [24]. The pioneering paper [2]
is very technical and inaccessible due to the use of methods based on Vinberg al-
gebras. The natural approach to this topic, based on quadratic maps and matrix
realizations of homogeneous cones, was proposed in Graczyk and Ishi [9], [17]
and used in Ishi and Kołodziejek [20].

This article is a continuation of [9], [17] and [20], however here we identify
the dual space using the trace inner product instead of the standard inner prod-
uct. Indeed, the trace inner product will be indispensable in future applications
to statistics. Though the difference between standard and trace inner products is
rather technical, it gives rise to some changes in formulas in our previous works
about generalized power functions and Wishart exponential families, i.e. the natu-
ral exponential families generated by Riesz measures. Thus we repeat and simplify
some definitions and proofs from [9] and [17] for completeness and convenience
of the reader. We hope that, eventually, this paper presents our methods and results
in a manner which is accessible to mathematical statisticians.

The variance function is an important characteristic of a natural exponen-
tial family, cf. [3]. Let us consider a classical Wishart exponential family on the
cone Sym+(n,R), i.e. the natural exponential family (NEF) generated by a Riesz
measure µp on Sym+(n,R), with the Laplace transform Lµp(θ) = (det θ)−p for
θ ∈ Sym+(n,R). Here p belongs to the Gindikin–Wallach set (in this context also
called the Jørgensen set) Λ = {1/2, 1, 3/2, . . . , (n − 1)/2} ∪

(
(n − 1)/2,∞

)
. It

is well known and straightforward to check (see, for example, [23]) that the vari-
ance function of NEF generated by µp is given by

Vp(m) =
1

p
ρ(m),(1.1)
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where m ∈
(
Sym+(n,R)

)∗ ≡ Sym+(n,R) and ρ(m) is a linear map from
Sym(n,R) to itself defined by ρ(m)Y = mYm>, Y ∈ Sym(n,R). Generally, the
Wishart exponential family is the natural exponential family generated by some
Riesz measure. In this paper we give explicit formulas for the variance function of
Wishart exponential family on any homogeneous cone.

Let us describe shortly the plan of this paper. In Section 2 we recall the def-
inition of a natural exponential family generated by a positive measure and we
introduce their characteristics, mean and variance, used and studied throughout the
whole paper.

Sections 3 and 4 are devoted to introducing the main tools for the analysis of
Wishart exponential families on homogeneous cones. Like in [9], we consider two
types of homogeneous cones – PV which is in a matrix realization and its dual
cone QV – and Riesz measures and Wishart families on them. This corresponds to
the concept of Type I and Type II Wishart laws defined and studied in [24].

Any homogeneous cone is linearly isomorphic to some matrix cone PV (see
[18]). It was observed in [9] that the matrix realization of a homogeneous cone
makes analysis of Riesz and Wishart measures much easier. The present paper is
also based on this technique, which is reviewed in Section 3.1.

In Section 3.2, we define the generalized power functions δs and ∆s on the
conesQV andPV , respectively. In Proposition 3.1(iii), we give a formula, i.e. (3.7),
for the power function δs, which is new and useful. In Definition 3.3 we introduce
an important map ξ 7→ ξ̂ between QV and Sym+(N,R), inspired by an analogous
map playing a fundamental role for decomposable graphical models [22].

In Section 5, we first prove formula (5.1), which serves as a simple and useful
tool in our argument. Then we deduce from (5.1) an explicit evaluation of the in-
verse of the mean map (Theorem 5.1). It allows us to find the Lauritzen formula on
any (not only graphical) homogeneous cone. We get in Section 6 the variance func-
tion formula for Wishart exponential families defined on the cone QV . The proof
is based on formula (5.1) again. Note that Riesz and Wishart measures on cones
QG and PG corresponding to the decomposable graphs G were studied in [24] and
(uniquely in case QG) in [1]. When the cones QG and PG are homogeneous, the
integral formulas in Theorems 3.1 and 3.2 of [24] and in Theorem 5.1 of [1] are a
special case of our results on the conesQV and PV , when the dimensions of all the
blocks in the matrix realization of QV are equal to one.

In Section 7 we give results on the variance function formula for Wishart ex-
ponential families on PV . In particular, we offer a practical approach to the con-
struction of a matrix realization of the dual cone QV , using basic quadratic maps.
Note that if a homogeneous cone PV is in matrix realization, then, in general, QV
is not, which makes analysis on QV harder.

The last Section 8 contains applications of the results and of the methods of
this paper to symmetric cones and graphical homogeneous cones. We improve and
complete in this way the results of [12] and [24].
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The unpublished paper [5] may seem to contain results of our paper. However,
the main results of [5], announced in Theorems 3.3 and 4.2, are false. The proofs
of these theorems are based on several erroneous arguments. Consequently, the
unpublished paper [5] cannot be compared with the results of our paper.

The full version of the Introduction and the exposition of errors in [5] were
accepted by the referee and are available on arXiv [10]. On the demand of the
editor, we present a shortened version of the paper.

Acknowledgments. We thank Małgorzata Bogdan and Hélène Massam for
discussions on statistical applications of Wishart laws on homogeneous cones.

2. NATURAL EXPONENTIAL FAMILIES

In the following section we will give a short introduction to natural exponential
families (NEFs). The standard reference book on exponential families is [3].

Let E be a finite-dimensional real linear space endowed with an inner product
〈·, ·〉 and let E∗ be the dual space of E. If ξ ∈ E∗ is a linear functional on E, we will
denote its action on x ∈ E by 〈ξ, x〉. Let LS(E∗,E) be the linear space of linear
operators A : E∗ → E such that for any ξ, η ∈ E∗, one has 〈ξ,A(η)〉 = 〈η,A(ξ)〉.

Let µ be a positive Radon measure on E. We define its Laplace transform
Lµ : E∗ → (0,∞] by

Lµ(θ) :=
∫
E
e−〈θ,x〉µ(dx).

Let Θ(µ) denote the interior of the set {θ ∈ E∗ : Lµ(θ) <∞}. Hölder’s inequality
implies that the set Θ(µ) is convex and the cumulant function

kµ(θ) := logLµ(θ)

is convex on Θ(µ) and it is strictly convex if and only if µ is not concentrated on
any affine hyperplane of E. LetM(E) be the set of positive Radon measures on
E such that Θ(µ) is not empty and µ is not concentrated on any affine hyperplane
of E.

For µ ∈ M(E) we define the natural exponential family (NEF) generated by
µ as the set of probability measures

F (µ) = {P (θ, µ)(dx) = e−〈θ,x〉−kµ(θ)µ(dx) : θ ∈ Θ(µ)}.

