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Abstract. In clinical research, one of the key problems is to estimate
the effect of the best treatment among the given k treatments in two-stage
adaptive design. Suppose the effects of two treatments have normal distri-
butions with means θ1 and θ2, respectively, and common known variance
σ2. In the first stage, random samples of size n1 with means X̄1 and X̄2 are
chosen from the two populations. Then the population with the larger (or
smaller) sample mean X̄M is selected, and a random sample of size n2 with
mean ȲM is chosen from this population in the second stage of design. Our
aim is to estimate the mean θM (or θJ ) of the selected population based on
X̄M and ȲM in two-stage adaptive design under the reflected normal loss
function. We obtain minimax estimators of θM and θJ , and then provide
some sufficient conditions for the inadmissibility of estimators of θM and
θJ . Theoretical results are augmented with a simulation study as well as a
real data application.
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1. INTRODUCTION

Estimating the parameters of a selected population in two-stage adaptive de-
sign is one of the practical problems in the medical, economics and agriculture
fields. In these designs, at first independent samples Xi1, Xi2, . . . , Xin1 (i = 1, 2,
. . . , k) have been drawn from target populations Π1,Π2, . . . ,Πk and then, based
on a specific rule, the M -th population is selected and a second random sample
of size n2 is drawn from it. These two samples can be used for estimation of the
parameters of the selected population. For example, in the medical research, there
are several treatments that scientists are interested in studying them. But, due to
various limitations, such as time, the availability of patients, cost, etc., only one
or two treatments that have the best response to the observations can be selected
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for further investigation in large-scale medical trials. In general, the best response
for continuous and binary cases are defined as the largest mean and the highest
proportion, respectively (Lu et al. [11]). In the end, the inference focuses on the
selected treatment using both stages’ data.

The problem of estimating parameters of a selected population in single-stage
design was introduced by Rubinstein [20], [21] and was considered by many re-
searchers. See, for example, Gibbons et al. [6], Vellaisamy [32], [33], Vellaisamy
and Punnen [34], Misra et al. [13], [14], Nematollahi and Motamed-Shariati [17],
[18], Kumar et al. [8], Arshad and Misra [1] and Nematollahi [16].

Sarkadi [24] introduced the problem of estimating parameters of the normal
population in single-stage design based on the natural selection rule, and following
that Dahiya [5], Hsieh [7], Cohen and Sackrowitz [4], Venter [35] and Parsian and
Sanjari Farsipour [19] developed some results about estimating parameters of the
selected normal population. Misra and Meulen [12] obtained some admissibility
results under the reflected normal loss function and Naghizadeh Qomi et al. [15]
considered this problem under the reflected normal loss function.

The corresponding two-stage adaptive design, which was introduced by Thall
et al. [29], [30], has been discussed extensively by Schaid et al. [25], Sampson and
Sill [23], Stallard and Friede [28] and Wu et al. [36]. Lu et al. [11] considered esti-
mating the mean of the selected normal population in two-stage designs under the
LINEX loss function and obtained the class of admissible and minimax estimators.

In the literature on the estimation of the parameters of the selected popula-
tion, most of the considered loss functions are convex and not bounded. However,
in some estimation problems, the loss function should be bounded and concave
for large values (Tribus and Szonyi [31], León and Wu [10]). For example, in es-
timating the mean time of treatment θ of a given illness, the amount of the loss
for estimating θ by an estimator δ is essentially bounded. Hence, in this paper,
we consider the problem of estimating the location parameter of the selected nor-
mal population in two-stage adaptive design under the reflected normal loss (RNL)
function. The reflected normal loss function was, for the first time, introduced by
Spiring [26] and Spiring and Yeung [27]. The general form of this loss function is
given by

(1.1) L(θ, δ) = b[1− e−∆2/(2γ2)],

where ∆ = δ − θ, b is the maximum loss and γ is a scale parameter. The RNL
function is symmetric and bounded and it is useful for the purpose that the amount
of loss has a maximum limit. Clearly, the value of b > 0 does not have any influ-
ence on our results, therefore, without loss of generality, we shall take b = 1 in the
rest of the paper.

Let Πi (i = 1, 2) be two normal populations with probability density func-
tions (pdf)

(1.2) f(x| θi, σ2) =
1√
2πσ2

e
− 1

2σ2
(x−θi)2

, θi ∈ R, σ > 0, i = 1, 2,
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where location parameters θ1 and θ2 are unknown and σ2 is the common known
variance. Based on two-stage adaptive design, in the first stage we draw a random
sample Xi1, Xi2, . . . , Xin1 of size n1 from populations Πi, i = 1, 2. For selecting
the best population with the larger (or smaller) mean, we use the natural selection
rule and select the population corresponding to the larger (or smaller) sample mean.
In the second stage, we draw a random sample Y1, Y2, . . . , Yn2 of size n2 from the
selected population which is independent of the first stage sample. Let X̄1 and X̄2

be the sample mean of the first stage sample and X̄(1) ¬ X̄(2) denote the ordered
values of X̄1 and X̄2. For selecting the best population we select the population
corresponding to the X̄(2)(X̄(1)). Therefore, the location parameters corresponding
to the larger and smaller selected populations are defined by

(1.3) θM =

{
θ1, X̄1 ­ X̄2,

θ2, X̄1 < X̄2,
θJ =

{
θ2, X̄1 ­ X̄2,

θ1, X̄1 < X̄2,

respectively. We consider the class of estimators of the parameter θM as the convex
combination of the sample mean of the selected population (X̄M ) and the sample
mean (ȲM ) of the second stage sample. Therefore, the general form of the estima-
tors is as follows:

(1.4) δw(X,Y) = wX̄M + (1− w)ȲM =

{
wX̄1 + (1− w)Ȳ1, X̄1 ­ X̄2,

wX̄2 + (1− w)Ȳ2, X̄1 < X̄2,

where 0 ¬ w ¬ 1. Similar estimators of θJ can be defined as the convex combina-
tion of the sample means of the first and second stages.

In this paper, we want to estimate the parameters θM and θJ of the selected
normal population in two-stage adaptive design under the reflected normal loss
function. Since the RNL function is bounded, by a result of Basu [2] there exists
no uniformly minimum risk unbiased estimator of the unknown parameters. So,
we consider minimax and admissible estimation of θM and θJ .

To the best of our knowledge, in the literature only Lu et al. [11] have con-
sidered admissibility of linear estimators of the form δw(X,Y) + c of the selected
normal population in two-stage adaptive design under the LINEX loss function and
showed that δw(X,Y) is not minimax for θM . In this paper we find minimax es-
timators of θM and θJ and find sufficient conditions of admissibility of estimators
of θM and θJ of the selected normal population in two-stage adaptive design and
under the bounded RNL function.

