
PROBABILITY
AND

MATHEMATICAL STATISTICS

Vol. 39, Fasc. 2 (2019), pp. 403–422
doi:10.19195/0208-4147.39.2.9

STATIONARITY AS A PATH PROPERTY
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Abstract. Traditionally, stationarity refers to shift invariance of the dis-
tribution of a stochastic process. In this paper, we rediscover stationarity as a
path property instead of a distributional property. More precisely, we char-
acterize a set of paths, denoted by A, which corresponds to the notion of
stationarity. On one hand, the set A is shown to be large enough, so that
for any stationary process, almost all of its paths are in A. On the other
hand, we prove that any path in A will behave in the optimal way under any
stationarity test satisfying some mild conditions.
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1. INTRODUCTION

Stationarity is an important notion in probability and statistics. Let us as-
sume that X = {Xn}n∈N0 is a discrete-time stochastic process, where N0 stands
for the set of all non-negative integers. X is called (strictly) stationary if all its
finite-dimensional distributions are invariant under translation, in other words, if
(Xn1 , . . . , Xnk

)
d
= (Xn1+m, . . . , Xnk+m) for all k,m ∈ N and n1, . . . , nk ∈ N0.

This definition shows that stationarity is, by its very nature, a distributional prop-
erty of a stochastic process.

In this paper, we make an attempt to understand stationarity from a more path-
oriented perspective. The motivation for and background of this effort come from
time series analysis, where several stationarity tests for time series exist. These
tests are different from their counterparts for stochastic processes in general, where
a number of independent or correlated paths are often available. For time series,
typically only one path is available, and all of the conclusions about the time series
must be drawn based on the information extracted from this single path. Thus,
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in some sense, stationarity tests for time series naturally transform stationarity
from a distributional property into a path property, with each particular station-
ary test dividing the path space into a “stationary/acceptance region” and a “non-
stationary/rejection region”.

Logically, a stationarity test for time series should capture some “essential”
properties satisfied by “typical” (e.g., almost all) paths of stationary processes, and
it should be used to verify whether the given path has this property. Equivalently,
the test can also be used to verify the existence of some traits which should be es-
sentially absent in a stationary process, and utilize this result as a basis to reject the
null hypothesis of stationarity. The critical question is, what properties are deemed
to be “essential” in distinguishing between stationarity and non-stationarity, and
whether we will obtain the same result for a given path when different properties
are used for evaluation?

In principle, any property which is satisfied by all of the stationary processes
with a higher probability than the non-stationary processes, or the opposite, should
work. There are so many of them, so that it seems to be hopeless to come up
with a clear idea about how such a property should look like. On the other hand,
interestingly, it seems that we have a relatively clear notion about which paths
are “stationary”, or more precisely, which are not. Let us consider the following
examples:

Let X = {Xn}n∈N0 be a time series, and H be the path space RN0 equipped
with the cylindrical σ-field.

EXAMPLE 1.1. If x = {xn}n∈N0 is strictly increasing, then the correspond-
ing time series should not be stationary, since P (X is strictly incresing) = 0 for
any stationary time series X.

EXAMPLE 1.2. If there exists k such that xk > supi∈N0,i 6=k xi, then the time
series should not be stationary. Intuitively, with probability one, a stationary time
series does not have a peak which is never attainable again.

Given the above examples, it might be tempting to argue that since each path
is special in a certain sense, it will be rejected for stationarity by some tests. In
other words, the abundance of the criteria which can be used for stationarity will
result in an empty intersection for their acceptance regions in the path space. If this
is the case, then stationarity should not be considered as a path property, because
it means that the result of a stationarity test for a given path solely depends on the
properties upon which the test is constructed. This, however, turns out not to be the
case. In fact, there exist paths which should not be excluded from stationarity in
any case, as shown by the following examples.

EXAMPLE 1.3. Let x=(c, c, . . .) be a sequence of constants c∈R. Then one
should not conclude that x is not stationary. Actually, if a stationarity test rejects
such a path, then for this constant stationary process, its type I error will be one.
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EXAMPLE 1.4. Let x = (x0, x1, . . .), where xn = sin(nθ + φ0), n ∈ N0.
This is a wave with period 2π/θ and phase φ0, observed at integer times. No-
tice that if we make φ0 to be random and uniformly distributed on [0, 2π), then
x becomes a stationary process. Therefore, if we consider that all of the phases
are equal in determining whether the path x is stationary, which seems to be an ir-
refutable argument, then such x should not be rejected for stationarity when tested.
This example extends to all of the periodic functions observed at integers.