Then, for θ ∈ Θ(µ),

mµ(θ) := −k′µ(θ) =
∫
E
xP (θ, µ)(dx),

−m′µ(θ) = k′′µ(θ) =
∫
E

(
x−mµ(θ)

)
⊗
(
x−mµ(θ)

)
P (θ, µ)(dx)

are respectively the mean and the covariance operator of the measure P (θ, µ). Here
x⊗ x is an element of LS(E∗,E) defined by (x⊗ x)(ξ) = x 〈ξ, x〉 for x ∈ E and
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ξ ∈ E∗. The subset MF (µ) := mµ

(
Θ(µ)

)
of E is called the domain of means of

F (µ). The mapmµ : Θ(µ)→MF (µ) is an analytic diffeomorphism, and its inverse
is denoted by ψµ : MF (µ) → Θ(µ).

LEMMA 2.1 ([17], Proposition IV.4). Define

Jµ(m) := sup
θ∈Θ(µ)

e−〈θ,m〉

Lµ(θ)
for any m ∈MF (µ).

Then ψµ = −(log Jµ)′.

P r o o f. Since log Jµ(−m) = supθ∈Θ(µ)

(
〈θ,m〉 − kµ(θ)

)
is the Legendre–

Fenchel transform of kµ(θ), the statement follows from the Fenchel duality. �

For any m ∈ MF (µ) consider the covariance operator VF (µ)(m) of the mea-
sure P

(
ψµ(m), µ

)
. Then

VF (µ)(m) = k′′µ
(
ψµ(m)

)
= −[ψ′µ(m)]−1.(2.1)

The map VF (µ) : MF (µ) → LS(E∗,E) is called the variance function of F (µ).
The variance function is a central object of interest of natural exponential families,
because it characterizes an NEF and the generating measure in the following way:
if F (µ) and F (µ0) are two natural exponential families such that VF (µ) and VF (µ0)

coincide on a non-void open set J ⊂ MF (µ) ∩MF (µ0), then F (µ) = F (µ0) and
so µ0(dx) = exp{〈a, x〉 + b}µ(dx) for some a ∈ E∗ and b ∈ R. The variance
function gives full knowledge of the NEF.

In the context of natural exponential families, invariance properties under the
action of a subgroup of general linear group or general affine group are often con-
sidered. For the recent developments in this direction see [20].

3. BASIC FACTS ON HOMOGENEOUS CONES

Let Mat(n,m;R) and Sym(n,R) denote the linear spaces of real n×m ma-
trices and symmetric real n×nmatrices, respectively. Let Sym+(n,R) be the cone
of symmetric positive definite real n× n matrices. A> denotes the transpose of a
matrix A. For X ∈ Mat(N,N ;R) define a linear operator ρ(X) : Sym(N,R)→
Sym(N,R) by ρ(X)Y = XYX>, Y ∈ Sym(N,R).

Let V be a real linear space and Ω a regular open convex cone in V . The open
convex cone Ω is regular if Ω ∩ (−Ω) = {0}. The linear automorphism group
preserving the cone is denoted by G(Ω) = {g ∈ GL(V ) : gΩ = Ω}. The cone Ω
is said to be homogeneous if G(Ω) acts transitively on Ω.

3.1. Homogeneous cones PV and QV . We recall from [9] a useful realiza-
tion of any homogeneous cone. Let us take a partition N = n1 + . . . + nr of a
positive integer N and consider a system of vector spaces V lk ⊂ Mat(nl, nk;R),
1 ¬ k < l ¬ r, satisfying the following three conditions:



342 P. Graczyk et al.

(V1) A ∈ V lk, B ∈ Vki =⇒ AB ∈ V li for any 1 ¬ i < k < l ¬ r;
(V2) A ∈ V li, B ∈ Vki =⇒ AB> ∈ V lk for any 1 ¬ i < k < l ¬ r;
(V3) A ∈ V lk =⇒ AA> ∈ R Inl

for any 1 ¬ k < l ¬ r.
Let ZV be the subspace of Sym(N,R) defined by

ZV :=

x =


X11 X>21 . . . X>r1
X21 X22 . . . X>r2

...
. . .

Xr1 Xr2 Xrr

 :
Xlk ∈ Vlk, 1 ¬ k < l ¬ r,
Xll = xllInl

, xll ∈ R, 1 ¬ l ¬ r

.
We set

PV := ZV ∩Sym+(N,R).
Then PV is a regular open convex cone in the linear spaceZV . LetHV be the group
of real lower triangular matrices with positive diagonals defined by

HV :=

T =


T11
T21 T22

...
. . .

Tr1 Tr2 Trr

 :
Tlk ∈ V lk, 1 ¬ k < l ¬ r,
Tll = tllInl

, tll > 0, 1 ¬ l ¬ r

 .

If T ∈ HV and x ∈ ZV , then ρ(T )x = T xT> ∈ ZV thanks to (V1)–(V3). More-
over, ρ(HV) acts on the cone PV (simply) transitively ([15], Proposition 3.2), that
is, PV is a homogeneous cone. Our interest in PV is motivated by the fact that any
homogeneous cone is linearly isomorphic to PV due to Theorem D in [15].

Condition (V3) allows us to define an inner product (·|·) on Vlk, 1¬k<l¬r,
by the formula

(AB> +BA>)/2 = (A|B)Inl
, A,B ∈ Vlk.

We define the trace inner product on ZV by

〈x, y〉 = tr(xy) =
r∑

k=1

nkxkkykk + 2
∑

1¬k<l¬r
nl(Xlk|Ylk), x, y ∈ ZV .

Using the trace inner product, we identify the dual space Z∗V with ZV . Define the
dual cone QV by

QV :=
{
ξ ∈ ZV : 〈ξ, x〉 > 0 ∀x ∈ PV \ {0}

}
,

where PV is the closure of PV . The dual coneQV is also homogeneous. It is easily
seen that IN ∈ QV .

For T ∈ HV , we denote by ρ∗(T ) the adjoint operator of ρ(T ) ∈ GL(ZV)
defined in such a way that 〈ξ, ρ(T )x〉 = 〈ρ∗(T )ξ, x〉 for any ξ, x ∈ ZV . For any
ξ ∈ QV there exists a unique T ∈ HV such that ξ = ρ∗(T )IN ([25], Chapter 1,
Proposition 9).
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3.2. Generalized power functions. Define a one-dimensional representation
χs of the triangular group HV by

χs(T ) :=
r∏

k=1

t2skkk ,

where s = (s1, . . . , sr) ∈ Cr. Note that any one-dimensional representation χ of
HV is of the form χs for some s ∈ Cr.

DEFINITION 3.1. Let ∆s : PV → C be the function given by

∆s

(
ρ(T )IN

)
:= χs(T ), T ∈ HV .

Let δs : QV → C be the function given by

δs
(
ρ∗(T )IN

)
:= χs(T ), T ∈ HV .

The functions ∆ and δ are called generalized power functions.

Let Nk = n1 + . . . + nk, k = 1, . . . , r. For y ∈ Sym(N,R), by y{1:k} ∈
Sym(Nk,R) we denote the submatrix (yij)1¬i,j¬Nk

. It is known that for any lower
triangular matrix T one has (TT>){1:k} = T{1:k}T

>
{1:k}. Thus, for x = ρ(T )IN ∈

PV with T ∈ HV one has detx{1:k} = (detT{1:k})
2 =

∏k
i=1 t

2ni
ii . This implies

that for any x ∈ PV ,

(3.1) ∆s(x) = (detx)sr/nr
r−1∏
k=1

(detx{1:k})
sk/nk−sk+1/nk+1 .