The organization of the paper is as follows. In Section 2, we obtain minimax
estimators of θM and θJ . In Section 3, we employ the technique of Brewster and
Zidek [3] to provide some sufficient conditions for the inadmissibility of estimators
of location parameters. In Section 4, we discuss minimaxity and admissibility of
estimators of θJ . In Section 5, we compare the risk of the obtained estimators by a
simulation study. Also, an application to real data is given in Section 6. Finally, a
discussion is given in Section 7.
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2. MINIMAX ESTIMATION

Suppose random samples of size n1 are drawn from two normal populations
with pdf (1.2) in the first stage. Then a random sample of size n2 is drawn from
the selected population in the second stage of two-stage adaptive design. In this
section, we want to show that the convex combination estimator δw(X,Y) given in
(1.4) with w = n1

n1+n2
is a minimax estimator of θM under the RNL function (1.1).

Before obtaining the minimax estimator, we need the following lemma which will
be proved in the Appendix.

LEMMA 2.1. Suppose Xi1, Xi2, . . . , Xin1 , i = 1, 2, is a random sample of
size n1 from the normal population with pdf (1.2), and X̄(1) ¬ X̄(2) denote the
order statistics of the sample means X̄1 and X̄2 of these two samples. Select the
population corresponding to the largest sample mean X̄M = X̄(2) and draw a
random sample Y1, Y2, . . . , Yn2 of size n2 from this population, which is indepen-
dent of the first sample. Let ȲM be the sample mean of the second stage sample,
µ = max(θ1, θ2)−min(θ1, θ2) ­ 0, and

σ2∗ =

(
w2

n1
+

(1− w)2

n2

)
σ2, ρ =

(1− w)2/n2
w2/n1 + (1− w)2/n2

.

(i) If S = wX̄M + (1− w)ȲM − θM , then the pdf of S is given by

(2.1) fS(s) =

[
Φ

(
(1− ρ)s+ wµ

σ∗
√

1− ρ2

)
+Φ

(
(1− ρ)s− wµ
σ∗
√
1− ρ2

)]
1

σ∗
φ

(
s

σ∗

)
,

where φ(·) and Φ(·) denote the normal probability density function and cumulative
normal distribution function, respectively.

(ii) Assume thatR(θM , δc) denotes the risk function of δc = δw + c = wX̄M

+ (1− w)ȲM + c in estimating θM under the RNL function (1.1). Then

(2.2) R(θM , δc) = 1− Iw(c2){Φ(dwµ− ec) + Φ(−dwµ− ec)},

where

(2.3)
d =

1√
1− ρ

√
γ2 + σ2∗

σ∗
√

2γ2 + σ2∗(1 + ρ)
, e =

σ2∗(1− ρ)d
γ2 + σ2∗

,

Iw(c
2) =

γ√
γ2 + σ2∗

e−c
2/(2(γ2+σ2

∗)).

(iii) R(θM , δc) is a strictly increasing function of c for c > 0.

Now, to obtain a minimax estimator of θM , we use the results of Sackrowitz
and Samuel-Cahn [22]. First, we obtain the minimax estimator in the component
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problem for θi, i = 1, 2. Let X̄i, Ȳi be the means of the first and second stage sam-
ples from the i-th population, i = 1, 2. Then X̄i ∼ N

(
θi,

σ2

n1

)
and Ȳi ∼ N

(
θi,

σ2

n2

)
and X̄i, Ȳi, i = 1, 2, are independent. Assume that θi, i = 1, 2, have the following
normal prior distributions:

(2.4) πim(θi) =
1√
2πm

e
− 1

2m2
(θi−η)2

, η ∈ R, m > 0, i = 1, 2.

Then the posterior distribution of θi given (X̄i, Ȳi) = (x̄i, ȳi) is N(µ′, τm) with

µ′ =
m2(n1x̄i + n2ȳi) + σ2η

m2(n1 + n2) + σ2
and τm =

1

(n1 + n2)/σ2 + 1/m2
.

The posterior risk of an estimator δi(X̄i, Ȳi) under the loss function (1.1) is given
by the formula

(2.5) r
(
x̄i, ȳi, δi(x̄i, ȳi)

)
= 1− E

(
exp

{
− 1

2γ2
(
δi(x̄i, ȳi)− θi

)2}∣∣x̄i, ȳi)
= 1− γ√

γ2 + τm
exp

{
− 1

2(τm + γ2)

(
δi(x̄i, ȳi)− µ′

)2}
.

Hence, the posterior risk as a function of δi(x̄i, ȳi) is minimized when δi(x̄i, ȳi)
= E(θi |x̄i, ȳi ) = µ′, which is the same as the Bayes estimate of θi under the
squared error loss (SEL) function. So, the Bayes estimator of θi under the RNL
function is

δπim(X̄i, Ȳi) = µ′ = E(θi
∣∣X̄i, Ȳi )(2.6)

=
m2(n1X̄i + n2Ȳi) + σ2η

m2(n1 + n2) + σ2
, i = 1, 2.

The posterior risk of δπim(X̄i, Ȳi) is given by

(2.7) rπim
(
x̄i, ȳi, δπim(x̄i, ȳi)

)
= 1− γ√

γ2 + τm
.

Since the posterior risk does not depend on (x̄i, ȳi), the Bayes risk of δπim(X̄i, Ȳi)
is equal to the posterior risk, that is,

(2.8) r∗(πim, δπim) = 1− γ√
γ2 + τm

, i = 1, 2.

Finally, to obtain the Bayes estimator of θM under the RNL function and normal
prior πim , i = 1, 2, assume that θ1 and θ2 have independent and identical normal
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prior distribution with pdf given in (2.4). Using Lemma 3.2 of [22], we obtain the
unique Bayes estimator of θM as

δπm(X,Y) =
m2(n1X̄M + n2ȲM ) + σ2η

m2(n1 + n2) + σ2
,

where πm = (π1m, π2m). Note that the posterior risk (2.7) for the component prob-
lem is independent of (x̄i, ȳi), i = 1, 2. Therefore, from Theorem 3.1 of [22] we
conclude that the Bayes risk r∗ = r∗(πm, δπm) of δπm(X,Y) is

(2.9) r∗(πm, δπm) = r∗(πim, δπim) = 1− γ√
γ2 + τm

, i = 1, 2.

Thus,

(2.10) lim
m→∞

r∗(πm, δπm) = 1− γ√
γ2 + σ2

n1+n2

.

Now, to prove that an estimator δm(X,Y) is a minimax estimator of θM , by The-
orem 3.2 of [22], it suffices to show that for every θ = (θ1, θ2) we have

(2.11) R(θM , δm) ¬ lim
m→∞

r∗(πm, δπm) = 1− γ√
γ2 + σ2

n1+n2

,

where R(θM , δm) is the risk function of δm under the RNL function.
In the following theorem, according to (2.2) and (2.11), we show that δw∗ =

w∗X̄M + (1− w∗)ȲM with w∗ = n1

n1+n2
is a minimax estimator of θM .