We will express δs(ξ) as a function of ξ ∈ QV in Section 3.3 (see Proposition 3.1).
By definition, ∆s and δs are multiplicative in the following sense:

∆s

(
ρ(T )x

)
= ∆s

(
ρ(T )IN

)
∆s(x), (x, T ) ∈ PV ×HV ,(3.2)

δs
(
ρ∗(T )ξ

)
= δs

(
ρ∗(T )IN

)
δs(ξ), (ξ, T ) ∈ QV ×HV .(3.3)

DEFINITION 3.2. Let π : Sym(N,R) → ZV be the projection such that, for
any x ∈ Sym(N,R), the element π(x) ∈ ZV is uniquely determined by

tr(xa) = 〈π(x), a〉 , ∀a ∈ ZV .
For any x, y ∈ ZV one has

〈ρ∗(T )x, y〉 = 〈x, ρ(T )y〉 = tr
(
ρ(T>)x · y

)
=
〈
π
(
ρ(T>)x

)
, y
〉
,

thus, for any T ∈ HV ,

ρ∗(T ) = π ◦ ρ(T>).(3.4)

Now we define a useful map ξ 7→ ξ̂ between QV and Sym+(N,R) such that
(ξ̂)−1 ∈ PV and π(ξ̂) = ξ. An analogous map is very important in statistics on
decomposable graphical models [22].
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DEFINITION 3.3. For ξ = ρ∗(T )IN ∈ QV with T ∈ HV , we define

ξ̂ := ρ(T>)IN = T>T ∈ Sym+(N,R).

Note that for any ξ ∈ QV , one has (ξ̂)−1 ∈ PV (compare the definition of ξ̂
in [24], Proposition 2.1). Indeed, (ξ̂)−1 = ρ(T−1)IN ∈ PV . Due to (3.4), we have
π(ξ̂) = ξ.

Observe that for T ∈ HV ,

∆s

(
ρ(T )IN

)
= χs(T ) = χ−s(T

−1) = δ−s
(
ρ∗(T−1)IN

)
and, due to (3.4), ρ∗(T−1)IN = π

((
ρ(T )IN

)−1). This implies that the functions
∆ and δ are related by the following identities:

∆s(x) = δ−s
(
π(x−1)

)
, x ∈ PV ,(3.5)

δ−s(ξ) = ∆s(ξ̂
−1), ξ ∈ QV .(3.6)

In literature, the function δs is sometimes denoted by ∆∗s∗ , where s∗ = (sr, . . . , s1).

3.3. Basic quadratic maps qi and associated maps ϕi. We recall from [9] a
construction of basic quadratic maps. Let Wi, i = 1, . . . , r, be the subspace of
Mat(N,ni;R) consisting of the matrices x of the form

x = (0ni,n1+...+ni−1 , xiiIni , . . . , X
>
ri)
>,

where Xli ∈ V li, l = i+ 1, . . . , r. For x ∈Wi, the symmetric matrix xx> belongs
to ZV thanks to (V2) and (V3). We define the basic quadratic map qi : Wi 3 x 7→
xx> ∈ ZV .

Taking an orthonormal basis of each V li with respect to (·|·), we identify the
space Wi with Rmi , where mi = dimWi = 1 + dimV i+1,i+ . . . + dimVri. Let
vec(x) ∈ Rmi denote the vectorization of x ∈ Wi. It is convenient to choose a
basis for Wi consistent with the block decomposition of ZV , that is, (v1, . . . , vmi),
where v1 corresponds to V ii ' R and (v2, . . . , v1+dimVi+1,i

) corresponds to V i+1,i,
and so on.

DEFINITION 3.4. For the quadratic map qi we define the associated linear
map ϕi : ZV ≡ Z∗V → Sym(mi,R) in such a way that for ξ ∈ ZV ,

vec(x)>ϕi(ξ) vec(x) = 〈ξ, qi(x)〉 , ∀x ∈Wi.

Similarly we consider another subspace of Mat(N,ni;R), namely,

Ŵ i = {x = (0ni,n1+...+ni , X
>
i+1,i, . . . , X

>
ri)
> : Xli ∈ V li, l = i+ 1, . . . , r},

the quadratic map q̂i : Ŵ i 3 x 7→ xx> ∈ ZV and its associated linear map
ϕ̂i : ZV ≡ Z∗V → Sym(mi − 1,R).
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PROPOSITION 3.1. (i) For any ξ ∈ ZV and i = 1, . . . , r − 1, one has

ϕi(ξ) =

(
niξii vi(ξ)

>

vi(ξ) ϕ̂i(ξ)

)
,

where vi(ξ)> :=
(
ni+1 vec(ξi+1,i)

>, . . . , nr vec(ξri)
>) ∈ Rmi−1 and vec(ξki) ∈

RdimVki is the vectorization of ξki ∈ Vki. Moreover,

ϕr(ξ) = nrξrr ∈ R ≡ Sym(1,R).

(ii) For ξ = ρ∗(T )IN ∈ QV with T ∈ HV and i = 1, . . . , r − 1, one has

detϕi(ξ) = χmi
(T ) detϕi(IN ),

det ϕ̂i(ξ) = χm̂i
(T ) det ϕ̂i(IN ),

where

mi := (0, . . . , 0, 1, ni+1,i, . . . , nri) ∈ Zr,

m̂i := (0, . . . , 0, 0, ni+1,i, . . . , nri) ∈ Zr.

(iii) For any ξ ∈ QV , one has

(3.7) δs(ξ) = Csϕr(ξ)
sr

r−1∏
i=1

(
detϕi(ξ)

det ϕ̂i(ξ)

)si

,

where the constant Cs does not depend on ξ.
(iv) For α, β ∈ ZV and i = 1, . . . , r − 1, one has

tr
(
ϕi(α)ϕi(IN )−1ϕi(β)ϕi(IN )−1

)
− tr

(
ϕ̂i(α)ϕ̂i(IN )−1ϕ̂i(β)ϕ̂i(IN )−1

)
= αiiβii + 2

r∑
l=i+1

nl
ni

(αli|βli).

Let us underline that the useful formula (3.7) for the power function δs is new
and different from the formula given in [9] and [17]. Precisely, it is just mentioned
in [9], [17] that δs(ξ) is a product of powers of detϕi(ξ).

P r o o f. (i) It is a consequence of the choice of basis for Wi and the fact that
Wi ' R⊕Ŵ i.

(ii) In [9] a very similar problem was considered, but there the dual space Z∗V
was identified with ZV by using the so-called standard inner product rather than
the trace inner product. The only difference in the form of ϕi in these two cases is
that here block sizes ni appear in the (i, i) component and in the definition of vi.
The proof is virtually the same for both cases, see Proposition 3.3 in [9].
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(iii) From (ii) we see that if ξ = ρ∗(T )IN , then

t2ii =
χmi

(T )

χm̂i
(T )

=
det ϕ̂i(IN )

detϕi(IN )

detϕi(ξ)

det ϕ̂i(ξ)
= n−1i

detϕi(ξ)

det ϕ̂i(ξ)
.

(iv) Using the block decomposition given in (i), one has

tr
(
ϕi(α)ϕi(IN )−1ϕi(β)ϕi(IN )−1

)
− tr

(
ϕ̂i(α)ϕ̂i(IN )−1ϕ̂i(β)ϕ̂i(IN )−1

)
= αiiβii + n−1i tr

(
vi(α)

>ϕ̂i(IN )−1vi(β) + vi(β)
>ϕ̂i(IN )−1vi(α)

)
and the assertion follows from the definition of (·|·) and vi. �

4. RIESZ MEASURES AND WISHART EXPONENTIAL FAMILIES

Generalized power functions play a very important role and this is due to the
following

THEOREM 4.1 ([8], [14]). (i) There exists a positive measureRs on ZV with
the Laplace transform

LRs(ξ) = δ−s(ξ), ξ ∈ QV ,

if and only if s ∈ Ξ :=
⊔

ε∈{0,1}r Ξ(ε) (disjoint union), where

Ξ(ε) :=


sk >

1
2

∑
i<k

εi dimVki if εk = 1,

s ∈ Rr;
sk = 1

2

∑
i<k

εi dimVki if εk = 0

 .

The support ofRs is contained in PV .
(ii) There exists a positive measure R∗s on Z∗V ≡ ZV with the Laplace trans-

form

(4.1) LR∗s (θ) = ∆−s(θ), θ ∈ PV ,

if and only if s ∈ X :=
⊔

ε∈{0,1}rX(ε), where

X(ε) :=


sk >

1
2

∑
l>k

εl dimV lk if εk = 1,

s ∈ Rr;
sk = 1

2

∑
l>k

εl dimV lk if εk = 0

 .

The support ofR∗s is contained in QV .
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The measure Rs (resp. R∗s) is called the Riesz measure on the cone PV (resp.
QV ). The sets Ξ and X are called the Gindikin–Wallach sets.

Riesz measures were described explicitly in [14]. The measure Rs (resp. R∗s)
is singular unless s ∈ Ξ(1, . . . , 1) (resp. s ∈ X(1, . . . , 1)). If s ∈ Ξ(1, . . . , 1) (resp.
s ∈ X(1, . . . , 1)), then the Riesz measure is an absolutely continuous measure with
respect to the Lebesgue measure. In such a case, the support of Rs (resp. R∗s)
equals PV (resp. QV ).

We are interested in the description of natural exponential families generated
by Rs and R∗s. Members of F (Rs) and F (R∗s) are called Wishart distributions
on PV and QV , respectively. In order to define NEFs generated by Rs and R∗s we
have to ensure that Rs ∈ M(ZV) and R∗s ∈ M(Z∗V) at least for some s. We have
the following

THEOREM 4.2 ([20], Theorem 3.4). (i) Let s ∈ Ξ. The support of Rs is not
concentrated on any affine hyperplane in ZV if and only if sk > 0 for all k =
1, . . . , r.

(ii) Let s ∈ X. The support ofR∗s is not concentrated on any affine hyperplane
in Z∗V if and only if sk > 0 for all k = 1, . . . , r.

4.1. Group equivariance of the Wishart exponential families. We say that a
measure µ on E is relatively invariant under a subgroup G of GL(E) if for all g ∈
G there exists a constant cg > 0 for which µ(gA) = cgµ(A) for any measurable
A ⊂ E. This condition is equivalent to

Lµ(g
∗θ) = c−1g Lµ(θ), θ ∈ Θ(µ),

where g∗ is the adjoint of g.
Formulas (3.2) and (3.3) imply that the Riesz measure Rs is invariant under

the group ρ(HV), while the dual Riesz measure R∗s is invariant under ρ∗(HV). It
follows that the Wishart exponential family F (Rs) is invariant under ρ(HV) and,
analogously, F (R∗s) is invariant under ρ∗(HV).

5. THE INVERSE OF THE MEAN MAP AND THE LAURITZEN FORMULA ON QV

Let s ∈ X ∩ Rr
>0. Then we have R∗s ∈ M(Z∗V) by Theorem 4.2. Denote by

ψs := ψR∗s the inverse of the mean map from MF (R∗s) to Θ(R∗s). In this section,
we give an explicit formula for ψs(m), m ∈ MF (R∗s). Thanks to Theorem 4.1,
we have PV ⊂ Θ(R∗s) and MF (R∗s) ⊂ QV . Applying Proposition IV.3 of [17],
we can show that PV = Θ(R∗s) and MF (R∗s) = QV . Indeed, it suffices to check
that, for any sequence {yk}k∈N in PV converging to a point in ∂ PV , we have
limk→∞∆−s(yk) = +∞ because s ∈ Rr

>0.
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PROPOSITION 5.1. The inverse of the mean map on QV is expressed by

ψs(m) = −(log δ−s)′(m).(5.1)

P r o o f. By Lemma 2.1 we obtain ψs = −(log JR∗s )
′. For T ∈ HV , we have

JR∗s
(
ρ∗(T )IN

)
= sup

θ∈PV

e−〈ρ
∗(T )IN ,θ〉

LR∗s (θ)
= sup

θ∈PV
χ−s(T )

e−〈IN ,ρ(T )θ〉

LR∗s
(
ρ(T )θ

) ,
where the last equality follows from (3.2). Since ρ(T )PV = PV , we get

JR∗s
(
ρ∗(T )IN

)
= χ−s(T ) · sup

θ∈PV

e−〈IN ,θ〉

LR∗s (θ)
= δ−s

(
ρ∗(T )IN

)
JR∗s (IN ).

We see that the function δ−s equals JR∗s up to a constant multiple. Therefore,
−(log δ−s)′ coincides with −(log JR∗s )

′. �

Let us evaluate ψs(m) ∈ PV for m ∈ QV . In general, for a positive integer
M , we regard the set Sym(M,R) of M ×M symmetric matrices as a Euclidean
vector space with the trace inner product tr(XY ) (X,Y ∈ Sym(M,R)). Then
we consider the linear map ϕ∗i : Sym(mi,R)→ ZV , i = 1, . . . , r, adjoint to ϕi :
ZV → Sym(mi,R) defined in such a way that

〈ξ, ϕ∗i (X)〉 = tr
(
ϕi(ξ)X

)
, X ∈ Sym(mi,R), ξ ∈ ZV .

The linear map ϕ̂
∗
i : Sym(mi − 1,R) → ZV , i = 1, . . . , r, adjoint to ϕ̂i : ZV →

Sym(mi − 1,R) is defined similarly.