THEOREM 2.1. Under the assumptions of Lemma 2.1, the estimator δw∗ =
w∗X̄M + (1− w∗)ȲM with w∗ = n1

n1+n2
is a minimax estimator of θM under the

RNL function.

P r o o f. From equation (2.2) with c = 0 and w = w∗ it follows that the risk
function R(θM , δw∗) is of the form

R(θM , δw∗) = 1− Iw∗(0) {Φ(dw∗µ) + Φ(−dw∗µ)}

= 1− Iw∗(0) = 1− γ√
γ2 + σ2

n1+n2

= lim
m→∞

r∗(πm, δπm).

Now, by (2.11), the proof is completed . �

REMARK 2.1. The risk of δw = wX̄M + (1 − w)ȲM for 0 ¬ w ¬ 1 mini-
mizes when w = w∗ =

n1

n1+n2
. So, the minimax estimator δw∗ of θM in two-stage

adaptive design dominates the estimators δw for 0 ¬ w ¬ 1. Also, by [15], the
estimator δ1 = X̄M = X̄(2) (δw with w = 1) is a minimax estimator of θM in
single-stage design. Therefore, the minimax estimator under two-stage adaptive
design dominates the minimax estimator of single-stage design.
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3. SUFFICIENT CONDITIONS FOR INADMISSIBILITY OF ESTIMATORS

Let Π1 and Π2 be two normal populations with associated pdf given by (1.2),
and X̄1, X̄2 be the first stage sample means of two independent random samples
of size n1 from these populations. Also, let ȲM be the mean of the second stage
sample of size n2 from the selected population. In this section, we want to find
dominating estimators of θM under the loss function (1.1) which are invariant un-
der the location and permutation groups of transformations (X̄1, X̄2), (Ȳ1, Ȳ2)→
(X̄2 + a, X̄1 + a), (Ȳ2 + a, Ȳ1 + a). To this end, we consider the following class
of invariant estimators of θM :

(3.1) DU = {δψ = wX̄M + (1− w)ȲM + ψ (K)},

where K = X̄(1) − X̄(2) and ψ is a real-valued function defined on the interval
(−∞, 0]. In this section, by employing the technique of Brewster and Zidek [3],
we obtain some sufficient conditions for inadmissibility of invariant estimators of
θM in the class of estimators DU . The following lemma is useful in derivation of a
dominating estimator in estimation of θM .

LEMMA 3.1. Under the assumptions of Lemma 2.1, letK = X̄(1) − X̄(2) and
ψ be a real-valued function defined on the interval (−∞, 0]. Also, let

(3.2)
σ2∗∗ =

(
w2

n1
+

2(1− w)2

n2

)
σ2, σ21 =

σ2

n1
,

ψ∗∗(k) =
σ2∗ + γ2

wσ21
k, ψ∗(k) =

γ2wk + σ2∗∗ψ(k)

σ2∗∗ + 2γ2

and

(3.3) ηk(µ) = ψ∗(k)− γ2wµ

σ2∗∗ + 2γ2

(
1− 2

1 + exp
{
2µwψ∗∗(k)−ψ(k)

σ2
∗∗+2γ2

}),
where ψ∗∗(k) < k < 0.

(i) For any k 6 0, the conditional pdf of S = wX̄M + (1 − w)ȲM − θM
given K = k is

fS|K (s |k ) =
√
2

σ∗∗

φ
(

k+µ√
2σ1

)
φ
( √

2
σ∗∗

(
s+ w k+µ

2

))
+ φ

(
k−µ√
2σ1

)
φ
( √

2
σ∗∗

(
s+ w k−µ

2

))
φ
(

k+µ√
2σ1

)
+ φ

(
k−µ√
2σ1

) ·

(ii) If ψ(k) > ψ∗∗(k), then ηk(µ) is an increasing function of µ and

inf
µ­0

ηk(µ) = ηk(0) = ψ∗(k), sup
µ­0

ηk(µ) = +∞ .
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(iii) If ψ(k) ¬ ψ∗∗(k), then ηk(µ) is a decreasing function of µ and

inf
µ>0

ηk(µ) = −∞, sup
µ­0

ηk(µ) = ηk(0) = ψ∗(k).

P r o o f. (i) See the Appendix.
(ii) Let ηk (µ) = ψ∗(k)− g∗(µ)h∗k(µ), where

g∗(µ) =
γ2wµ

σ2∗∗ + 2γ2
, h∗k(µ) = 1− 2

1 + exp
{
2µwψ∗∗(k)−ψ(k)

σ2
∗∗+2γ2

} ,
and lk(µ) = g∗(µ)h∗k(µ). The functions g∗(µ) and g∗′(µ) are nonnegative func-
tions of µ for µ ­ 0, and for ψ(k) > ψ∗∗(k), h∗(µ) and h∗

′
(µ) are nonpositive

functions of µ for µ ­ 0. So, we have l′k(µ) =
(
g∗(µ)h∗(µ)

)′
< 0. Therefore,

ηk(µ) is an increasing function of µ and hence

inf
µ>0

ηk(µ) = ηk(0) = ψ∗(k), sup
µ>0

ηk(µ) = +∞.

(iii) The proof is similar to the proof of (ii). �

In the following theorem, we give sufficient conditions for inadmissibility of
invariant estimators δψ(X,Y) ∈ DU .

THEOREM 3.1. Suppose δψ(X,Y) ∈ DU is an invariant estimator of θM . If
for every θ = (θ1, θ2) ∈ R2

Pθ
(
ψ∗∗(K) < ψ(K) < ψ∗(K)

)
= Pθ

(
σ2∗ + γ2

wσ21
K < ψ(K) <

wK

2

)
> 0,

then under the RNL function the estimator δψ is inadmissible for estimating θM
and is dominated by δψ1(X,Y) = wX̄M + (1− w)ȲM + ψ1(K), where

ψ1(K) =

{
ψ∗(K), ψ∗∗(K) < ψ(K) < ψ∗(K),

ψ(K) otherwise,
(3.4)

=

ψ∗(K),
σ2∗ + γ2

wσ21
K < ψ(K) <

wK

2
,

ψ(K) otherwise

with ψ∗∗(K) and ψ∗(K) defined in (3.2).

P r o o f. The difference between risks of δψ and δψ1 for µ ­ 0 is given by

∆(µ) = R(θM , δψ)−R(θM , δψ1)

= E[1− e−
1

2γ2
(S+ψ(K))2

]− E[1− e−
1

2γ2
(S+ψ1(K))2

]

= E[e
− 1

2γ2
(S+ψ1(K))2 − e−

1

2γ2
(S+ψ(K))2

] = E
(
Dθ(K)

)
.
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For every k ¬ 0,

Dθ(k) = Eθ[e
− 1

2γ2
(S+ψ1(k))

2

− e−
1

2γ2
(S+ψ(k))2 |K = k ].