THEOREM 5.1. The inverse of the mean map on QV is given by the formula

(5.2) ψs(m) = srϕ
∗
r

(
ϕr(m)−1

)
+

r−1∑
i=1

si

(
ϕ∗i
(
ϕi(m)−1

)
− ϕ̂
∗
i

(
ϕ̂i(m)−1

))
.

P r o o f. For any α ∈ ZV , we see from (5.1) and Proposition 3.1(iii) that

〈α, ψs(m)〉 = −Dα log δ−s(m)

= srDα log ϕr(m) +
r−1∑
i=1

siDα

(
log detϕi(m)− log det ϕ̂i(m)

)
,

where Dα denotes the directional derivative in the direction of α. By the well-
known formula for the derivative of log-determinant, we get

(5.3)

〈α, ψs(m)〉 = sr
ϕr(α)

ϕr(m)
+

r−1∑
i=1

si

(
tr
(
ϕi(α)ϕi(m)−1

)
− tr

(
ϕ̂i(α)ϕ̂i(m)−1

))
.
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Using the adjoint maps, we rewrite (5.3) as

〈α, ψs(m)〉 = sr
〈
α, ϕ∗r

(
ϕr(m)−1

)〉
+

r−1∑
i=1

si

( 〈
α, ϕ∗i

(
ϕi(m)−1

)〉
−
〈
α, ϕ̂

∗
i

(
ϕ̂i(m)−1

)〉)
,

so that we obtain formula (5.2). �

Let n := (n1, . . . , nr). Noting that m̂−1 ∈ PV , we have

det m̂−1 = ∆n(m̂
−1) = δ−n(m)

by (3.1) and (3.6). Thus, for α ∈ ZV we observe that

〈α, ψn(m)〉 = −Dα log δ−n(m) = −Dα log det m̂
−1 = tr(αm̂−1) = 〈α, m̂−1〉.

Therefore, by (5.2) we get

COROLLARY 5.1. The inverse of the bijection y 7→π(y−1),PV → QV is given
explicitly by
(5.4)

m 7→ m̂−1=ψn(m)=nrϕ
∗
r

(
ϕr(m)−1

)
+

r−1∑
i=1

ni

(
ϕ∗i
(
ϕi(m)−1

)
−ϕ̂
∗
i

(
ϕ̂i(m)−1

))
.

If n1 = n2 = . . . = nr = 1, then (5.4) yields the Lauritzen formula (5.21)
in [22] for homogeneous graphical cones (cf. Example 6.1). Formula (5.4) gener-
alizes the Lauritzen formula to all homogeneous cones.

6. VARIANCE FUNCTION OF WISHART EXPONENTIAL FAMILIES ON QV

As in the previous section, let s ∈ X ∩ Rr
>0.

LEMMA 6.1. The variance functions of the Wishart exponential families sat-
isfy the following identities:

VF (R∗s)
(
ρ∗(T )IN

)
= ρ∗(T )VF (R∗s)(IN )ρ(T ), T ∈ HV ,(6.1)

VF (Rs)

(
ρ(T )IN

)
= ρ(T )VF (Rs)(IN )ρ∗(T ), T ∈ HV .(6.2)

P r o o f. The identity (6.1) for the variance function follows from the invari-
ance of F (R∗s) under ρ(HV) (see, for example, formula (2.2) in [20]). The invari-
ance property ofRs results in identity (6.2). �

In [20], Theorem 7, it was shown that property (6.2) actually characterizes
measureRs. The same is true for (6.1) andR∗s.
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Recall thatN = n1 + . . .+nr = Nr. For z ∈ Sym(Nk,R), we define the ma-
trix z0 ∈ Sym(N,R) completed with zeros, that is, (z0){1:k} = z and (z0)ij = 0
if max{i, j} > Nk. Set Jk := (INk

)0 ∈ ZV and J∗k := IN − Jk. The proof of the
following proposition is elementary and can be found in [10].

PROPOSITION 6.1. If y = T>T ∈ Sym+(N,R) with T ∈ HV , then

T>J∗k T = y −
[ (
y−1
)
{1:k}

]−1
0
.

Now we are ready to state and prove our main theorem.

THEOREM 6.1. Let s ∈ X ∩ Rr
>0. Then, the variance function of F (R∗s) is

given by (m ∈ QV )

VF (R∗s)(m) = π ◦
{
n1
s1
ρ(m̂) +

r∑
i=2

(
ni
si
− ni−1
si−1

)
ρ
(
m̂−

[ (
m̂−1

)
{1:i−1}

]−1
0

)}
.

P r o o f. Similarly to the proof of Theorem 5.1, using formula (5.1) from
Proposition 5.1, we obtain

〈α, ψ′s(m)β〉 = −D2
α,β log δ−s(m)

= srD
2
α,β log ϕr(m) +

r−1∑
i=1

si
(
D2

α,β log detϕi(m)−D2
α,β log det ϕ̂i(m)

)
= −sr

ϕr(α)ϕr(β)

ϕr(m)2
−

r−1∑
i=1

si

(
tr
(
ϕi(α)ϕi(m)−1ϕi(β)ϕi(m)−1

)
− tr

(
ϕ̂i(α)ϕ̂i(m)−1ϕ̂i(β)ϕ̂i(m)−1

))
,

where D2
α,β = DαDβ . Setting m = IN , we obtain by Proposition 3.1(iv)

〈α, ψ′s(IN )β〉 = −srαrrβrr −
r−1∑
i=1

si
ni

(
niαiiβii + 2

r∑
l=i+1

nl(αli|βli)
)
.

Recall that

J∗k =

(
0Nk

Ink+1+...+nr

)
∈ ZV

and set Pk := ρ(J∗k ), k = 1, . . . , r− 1, P0 = IdZV . Pi is the orthogonal projection
onto ⊕i<k,l¬r V lk. Then, through a direct computation, one can show that for
i = 1, . . . , r − 1,

niαiiβii + 2
r∑

l=i+1

nl(αli|βli) = 〈α, (Pi−1−Pi)β〉,
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and
nrαrrβrr = 〈α,Pr−1 β〉.

These equalities imply that (Pr := 0ZV )

ψ′s(IN ) = −
r∑

i=1

si
ni

(Pi−1−Pi).

Since (Pi−1−Pi)(Pj−1−Pj) = δij(Pi−1−Pi), we have

[ψ′s(IN )]−1 = −
r∑

i=1

ni
si
(Pi−1−Pi).(6.3)

Indeed,

ψ′s(IN )
r∑

j=1

(
−nj
sj

(Pj−1−Pj)

)
=

r∑
i=1

(Pi−1−Pi) = P0 = IdZV .

Thus, (6.3) gives us

VF (R∗s)(IN ) = −[ψ′s(IN )]−1 =
n1
s1

IdZV +
r∑

i=2

(
ni
si
− ni−1
si−1

)
Pi−1 .

Finally, using (6.1), we obtain for m = ρ∗(T )IN ,

VF (R∗s)(m) = ρ∗(T )VF (R∗s)(IN )ρ(T )

=
n1
s1
ρ∗(T )ρ(T ) +

r∑
i=2

(
ni
si
− ni−1
si−1

)
ρ∗(T )Pi−1 ρ(T ).