Now, using the inequality

ea − eb ­ (a− b)eb, ∀a, b ∈ R,
we have

Dθ(k) ­
1

2γ2
Eθ
{[(

S + ψ(k)
)2 − (S + ψ1(k)

)2]
e
− 1

2γ2
(S+ψ(k))2 |K = k

}(3.5)

=
1

2γ2
(
ψ(k)− ψ1(k)

){(
ψ(k) + ψ1(k)

)
Eθ[e

− 1

2γ2
(S+ψ(k))2 |K = k ]

+ 2Eθ[Se
− 1

2γ2
(S+ψ(k))2 |K = k ]

}
=

1

2γ2
(
ψ(k)− ψ1(k)

)
T (k, µ){ψ(k) + ψ1(k)− 2η∗k(µ)},

where

T (k, µ) = Eθ[e
− 1

2γ2
(S+ψ(k))2 |K = k ],

and

η∗k(µ) = −
Eθ[Se

− 1

2γ2
(S+ψ(k))2 |K = k ]

Eθ[e
− 1

2γ2
(S+ψ(k))2 |K = k ]

.

By using the conditional pdf of S |K = k given in Lemma 3.1, we find the value
of T (k, µ) as follows:

T (k, µ) = Eθ[e
− 1

2γ2
(S+ψ(k))2 |K = k ] = J1

k (µ) + J1
k (−µ),

where

J1
k (µ) =

√
2γ√

σ2∗∗ + 2γ2
e−ψ

2(k)/(2γ2)

1 + ekµ/σ
2
1

× exp

{
− w2(k + µ)2

4σ2∗∗
+

(
γ2w(k + µ) + σ2∗∗ψ(k)

)2
2σ2∗∗γ

2(σ2∗∗ + 2γ2)

}
.

Similarly, it is easy to verify that

Eθ[Se
− 1

2γ2
(S+ψ(k))2 |K = k ] = w1

k(µ)J
1
k (µ) + w1

k(−µ)J1
k (−µ),
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where

w1
k(µ) = −

σ2∗∗ψ(k) + γ2w(k + µ)

σ2∗∗ + 2γ2
.

With some simple calculations, we have

η∗k(µ) =
w1
k (µ) J

1
k (µ) + w1

k (−µ) J1
k (−µ)

J1
k (µ) + J1

k (−µ)
(3.6)

=

γ2wk+σ2
∗∗ψ(k)

σ2
∗∗+2γ2

(
J1
k (µ) + J1

k (−µ)
)

J1
k (µ) + J1

k (−µ)

+

γ2wµ
σ2
∗∗+2γ2

(
J1
k (µ)− J1

k (−µ)
)

J1
k (µ) + J1

k (−µ)

= ψ∗(k)− γ2wµ

σ2∗∗ + 2γ2

(
1−

2J1
k (µ)

J1
k (µ) + J1

k (−µ)

)
= ηk(µ).

Now, by (3.4) and (3.5), if ψ(K) > ψ∗(K) or ψ(K) < ψ∗∗(K), then Dθ(K) ­ 0.
Also, for ψ∗∗(K) < ψ(K) < ψ∗(K), from (3.5), (3.6) and Lemma 3.1 we have

Dθ(k) ­
1

2γ2
(
ψ(k)− ψ∗(k)

)
T (k, µ){ψ(k) + ψ∗(k)− 2ηk(µ)}

­ 1

2γ2
(
ψ(k)− ψ∗(k)

)
T (k, µ){ψ(k)− ψ∗(k)} > 0.

Since P [ψ∗∗(K) < ψ(K) < ψ∗(K)] > 0 for every θ ∈ R2, we have ∆(µ) > 0,
which completes the proof. �

REMARK 3.1. Theorem 3.1 provides estimators that dominate linear estima-
tors δc(X,Y) = wX̄M + (1− w)ȲM + c for c < 0. If we put ψ(K) = c in (3.4),
then the dominating estimators are given by

(3.7) δ∗c (X,Y)

=


γ2w(X̄(1) − X̄(2)) + (σ2∗∗ + 2γ2)[wX̄M + (1− w)ȲM ] + σ2∗∗c

σ2∗∗ + 2γ2
,

2c/w < K < wσ21c/(σ
2
∗ + γ2),

wX̄M + (1− w)ȲM + c, otherwise.

Also, since the risk function R(θM , δw + c) is an increasing function for c > 0,
part (ii) of Lemma 3.1 implies that R(θM , δw + c) > R(θM , δw). So, for c > 0
the estimator δc(X,Y) is inadmissible and is dominated by δw(X,Y) = wX̄M +
(1 − w)ȲM . Therefore, the estimator δc(X,Y) for c 6= 0 in estimating θM under
the RNL function is inadmissible.
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REMARK 3.2. Consider the linear combination estimators of the form

δψ(X,Y) = α
(
wX̄(1) + (1− w)ȲM

)
+ (1− α)

(
wX̄M + (1− w)ȲM

)
= wX̄M + (1− w)ȲM + αw(X̄(1) − X̄M )

= wX̄M + (1− w)ȲM + ψ(K),

where 1
2 < α < 1 and

ψ(K) = αw(X̄(1) − X̄M ) =

{
αw(X̄2 − X̄1), X̄1 > X̄2,

αw(X̄1 − X̄2), X̄1 < X̄2,

= αw(X̄(1) − X̄(2)) = αwK.

This estimator is inadmissible for estimating θM . To obtain an estimator that dom-
inates δψ, it suffices to put ψ(k) = αwK in Theorem 3.1. In this case, the domi-
nating estimator is given by

δ∗2ψ(X,Y) = wX̄M + (1− w)ȲM + ψ∗(K)

= wX̄M + (1− w)ȲM +
ασ2∗∗ + γ2

σ2∗∗ + 2γ2
w(X̄(1) − X̄(2)).

4. MINIMAX AND INADMISSIBLE ESTIMATORS OF θJ

In this section, we discuss the minimax and inadmissible estimation of θJ .
Using the transformation X̄1 → −X̄1 and X̄2 → −X̄2, and the obtained results of
Section 2 for θM , we can easily derive the minimax and inadmissible estimators
of θJ . Let K = X̄(1) − X̄(2). Then it can be shown that

R
(
θJ , UJ − ψ(K)

)
= R

(
θM , UM + ψ(K)

)
,

where Ui = wX̄i + (1 − w)Ȳi, i = J,M, and ψ is a real-valued function defined
on (−∞, 0]. So, from the results obtained in Sections 2 and 3, we have the follow-
ing results:

(i) Under the reflected normal loss function the estimator δ∗w∗(X,Y) with
w∗ = n1

n1+n2
is a minimax estimator of θJ , where

δ∗w∗(X,Y) = w∗X̄J + (1− w∗)ȲJ =

{
w∗X̄1 + (1− w∗)Ȳ1, X̄1 < X̄2,

w∗X̄2 + (1− w∗)Ȳ2, X̄1 ­ X̄2.