(6.4)

Since ρ∗(T ) = π ◦ ρ(T>) and m̂ = T>T , we have

ρ∗(T )ρ(T ) = π ◦ ρ(T>)ρ(T ) = π ◦ ρ(T>T ) = π ◦ ρ(m̂),

and, by Proposition 6.1, for i = 2, . . . , r,

ρ∗(T )Pi−1 ρ(T ) = π ◦ ρ(T>J∗i−1T ) = π ◦ ρ
(
m̂−

[ (
m̂−1

)
{1:i−1}

]−1
0

)
. �

EXAMPLE 6.1. Let us apply Theorem 6.1 to the Wishart exponential families
on the Vinberg cone. Let

ZV :=


x11 0 x31

0 x22 x32
x31 x32 x33

 : x11, x22, x33, x31, x32 ∈ R

.
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Conditions (V1)–(V3) are satisfied and we have n1 = n2 = n3 = 1, N = r = 3.
Then,

PV = ZV ∩Sym+(3,R) = {x ∈ ZV : x11 > 0, x22 > 0, detx > 0 ∈ R}

and its dual cone is given by

QV = {ξ ∈ ZV : ξ33 > 0, ξ11ξ33 > ξ231, ξ22ξ33 > ξ232}.

The coneQV is called the Vinberg cone, while PV is called the dual Vinberg cone.
The cones QV and PV are the lowest dimensional non-symmetric homogeneous
cones.

For ξ ∈ ZV , we have

ϕ1(ξ) =

(
ξ11 ξ31
ξ31 ξ33

)
=: ξ{1,3}, ϕ2(ξ) =

(
ξ22 ξ32
ξ32 ξ33

)
=: ξ{2,3},

ϕ3(ξ) = ϕ̂1(ξ) = ϕ̂2(ξ) = ξ33,

so that

ϕ∗1

(
a b
b c

)
=

a 0 b
0 0 0
b 0 c

, ϕ∗2

(
a b
b c

)
=

0 0 0
0 a b
0 b c

,
ϕ∗3(a) = ϕ̂

∗
1(a) = ϕ̂

∗
2(a) = aE33

for a, b, c ∈ R, where Eii is the diagonal 3 × 3 matrix with one in the (i, i) entry
and zero elsewhere. Therefore, form ∈ QV and s = (s1, s2, s3) we obtain by (5.2)

ψs(m) = s1


m33

|m{1,3}|
0 − m31

|m{1,3}|
0 0 0

− m31

|m{1,3}|
0

m11

|m{1,3}|

+ s2


0 0 0

0
m33

|m{2,3}|
− m32

|m{2,3}|

0 − m32

|m{2,3}|
m22

|m{2,3}|


+ (s3 − s1 − s2)

1

m33
E33.

In particular, (5.4) tells us that

m̂−1 =


m33

|m{1,3}|
0 − m31

|m{1,3}|
0 0 0

− m31

|m{1,3}|
0

m33

|m{1,3}|

+


0 0 0

0
m33

|m{2,3}|
− m32

|m{2,3}|

0 − m32

|m{2,3}|
m22

|m{2,3}|

(6.5)

−

0 0 0
0 0 0
0 0 1

m33

,
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where |m{1,3}| = m11m33 −m2
31 and |m{2,3}| = m22m33 −m2

32. This is exactly
the Lauritzen formula. Moreover, we have

m̂ =

 m11
m31m32

m33
m31

m31m32

m33
m22 m32

m31 m32 m33


and it is easy to see that the projection π : Sym(3,R)→ ZV sets zero in the (1, 2)
and (2, 1) entries, leaving all other entries unchanged.

We shall use Theorem 6.1 to give VF (R∗s) explicitly. We put Mi =
|m{i,3}|
m33

Eii

for i = 1, 2. Then we have, by (6.5),[
(m̂−1){1:1}

]−1
0

=M1,
[
(m̂−1){1:2}

]−1
0

=M1 +M2.

Theorem 6.1 gives, for s ∈ X ∩ R3
>0,

VF (R∗s)(m) = π ◦
{

1

s1
ρ(m̂) +

(
1

s2
− 1

s1

)
ρ(m̂−M1)

+

(
1

s3
− 1

s2

)
ρ(m̂−M1 −M2)

}
.

(6.6)

Elementary properties of the quadratic operator ρ and of its bilinear extension
ρ(a, b)x = 1

2(axb
> + bxa>), and the fact that ρ(M1,M2) = 0 on ZV , imply the

following formula, proven by different methods in [11]:

VF (R∗s)(m) = π ◦
{(

1

s1
+

1

s2
− 1

s3

)
ρ(m̂)

+

(
1

s3
− 1

s1

)
ρ(m̂−M1) +

(
1

s3
− 1

s2

)
ρ(m̂−M2)

}
.

(6.7)

Note that for s = (p, p, p) with p > 1
2 , the variance function of F (R∗s) on the

Vinberg cone is

(6.8) Vp(m) =
1

p
π ◦ ρ(m̂).

7. VARIANCE FUNCTION OF WISHART EXPONENTIAL FAMILIES ON PV

We are going to find the variance function of the NEF generated byRs on the
cone PV . Using a similar approach (see (6.4)) to that in the proof of Theorem 6.1,
one can show the following proposition.

PROPOSITION 7.1. Let s ∈ Ξ ∩ Rr
>0. For any T ∈ HV one has

VF (Rs)

(
ρ(T )IN

)
=
nr
sr
ρ(T )ρ∗(T ) +

r−1∑
k=1

(
nk
sk
− nk+1

sk+1

)
ρ(T )ρ(Jk)ρ

∗(T ).
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P r o o f. We have Θ(Rs) = QV andMF (Rs) = PV . By definition,mRs(θ) =
−(log δ−s)′(θ), θ ∈ QV . Use Lemma 2.1 to show that ψRs(m)=−(log∆−s)′(m),
m ∈ PV , and proceed as in the proof of Theorem 6.1. �

Now we will also use another approach to this problem. We will use the duality
of the cones PV and QV and a matrix realization of QV . The objective is to boil
down to the results of the preceding section and apply the formula for the variance
function from Theorem 6.1.

The dual cone QV to a homogeneous cone is also homogeneous. Thus, due to
[15], Theorem D, it admits (under suitable linear isomorphism) a matrix realiza-
tion. There exists a family Ṽ = {Ṽ lk}1¬k<l¬r̃ satisfying (V1)–(V3) and a linear
isomorphism l : ZṼ → ZV such that QV = l(PṼ). It can be shown that r̃ = r.

Since l(PṼ) = QV and l is an isomorphism, for any T ∈ HV there exists a
unique T̃ ∈ HṼ such that

l
(
ρ(T̃ )I Ṽ

Ñ

)
= ρ∗(T )IVN .