(ii) Consider the following class of invariant estimators of θJ :

DL = {δφ(X̄, Ȳ) = wX̄J + (1− w)ȲJ + φ(−K)},
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where φ is a real-valued function defined on the interval [0,∞). Let

φ∗(−K) =
σ2∗∗φ (−K)− γ2wK

σ2∗∗ + 2γ2
and φ∗∗(−K)=−σ

2
∗ + γ2

wσ21
K > −K > 0.

Now, if for all θ ∈ R2 we have

Pθ
(
φ∗(−K) < φ(−K) < φ∗∗(−K)

)
= Pθ

(
−wK

2
< φ(−K) < −σ

2
∗ + γ2

wσ21
K

)
> 0,

then under the RNL function, the invariant estimator δφ is inadmissible for estimat-
ing θJ and is dominated by the estimator δφ1 = wX̄J + (1 − w)ȲJ + φ1(−K),
where

φ1(−K) =

φ∗(−K), −wK
2

< φ(−K) < −σ
2
∗ + γ2

wσ21
K,

φ(−K), otherwise.

(iii) From (ii) we conclude that the estimators δ2c = wX̄J +(1−w)ȲJ + c in
estimating θJ , for every c 6= 0, are inadmissible. Also, the convex linear combina-
tion estimators of the form δφ(X,Y) = (1− α)UJ + α

(
wX̄(2) + (1− w)YJ

)
=

UJ − αwK for 1
2 < α 6 1 are inadmissible and are dominated by

δ∗2ψ(X,Y) = wX̄J + (1− w)YJ −
ασ2∗∗ + γ2

σ2∗∗ + 2γ2
w(X̄(1) − X̄(2)).

REMARK 4.1. Following the results of Lehmann [9], under the general loss
function L

(
γ(θ), δ(X)

)
, an estimator δ(X) is a risk unbiased estimator of γ(θ) if

it satisfies

(4.1) Eθ
[
L
(
γ(θ), δ(X)

)]
¬ Eθ

[
L
(
γ′(θ), δ(X)

)]
, ∀γ(θ) 6= γ′(θ).

Under the SEL function, the above condition of the risk unbiasedness reduces to
the usual condition of unbiasedness, i.e., E

(
δ(X)

)
= γ(θ), and if an estimator

δ(X) is not unbiased, then its bias is given by Bias
(
δ(X)

)
= E

(
δ(X)

)
− γ(θ).

So, the risk unbiased condition and the bias of an estimator depend on the loss
function that we use. Under the RNL function, the risk unbiased condition (4.1)
reduces to

E

(
1

γ2
(
δ(X)− γ(θ)

)
e
− 1

2γ2
(δ(X)−γ(θ))2

)
= 0.

Therefore, we can define the risk bias of an estimator δ(X) of γ(θ) under the RNL
function as

(4.2) Risk Bias
(
δ(X)

)
= E

(
1

γ2
(
δ(X)− γ(θ)

)
e
− 1

2γ2
(δ(X)−γ(θ))2

)
.
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In what follows, we use (4.2) to compute the risk bias of the given estimators in a
simulation study.

5. SIMULATION STUDY

In this section, we perform a simulation study to compare the single-stage
design and two-stage adaptive design estimators under the RNL function. First,
we generate random samples of size N = 1000 from Π1 ∼ N(θ1, σ

2) and Π2 ∼
N(θ2, σ

2) with different values of θ1, θ2 and σ = 1. These random samples per-
form our populations. Now, we extract the samples of size n1 = 10, 20, 30 from
both populations and after selecting the target population based on the natural rule,
we generate the second stage samples with size n2 = 5, 10, 15, 20, 25, 30, 50, re-
spectively. Then, we compute the estimators δ1, δw∗ , δw∗ + ci and δ∗ci given by
equations (1.4) and (3.7) with w = 1, w∗ = n1

n1+n2
and ci = −1,−2. Also, we ob-

tain the risk functions and risk bias of each of the estimators. To this end, we repeat
the simulation study B = 104 times and calculate estimated risk function (ERF)
and estimated absolute risk bias (EARB). Hence, the simulation study proceeds as
follows:

1. For given θ1 and θ2, generate samples of size 1000 from two normal distri-
butions Π1 ∼ N(θ1, σ

2) and Π2 ∼ N(θ2, σ
2) with σ = 1.

2. Use simulation data as two populations, extract first stage design samples
of size n1 = 10, 20, 30 from the two simulated populations.

3. Select the target population based on the natural rule.
4. Extract the second stage design samples from the selected population with

sizes n2 = 5, 10, 15, 20, 25, 30, 50, respectively.
5. Calculate the estimators for each sample as follows:

δw∗(X,Y) + ci = w∗X̄M + (1− w∗)ȲM + ci with w∗ =
n1

n1 + n2
,

ci = 0,−1,−2,
δ1 = X̄M ,

δ∗ci(X,Y)

=


γ2w∗(X̄(1) − X̄(2)) + (σ2∗∗ + 2γ2)[w∗X̄M + (1− w∗)ȲM ] + σ2∗∗ci

σ2∗∗ + 2γ2
,

2ci/w
∗ < K < w∗σ21ci/(σ

2
∗ + γ2),

w∗X̄M + (1− w∗)ȲM + ci, otherwise,

ci = −1,−2,

where δw∗ and δ1 are minimax estimators for two-stage adaptive design and single-
stage design, respectively. Also, δ∗ci dominates the estimator δw∗ + ci, i = −1,−2.
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Table 1. Comparing the ERF values of six
estimators based on risk criterion for various sample sizes.