The linear isomorphism l can be taken in such a way that if T has diagonal
(t11, . . . , trr), then T̃ has diagonal (trr, . . . , t11) (see the choice of the permu-
tation w in Proposition 7.4). In such a case we have χVs (T̃ ) = χṼs∗(T ), where
s∗ = (sr, . . . , s1). This implies the following proposition:

PROPOSITION 7.2. There exists a family Ṽ = {Ṽ lk}1¬k<l¬r satisfying (V1)–
(V3) and a linear isomorphism l : ZṼ → ZV such that QV = l(PṼ) and

∆Ṽs∗(x) = δVs
(
l(x)

)
, x ∈ PṼ .(7.1)

In this case, s ∈ ΞV if and only if s∗ ∈ XṼ .

The adjoint map l∗ : ZV → Z∗Ṽ ≡ ZṼ is a linear isomorphism such that
l∗(PV) = QṼ and

∆Vs (x) = δṼs∗
(
l∗(x)

)
, x ∈ PV .

Consider the Riesz measureRs on PV . Then for any ξ ∈ QV

LRs(ξ) = δV−s(ξ) = ∆Ṽ−s∗
(
(l∗)−1(ξ)

)
= LR∗

s∗

(
(l∗)−1(ξ)

)
,

where LR∗
s∗

is the Laplace transform of the Riesz measure on P
Ṽ

. We have proved
the following

THEOREM 7.1. Let s ∈ Ξ ∩ Rr
>0. Then the variance function of F (Rs) is

given by

VF (Rs)(θ) = (l∗)−1 ◦ VF (R∗
s∗ )

(
l∗(θ)

)
◦ l−1, θ ∈MF (Rs) = PV .
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Here VF (R∗
s∗ )

is the variance function of the Riesz measure defined on PṼ ,
which can be written by using Theorem 6.1. The drawback of this result is that
the map l, and so l∗, is generically not explicit. In the second part of this section
we propose a practical construction of a matrix realization of the coneQV . Conse-
quently, the maps l and l∗ will be available and Theorem 7.1 will become useful in
statistical practice.

7.1. Matrix realization of the cone QV . One general way to get a matrix real-
ization of the cone QV as PṼ is as follows. Recall that mi = dimWi, which was
defined in Section 3.3. Noting that

∑r
i=1mi equals the dimension d of the cone

QV , we define a linear map

Φ : ZV 3 ξ 7→ diag
(
ϕ1(ξ), ϕ2(ξ), . . . , ϕr(ξ)

)
∈ Sym(d,R),

where diag(A1, . . . , Am) ∈ Mat
(∑m

k=1 nk,
∑m

k=1 nk;R
)

denotes the square ma-
trix with matrices Ak ∈ Mat(nk, nk;R) as diagonal blocks. Put

AV := {Φ(IN )−1/2Φ(ξ)Φ(IN )−1/2ξ ∈ ZV}.

PROPOSITION 7.3. By an appropriate permutation of rows and columns, the
subspace AV of Sym(d,R) gives a matrix realization of QV , thus we have l−1 =
ρ
(
wΦ(Id)

−1/2) ◦ Φ for some permutation matrix w ∈ GL(d,R).
The permutation giving a matrix realization in Proposition 7.3 is not unique.

We shall present a practical method of finding such a permutation. For k=1, . . . , r,
we put νk := 1 +

∑
i<k dimVki.

PROPOSITION 7.4. Let w ∈ GL(d,R) be a permutation matrix such that

(7.2) ρ
(
wΦ(IN )−1/2

)
Φ(ξ) = diag(ξrrIνr , ξr−1,r−1Iνr−1 , . . . , ξ11Iν1)

holds for any diagonal ξ ∈ ZV . Then ρ(w)AV = ZṼ with some vector spaces
Ṽ lk ⊂ Mat(νl, νk,R) (1 ¬ k < l ¬ r) which satisfy (V1)–(V3).

The proofs of Propositions 7.3 and 7.4 are technical and omitted. They are
available in the full version of the article [10].

Let us note that condition (7.2) is rather easy to check, since the matrix
ρ
(
Φ(IN )−1/2

)
Φ(ξ) is diagonal if ξ is diagonal.

We remark that some ϕi’s can be omitted from Φ: this is the “optimization”
of matrix realizations of homogeneous cones, recently developed by Yamasaki and
Nomura [26], see Example 7.1 below.

EXAMPLE 7.1. Consider the same space ZV as in Example 6.1. The variance
function of a Wishart family on QV was derived in Example 6.1. The objective
of Example 7.1 is to give the variance function of a Wishart family on PV . We
start with constructing a convenient matrix realization of QV , using Propositions
7.2–7.4.
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For the dual Vinberg cone, the map Φ is defined as follows (see [17]):ξ1 ξ4
ξ2 ξ5

ξ4 ξ5 ξ3

→ diag

((
ξ1 ξ4
ξ4 ξ3

)
,

(
ξ2 ξ5
ξ5 ξ3

)
,
(
ξ3
))
.

Since Φ(I3) = I5 in this case, A0
V is the set of matrices of the form

diag

((
ξ3
)
,

(
ξ3 ξ5
ξ5 ξ2

)
,

(
ξ3 ξ4
ξ4 ξ1

))
,

and applying Proposition 7.4, we obtain a matrix realization of QV on the space
ZṼ of the matrices of the form

(7.3)


ξ3

ξ3 ξ5
ξ3 ξ4

ξ5 ξ2
ξ4 ξ1

 .

On the other hand, an optimal matrix realization is obtained by omitting the first
diagonal ξ3 in (7.3). In order to give the variance function for Wishart families
on the dual Vinberg cone PV , we will use this optimal matrix realization. The
isomorphism l : ZṼ → ZV is then such that

l−1 : ZV 3

ξ1 ξ4
ξ2 ξ5

ξ4 ξ5 ξ3

→

ξ3 ξ5

ξ3 ξ4
ξ5 ξ2

ξ4 ξ1

 ∈ ZṼ .
It is easy to verify by direct computation that δVs

(
l(x)

)
= ∆Ṽs∗(x) for any x ∈ PṼ ,

where s∗ = (sr, . . . , s1). This relation is ensured by formula (7.1). The adjoint
map l∗ : ZV → ZṼ is, for θ ∈ ZV ,

l∗

θ1 θ4
θ2 θ5

θ4 θ5 θ3

=


θ3
2 θ5

θ3
2 θ4

θ5 θ2
θ4 θ1

, (l∗)−1

x u

x v
u y

v z

=

z 0 v
0 y u
v u 2x

.
For ZṼ we have Ñ = 4, r̃ = 3, ñ1 = 2 and ñ2 = ñ3 = 1. Theorems 7.1 and

6.1 imply that for s ∈ Ξ and θ ∈ PV

VF (Rs)(θ) = (l∗)−1 ◦ VF (R∗
s∗ )

(
l∗(θ)

)
◦ l−1,
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whereR∗s∗ is the Riesz measure defined on PṼ , and for m ∈ QṼ ,

VF (R∗
s∗ )

(m) = π ◦
{

2

s3
ρ(m̂) +

(
1

s2
− 2

s3

)
ρ(m̂−M1)