θ1 θ2 n1 n2 δw∗ δ1 δw∗ + c1 δ∗c1 δw∗ + c2 δ∗c2
1 1 10 5 0.061789 0.088678 0.535562 0.196823 0.963455 0.531310
1 1 10 10 0.047421 0.088678 0.560004 0.172692 0.968916 0.467156
1 1 10 20 0.032371 0.088678 0.585421 0.136117 0.974042 0.370222
1 1 20 15 0.027938 0.047421 0.577690 0.138094 0.973812 0.391318
1 1 20 20 0.024574 0.047421 0.585208 0.133402 0.975057 0.364663
1 1 20 30 0.019804 0.047421 0.595830 0.108028 0.976764 0.297527
1 1 30 25 0.018052 0.032371 0.592243 0.110224 0.976611 0.309773
1 1 30 30 0.016585 0.032371 0.596116 0.105392 0.977181 0.298215
1 1 30 50 0.012516 0.032371 0.606827 0.091998 0.978724 0.258031
1 1.5 10 5 0.061789 0.088678 0.574250 0.194251 0.968231 0.384570
1 1.5 10 10 0.047421 0.088678 0.589290 0.164323 0.972369 0.327517
1 1.5 10 20 0.032371 0.088678 0.605170 0.122109 0.976235 0.253373
1 1.5 20 15 0.027938 0.047421 0.614660 0.093410 0.977787 0.174036
1 1.5 20 20 0.024574 0.047421 0.617633 0.085080 0.978498 0.158711
1 1.5 20 30 0.019804 0.047421 0.621862 0.071445 0.979471 0.131170
1 1.5 30 25 0.018052 0.032371 0.626703 0.060006 0.980154 0.102239
1 1.5 30 30 0.016585 0.032371 0.627738 0.054803 0.980412 0.092460
1 1.5 30 50 0.012516 0.032371 0.630619 0.038917 0.981110 0.064389
2 2 10 5 0.061789 0.088678 0.535562 0.201389 0.963455 0.529849
2 2 10 10 0.047421 0.088678 0.560004 0.177540 0.968916 0.460828
2 2 10 20 0.032371 0.088678 0.585421 0.137408 0.974042 0.368269
2 2 20 15 0.027938 0.047421 0.577690 0.140998 0.973812 0.383682
2 2 20 20 0.024574 0.047421 0.585208 0.129592 0.975057 0.361516
2 2 20 30 0.019804 0.047421 0.595830 0.112403 0.976764 0.306811
2 2 30 25 0.018052 0.032371 0.592243 0.112654 0.976611 0.312770
2 2 30 30 0.016585 0.032371 0.596116 0.108950 0.977181 0.303307
2 2 30 50 0.012516 0.032371 0.606827 0.087081 0.978724 0.252532

6. Repeat steps 2–5 B = 104 times and calculate the ERF for the estimator
δ∗ci and the EARB for all estimators using the following formulas:

(5.1) ERF = 1− 1

B

B∑
j=1

exp

{
− 1

2γ2
(δ∗cij − θMj)

2

}
, ci = −1,−2,

and

(5.2) EARB =

∣∣∣∣ 1B B∑
j=1

1

2γ2
(
θMj − δij(X)

)
exp

{
− 1

2γ2
(
δij(X)− θMj

)2}∣∣∣∣,
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Table 2. Comparing the EARB values of six
estimators based on bias criterion for various sample sizes.

θ1 θ2 n1 n2 δw∗ δ1 δw∗ + c1 δ∗c1 δw∗ + c2 δ∗c2
1 1 10 5 0.413255 0.494090 1.433547 0.667959 1.589200 0.979130
1 1 10 10 0.358716 0.493579 1.475134 0.613976 1.574761 0.899926
1 1 10 20 0.295000 0.498752 1.515712 0.508211 1.561321 0.743122
1 1 20 15 0.276628 0.354496 1.507808 0.485661 1.573722 0.723913
1 1 20 20 0.257343 0.354431 1.519773 0.475893 1.568291 0.699477
1 1 20 30 0.234520 0.355996 1.535222 0.423848 1.560434 0.625873
1 1 30 25 0.220655 0.291898 1.531875 0.404382 1.566411 0.611060
1 1 30 30 0.213657 0.293332 1.538151 0.397901 1.562465 0.587147
1 1 30 50 0.184186 0.290410 1.552017 0.342953 1.555939 0.500714
1 1.5 10 5 0.419563 0.463139 1.532304 0.703126 1.502633 0.859409
1 1.5 10 10 0.382777 0.456600 1.558487 0.627024 1.494537 0.767959
1 1.5 10 20 0.346661 0.456814 1.577257 0.522287 1.489110 0.630165
1 1.5 20 15 0.292322 0.346024 1.568906 0.472641 1.514996 0.561620
1 1.5 20 20 0.272604 0.337797 1.576621 0.433768 1.513447 0.518214
1 1.5 20 30 0.255212 0.338920 1.579887 0.376633 1.514045 0.451835
1 1.5 30 25 0.228282 0.289210 1.578572 0.373008 1.522808 0.429289
1 1.5 30 30 0.220823 0.291189 1.580433 0.352887 1.522543 0.409618
1 1.5 30 50 0.196583 0.288408 1.587759 0.292716 1.520354 0.337340
2 2 10 5 0.413062 0.494795 1.435572 0.673213 1.587199 0.988057
2 2 10 10 0.353869 0.492938 1.475768 0.601488 1.575913 0.892714
2 2 10 20 0.294858 0.490587 1.514789 0.510108 1.562187 0.744208
2 2 20 15 0.273427 0.356736 1.509711 0.490984 1.572569 0.735596
2 2 20 20 0.256350 0.353724 1.520379 0.464389 1.567883 0.699847
2 2 20 30 0.230922 0.355148 1.536339 0.425382 1.560226 0.630015
2 2 30 25 0.221259 0.289700 1.532983 0.407758 1.565483 0.619481
2 2 30 30 0.212659 0.291047 1.538442 0.400312 1.562463 0.587090
2 2 30 50 0.183952 0.291401 1.552295 0.339430 1.555760 0.507172

where γ = 0.7 and δij is one of the estimators δ1, δw∗ , δw∗ + ci and δ∗ci in the j-th
iteration of sampling. Also, we use equation (2.2) for calculating the risk function
of the other estimators.

7. Repeat steps 1–6 for different values of θ1 = 1, 2 and θ2 = 1, 1.5, 2.

Tables 1 and 2 show the ERF and EARB values of the given estimators. From
these tables we observe that the minimax estimator δw∗ is superior to the other
estimators in terms of ERF and EARB. Also, for fixed n1, n2, θ1 and θ2, the es-
timators δw∗ , δ1, δ∗c1 , δ

∗
c2 , δw∗ + c1 and δw∗ + c2 have increasing order in terms of

ERF, respectively. This shows that δ∗c1 (δ∗c2) dominates δw∗ + c1 (δw∗ + c2) (see
Remark 3.1). Furthermore, for fixed n1, n2, θ1 and θ2, the estimators δw∗ , δ1, δ∗c1
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and δ∗c2 have increasing order in terms of EARB, respectively, and the EARB val-
ues of these estimators are less than those of the estimators δw∗ + c1 and δw∗ + c2.
From Table 1 we observe that the ERF values of δw∗ and δ1 do not depend on
µ = max(θ1, θ2)−min(θ1, θ2) (see (2.2)), while the ERF values of δw∗ + c1 and
δw∗ + c2 are a nondecreasing function of µ.

To observe the behavior of the ERF and EARB of δw∗ + c with respect to c
(−2 < c < 0), the ERF and EARB of this estimator are plotted in Figure 1 for
n1 = 20, n2 = 30, γ = 0.7, θ1 = 1 and θ2 = 1.5. From this figure we observe that
the ERF of δw∗ + c is a decreasing function of c (see Table 1) and the EARB first
increases and then decreases.
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Figure 1. Graph of (a) the ERF, and (b) the EARB of δw∗ + c
for −2 < c < 0 and n1 = 20, n2 = 30, γ = 0.7, θ1 = 1, θ2 = 1.5.

6. APPLICATION

In this section, we compare the performance of the estimators introduced in
Section 3 by using a real data. The data is the average weight loss in a finite pop-
ulation consisting of the measurements on the weight loss of 579 participants that
were enrolled in a special diet program in a clinical study in Isfahan city of Iran in
2006. This data includes 100 men and 479 women. The weight loss is the differ-
ence of the weight of each person before starting the program and after finishing it.

From the Kolmogorov–Smirnov test with a p-value of 0.731 for women and
0.980 for men we conclude that the underlying populations of men and women are
approximately normal. The assumption of the equality of the population variances
is also accepted with p-value 0.459 by Levene’s test. So, the data can be considered
to be a realization of two normal populations Π1 ∼ N(θ1, σ

2) and Π2 ∼ N(θ2, σ
2)

with (θ̂1, θ̂2) = (3.840949, 3.736119) and pooled sample variance σ̂2 = (2.5)2.
To estimate the largest average weight loss of two groups (women and men),

we extract a sample of size n1 = 20 from each population (group), and then we
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choose a sample of size n2 = 30 from the selected population, i.e., select a popu-
lation of women when x̄1 > x̄2 and a population of men when x̄1 ¬ x̄2. Then we
compute the estimators δw∗ , δ1, δ∗c1 , δ

∗
c2 , δw∗ + c1 and δw∗ + c2 for c1 = −1 and

c2 = −2 using (1.4) and (3.7), respectively.
Table 3 summarizes some statistics with the values of the desired estimators

based on this sample, where θM = 3.840949, X̄1 = 3.841797, X̄2 = 3.734493,
n1 = 20 and n2 = 30. This table shows that the two-stage adaptive estimates
δw∗ , δ

∗
c1 and δ∗c2 are near the true value of the parameter of the selected popula-

tion, i.e., θM = 3.840949.

Table 3. The single-stage and two-stage adaptive estimates
of the average weight loss of the selected population.

δw∗ δ1 δw∗ + c1 δ∗c1 δw∗ + c2 δ∗c2
3.911687 4.096379 2.911687 3.697551 1.911687 3.482655

To compare the performance of the above estimators, we approximate the risk
and bias of the average weight loss of the selected population (women and men).
To this end, we perform a simulation study by considering the weight loss data as
two populations, and extracting samples of size n1 and n2 in the first and second
stage of sampling, respectively, to compute estimators, risk and risk biases. We
repeat this process 10,000 times and calculate the ERF and EARB given in (5.1)
and (5.2), respectively, as a comparative tool. To do this, we use the same steps as
in Section 5. The results are shown in Tables 4 and 5 where we observe that δw∗
has the smallest ERF and EARB among the six estimators for any sample sizes.

Table 4. Comparison of six estimators of the average weight loss
of the selected population based on ERF for various sample sizes.

θ1 = 3.7361 θ2 = 3.8409

n1 n2 δw∗ δ1 δw∗ + c1 δ∗c1 δw∗ + c2 δ∗c2
10 5 0.061789 0.088678 0.617866 0.251964 0.974180 0.376701
10 10 0.047421 0.088678 0.622622 0.222797 0.976536 0.341151
10 20 0.032371 0.088678 0.627799 0.176549 0.978817 0.266394
20 15 0.027938 0.047421 0.629360 0.149190 0.979454 0.246953
20 20 0.024574 0.047421 0.630555 0.142737 0.979927 0.233309
20 30 0.019804 0.047421 0.632266 0.121474 0.980582 0.201216
30 25 0.018052 0.032371 0.632898 0.114283 0.980819 0.199039
30 30 0.016585 0.032371 0.633430 0.106066 0.981015 0.186342
30 50 0.012516 0.032371 0.634913 0.085770 0.981550 0.149221
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Table 5. Comparison of six estimators of the average weight loss
of the selected population based on EARB for various sample sizes.

θ1 = 3.7361 θ2 = 3.8409

n1 n2 δw∗ δ1 δw∗ + c1 δ∗c1 δw∗ + c2 δ∗c2
10 5 0.854266 0.963364 1.191024 0.840585 1.495613 0.934086
10 10 0.774918 0.967146 1.254727 0.783478 1.505901 0.878510
10 20 0.650059 0.976764 1.353079 0.690716 1.518354 0.761512
20 15 0.596827 0.742356 1.357151 0.623927 1.550353 0.703493
20 20 0.564510 0.735805 1.394115 0.607414 1.539330 0.680883
20 30 0.506045 0.743844 1.439519 0.554637 1.536949 0.624928
30 25 0.481787 0.610765 1.439034 0.527669 1.548947 0.599254
30 30 0.457220 0.611865 1.457546 0.504251 1.547747 0.573381
30 50 0.386973 0.615708 1.502443 0.443104 1.539037 0.498359

7. DISCUSSION

In this paper, we have studied the estimation of the parameters θM and θJ
in k = 2 selected normal populations with two-stage adaptive design under the
RNL function. In particular, we investigate the minimax estimators of θM and θJ
in two-stage adaptive design under the RNL function. We also obtain some suffi-
cient conditions for the inadmissibility of estimators of the location parameters θM
and θJ . Finally, we compared the performance of our proposed estimators using a
simulation study as well as a real data set consisting of the weight loss measure-
ments of two populations in a clinical study in Iran. We showed that the minimax
estimator for two-stage adaptive design is better than the other estimators based on
estimated risk and estimated risk bias, and also dominates the minimax estimator
of the single-stage design.

The results of this paper are obtained for k = 2 populations. Based on the
complexity of obtaining the pdf of S = wX̄M + (1 − w)ȲM − θM (i.e., fS(s))
and the pdf fS|K (s |k ), the extension of the results to the case k > 2 is very com-
plicated, and further research is needed for this extension.