+

(
1

s1
− 1

s2

)
ρ(m̂−M1,2)

}
,

with M1 = [(m̂−1){1:1}]
−1
0 and M1,2 = [(m̂−1){1:2}]

−1
0 . Recall that {1 : i} nota-

tion corresponds to blocks of ZṼ , thus {1 : 1} = {1, 2} and {1 : 2} = {1, 2, 3}.
The projection π : Sym(4,R)→ ZṼ is given by

π :


x11 x21 x31 x41
x21 x22 x32 x42
x31 x32 x33 x43
x41 x42 x43 x44

→


x11+x22

2 x31
x11+x22

2 x42
x31 x33

x42 x44

.
For

m =


m3 m5

m3 m4

m5 m2

m4 m1


we have

m̂ =


m3 − c m5

m3 + c m4

m5 m2

m4 m1


with c = 1

2(m
2
4/m1 −m2

5/m2). Explicit formulas for matrices M1 and M1,2 can
be easily found. In particular, for s = (p, p, p) one has

VF (Rs)(θ) =
1

p
(l∗)−1 ◦ π ◦ [2ρ(m̂)− ρ(m̂−M1)] ◦ l−1,

where m = l∗(θ) and θ ∈ PV . The last formula, compared with (6.8), confirms the
fact that analysis of Wishart laws on homogeneous cones PV is technically more
difficult than on the cones QV .

8. APPLICATIONS

8.1. Classical Wishart families F (µp) on Sym+(n,R). In this case, ZV =
Sym(r,R), QV = Sym+(n,R), all ni = 1, the projection π is the identity map
from Sym(n,R) to itself and m̂ = m. We have s = p1, the measure µp is the Riesz
measure R∗s and s ∈ X if and only if p ∈ Λ. Formula (1.1) from the Introduction
is instantly recovered by using Theorem 6.1.
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8.2. The Wishart families on symmetric cones indexed by s ∈ Rr. The cone
Sym+(n,R) is the prime example of a symmetric cone, that is, a homogeneous
cone Ω which is self-dual (Ω∗ = Ω).

The matrix realization of homogeneous cones (see Section 3.1) does not co-
incide with the usual setting in which symmetric cones are considered, that is,
Jordan algebras, except for Sym+(n,R) cone. This is the reason why there is no
“automatic” correspondence between formulas for variance functions in these two
settings. However, the techniques developed in this article apply in the symmetric
cone setting.

Here we use the standard notation of [7]. Let V be a simple Euclidean Jor-
dan algebra of rank r and let Ω be its associated irreducible symmetric cone. If c
is an idempotent in V , we denote by V (c, 1) the eigenspace corresponding to the
eigenvalue one of the linear operator L(x) on V , which is defined using the Jordan
product L(x) = xy. For a fixed Jordan frame c = (c1, . . . , cr) define subspaces
V (k) = V (c1 + . . . + ck, 1) and W (k) = V (cr−k+1 + . . . + cr, 1). Denote by Pk

and P ∗k the orthogonal projections of V onto V (k) and W (k), respectively. Let ∆s

be the generalized power function with respect to c and P be the quadratic repre-
sentation of Ω. We consider natural exponential families generated by the Riesz
measure R∗s with the Laplace transform ∆−s and Rs with the Laplace transform
θ 7→ ∆s(θ

−1). Using the same techniques as in Theorem 6.1, but in the Euclidean
Jordan algebra framework, we prove the following

PROPOSITION 8.1. For m ∈ Ω = Ω∗,

(8.1)

VF (R∗s)(m) =
1

s1
P(m) +

r∑
i=2

(
1

si
− 1

si−1

)
P(m− [Pi−1m

−1]−10 ),

VF (Rs)(m) =
1

sr
P(m) +

r−1∑
k=1

(
1

sk
− 1

sk+1

)
P(m− [P ∗r−km

−1]−10 ),

where [·]0 denotes the inclusion map from the subalgebras V (k) and W (k) to V .

8.3. Graphical homogeneous cones. Let G = (V,E) be an undirected graph,
where V = {1, . . . , r} is the set of vertices and E ⊂ V × V is the set of undi-
rected edges, that is, if (i, j) ∈ E, then (j, i) ∈ E, i, j ∈ V . For statisticians, the
parameter space of interest for covariance graph models is the cone PG of positive
definite matrices with fixed zeros corresponding to the missing edges of G. More
precisely, if

ZG := {(xij) ∈ Sym(r,R) : xij = 0 if (i, j) /∈ E},

then PG is defined by
PG := ZG ∩Sym+(r,R).

It is known that the cone PG is homogeneous if and only if G is decomposable
(chordal) and does not contain the graph • − • − • − •, denoted by A4, as an
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induced subgraph (for details see [24], [16]). For 1 ¬ k < l ¬ r, we set V lk := R
if (k, l) ∈ E, and V lk := {0} otherwise. Then it can be shown that (possibly after
renumeration of vertices) the family {V lk}1¬k<l¬r satisfies (V1)–(V3). One sees
(cf. [16]) that PV is a graphical cone if and only if n1 = . . . = nr = 1. Thus the
trace inner product coincides with the standard inner product.

The results of the present paper apply to homogeneous graphical cones. How-
ever, in the present paper, Z∗V was identified with ZV , whereas in the statistical
approach to graphical cones one proceeds as follows.

Let IG be the real linear space of G-incomplete symmetric matrices, that is,
functions (i, j) 7→ xij from E to R such that xij = xji. The dual space Z∗G is
identified with IG through 〈y, x〉 =

∑
(i,j)∈E xijyij , (x, y) ∈ ZG×IG, and the

dual cone is denoted by QG :=
{
y ∈ IG : 〈y, x〉 > 0 ∀x ∈ PG \ {0}

}
.

Let π : ZG → IG be such that π(x)ij = xij for any (i, j) ∈ E. For any m ∈
QG there exists a unique m̂ ∈ Sym+(r,R) such that for all (i, j) ∈ E one has
x̂ij = xij and such that x̂−1 ∈ PG (see [24], p. 1279). The last definitions of π and
m̂ on graphical cones agree with the ones given in Definitions 3.2 and 3.3. One can
check (see [19]) that the function QG 3 η 7→H(α, β, η) considered in [24] equals
the generalized power function δs for some s ∈ Rr, by comparing formula (3.7)
with the definition of H(α, β, η).

Thus Theorem 6.1 applies to the cone QG ⊂ IG with ni = 1.
Similarly, by formula (3.5), the function PG 3 y 7→H

(
α, β, π(y−1)

)
intro-

duced in [24] on the cone PG coincides with the generalized power function ∆s

for some s and the results of Section 7 apply to the cone PG.

8.4. Non-homogeneous graphical cones. Recently, the variance function was
also computed for the cones QG corresponding to non-homogeneous graphs G =
An, n ­ 4, see [11]. The techniques are partly the same, but the lack of an analogue
of the equivariance formula (6.1) must be overcome.
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