8. APPENDIX

P r o o f o f L e m m a 2.1. (i) For a proof, we use Lemma 2.1 in Naghizadeh
Qomi et al. [15]. Let θ1 < θ2; then µ = θ2 − θ1. The cumulative distribution func-
tion of S = wX̄M + (1− w)ȲM − θM is

F (s) = P (S 6 s) = P
(
wX̄M + (1− w)ȲM − θM 6 s

)
= P

(
X̄1 < X̄2, wX̄2 + (1− w)Ȳ2 − θ2 6 s

)
+ P

(
X̄1 > X̄2, wX̄1 + (1− w)Ȳ1 − θ1 6 s

)
= P (B1 − wµ < Z2 6 s) + P (B2 + wµ < Z1 6 s),
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where (Z1, Z2, B1, B2)
T is defined by

Z1

Z2

B1

B2

 =


w 0 1− w 0
0 w 0 1− w
w 0 0 1− w
0 w 1− w 0



X̄1 − θ1
X̄2 − θ2
Ȳ1 − θ1
Ȳ2 − θ2

.
Therefore, (Z1, Z2, B1, B2)

T has the multivariate normal distribution
Z1

Z2

B1

B2

 ∼ N4




0
0
0
0

 ,


σ2∗ 0 w2σ21 ρσ2∗
0 σ2∗ ρσ2∗ w2σ21

w2σ21 ρσ2∗ σ2∗ 0
ρσ2∗ w2σ21 0 σ2∗


,

where σ21 = σ2

n1
. So,

F (s) =
s∫
−∞

Z2+wµ∫
−∞

1

2πσ2
∗
√
1− ρ2

exp

{
− 1

2σ2
∗(1− ρ2)

(B2
1 + Z2

2 − 2ρZ2B1)

}
dB1dZ2

+
s∫
−∞

Z1−wµ∫
−∞

1

2πσ2
∗
√
1− ρ2

exp

{
− 1

2σ2
∗(1− ρ2)

(B2
2 + Z2

1 − 2ρZ1B2)

}
dB2dZ1

=
s/σ∗∫
−∞

φ (z)Φ

(
1− ρ√
1− ρ2

z +
wµ

σ∗
√

1− ρ2

)
dz

+
s/σ∗∫
−∞

φ (z)Φ

(
1− ρ√
1− ρ2

z − wµ

σ∗
√
1− ρ2

)
dz.

Now, if we differentiate both sides with respect to s, we get the probability density
function of S.

(ii) Using the probability density function fS(s) (equation (2.1)), we have

R (θM , δc) = 1− E
[
exp

{
− 1

2γ2
(
wX̄M + (1− w)ȲM + c− θM

)2}]
= 1− E

[
exp

{
− 1

2γ2
(s+ c)2

}]
= 1− [I1 (c, µ) + I1 (c,−µ)] ,

where

I1 (c, µ) =
∞∫
−∞

exp

{
−(s+ c)2

2γ2

}
Φ

(
(1− p)s+ wµ

σ∗
√

1− p2

)
1

σ∗
φ

(
s

σ∗

)
ds

=
1

σ∗
exp

{
−c2

2(γ2 + σ2
∗)

} ∞∫
−∞

Φ

(
(1− ρ) s+ wµ

σ∗
√

1− ρ2

)
φ

(√
γ2 + σ2

∗
γσ∗

(
s+

cσ2
∗

γ2 + σ2
∗

))
ds.

Let

t =

√
γ2 + σ2∗
γσ∗

(
s+

cσ2∗
γ2 + σ2∗

)
.
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Then, using the fact that

∞∫
−∞

Φ

(
y + a√

b

)
φ(y)dy = Φ

(
a√
1 + b

)
,

we have

I1 (c, µ) = Iw(c
2)Φ


wµ
√
γ2+σ2

∗
γσ∗(1−ρ) −

cσ∗
γ
√
γ2+σ2

∗√
2γ2+σ2

∗(1+ρ)
γ2(1−ρ)

 = Iw(c
2)Φ (wdµ− ec).

So, R(θM , δc) = 1− Iw(c2){Φ(wdµ− ec) + Φ(−wdµ− ec)}, which completes
the proof.

(iii) Since Φ(wdµ− ec) +Φ(−wdµ− ec) and Iw(c2) are positive and strictly
decreasing functions of c (> 0), R(θM , δc) is also a strictly increasing function of
c (> 0). �

P r o o f o f L e m m a 3.1. To prove part (i) of Lemma 3.1, first note that the
pdf of K is given by (see Lemma 3.1 of [12])

fK(k) =
1√
2σ1

[
φ

(
k + µ√
2σ1

)
+ φ

(
k − µ√
2σ1

)]
.

Now we obtain the conditional cumulative distribution function of S given K = k
as follows:

FS|K (s |k ) = P (S ¬ s |K = k ) =
1

fK(k)
lim
h↓0

N(h)

h
,

where

N(h) = P (S ¬ s, k − h < K ¬ k)
= P

(
wX̄2 + (1− w)Ȳ2 − θ2 ¬ s, k − h < X̄1 − X̄2 ¬ k, X̄1 < X̄2

)
+ P

(
wX̄1 + (1− w)Ȳ1 − θ1 ¬ s, k − h < X̄2 − X̄1 ¬ k, X̄2 < X̄1

)
= P (Z2 ¬ s, k − h+D2 + µ < D1 < k +D2 + µ)

+ P (Z1 ¬ s, k − h+D1 − µ < D2 < k +D1 − µ)
= ξ1k(µ) + ξ1k(−µ),

withDi = X̄i− θi. The joint probability density function ofZ2, D1, D2 is given byZ2

D1

D2

 ∼ N3

00
0

 ,
 σ2∗ 0 wσ21

0 σ21 0
wσ21 0 σ21

.
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Using definitions of S and K, we can obtain ξ1k(µ) as follows:

ξ1k(µ) =
s∫
−∞

+∞∫
−∞

k+D2+µ∫
k−h+D2+µ

f(Z2 |D1, D2 )f(D1)f(D2)dD1dD2dZ2

=
s∫
−∞

+∞∫
−∞

k+D2+µ∫
k−h+D2+µ

1

σz
φ

(
Z2 − wD2

σz

)
1

σ21
φ

(
D1

σ1

)
φ

(
D2

σ1

)
dD1dD2dZ2

=
s∫
−∞

+∞∫
−∞

1

σz
φ

(
Z2 − wD2

σz

)
1

σ1
φ

(
D2

σ1

)
×
[
Φ

(
k +D2 + µ

σ1

)
− Φ

(
k − h+D2 + µ

σ1

)]
dD2dZ2,

where σ2z =
(1−w)2
n2

σ2. Now, the limit of N(h)
h can be obtained after some algebraic

simplification as follows:

lim
h→0

N(h)

h
=

s∫
−∞

1

σ1σ∗∗
φ

(
k + µ√
2σ1

)
φ

(√
2

σ∗∗

(
z2 + w

k + µ

2

))
dz2

+
s∫
−∞

1

σ1σ∗∗
φ

(
k − µ√
2σ1

)
φ

(√
2

σ∗∗

(
z1 + w

k − µ
2

))
dz1.

By differentiating both sides with respect to s and dividing them by the pdf of
fK(k), the results will follow. �
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