The examples above show how a strong, intuitive distinction between station-
ary and non-stationary paths exists in our mind, which enables us to tell the non-
stationary paths from the stationary ones even before we venture into finding an
appropriate set of criteria to discriminate them. Thus, such an intuitive distinction
should be built upon some principles more fundamentally than the numerous spe-
cific path properties such as monotonicity, the number of peaks, etc.

The goal of our paper is to flash out these principles. In particular, we point out
that there are three conditions which determine if a given path should be classified
as “stationary”. Roughly speaking, the first condition requires that for any event of
a certain type, if it happens once, it must happen infinitely many times along the
path, with a positive limiting frequency; the second condition is a tightness condi-
tion which prevents any non-negligible part of the path from escaping to infinity;
and the third condition is more of a technical nature, and is related to ergodicity.

The three conditions mentioned above identify a set of paths, denoted by A.
We show that this is exactly the set of all of the paths which should be classified
as “stationary”. We firstly prove that the set A is large enough, such that it con-
tains almost all of the paths of any stationary process; then we show that the set
A is also small enough, such that it only includes those paths which yield the best
possible results under any given stationarity test. Thus, this justifies the idea that
the notion of stationarity can be transformed profitably into a path property, and
that the path space can be divided into an “essentially stationary” part and its com-
plement. These results also show how the three proposed conditions can usefully
serve as a basis for our intuition about the distinction between stationarity and non-
stationarity, and provide a unified framework to understand and assess the existing
stationarity tests.

We would like to emphasize that the results obtained in this paper should be
understood in a statistical context, with time series tests serving as the background.
They are not intended to replace the current definition of stationarity as a distri-
butional property. Rather, based on this definition and existing probabilistic and
ergodic theoretical results, the results in this paper are intended to offer a new per-
spective, which helps to clarify what is indeed being tested in the time series tests
for stationarity, and to show that there is a limited number of ways in which these
tests can behave.

The rest of the paper is organized as follows. In Section 2 we introduce the
basic set-up and construct the set A of all the “stationary” paths. Section 3 shows
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that the set A is large enough to contain almost all of the paths for any stationary
process. A practical criterion to check one of the conditions that defines A is also
established. Finally, in Section 4 we prove that A is also small enough, so that
any path in A will be statistically indistinguishable with a typical path of a certain
stationary process, in the sense that it will behave optimally under any stationarity
test satisfying some mild conditions.

2. BASIC SET-UP

Let x = {xn}n∈N0 be a numerical sequence in R. For k ∈ N, consider I =
I0 × . . .× Ik−1 ∈ Ik, where I is the collection of open intervals on the real line.
Define a set SI

k = SI
k(x) of non-negative integers by

SI
k(x) := {n ­ 0 : xn ∈ I0, . . . , xn+k−1 ∈ Ik−1}.

Denote by N I
k = {N I

k(n)}n∈N the counting function of SI
k. That is,

N I
k(n) = |SI

k ∩ [0, n− 1]|,

where | · | for a set gives the number of elements in the set. Note that for both SI
k

and N I
k , k is determined by I, hence the only independent parameter would be I.

Here we also include k in the notation to indicate the dimension.
We say that Property E holds for x, with parameters k and I, if the corre-

sponding N I
k is such that either N I

k(∞) = 0 or limn→∞
NI

k(n)
n > 0.

Define the density in N0 of a set S ⊆ N0 as limn→∞
|S∩[0,n−1]|

n if the limit
exists. Then Property E says that SI

k is either empty or of a positive density in N0.
Let A0 be the set of all of the numerical sequences such that Property E holds

for all k ∈ N and I ∈ Ik.
We further add a tightness condition, called Property T:

lim
K→∞

lim
n→∞

1

n

n−1∑
i=0

1[0,K)(|xi|) = lim
K→∞

lim
n→∞

N
(−K,K)
1 (n)

n
= 1.

Intuitively, Property T prevents the “main part” of the sequence from escaping
to infinity. Let A1 be the subset of A0 consisting of all of the sequences in A0

which have Property T.
Denote by F 1

n , n ∈ N, the marginal empirical measures of a sequence x ∈ A1,
determined by

F 1
n(I) =

N I
1 (n)

n
, I ∈ I.

The fact that x ∈ A0 implies that limn→∞ F 1
n(I) always exists, Property T then

guarantees that the sequence of measures {F 1
n}n∈N is tight, and so limn→∞ F 1

n(I)
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generates a probability measure. More generally, for any k ∈ N, the k-dimensional
empirical measure F k

n is defined by

F k
n (I) =

N I
k(n)

n
, I ∈ Ik.

It is easy to see that Property T also assures the tightness of any finite-dimensional
empirical measures, and thus limn→∞ F k

n (I) generates a probability measure
on Rk.

Together, the family of limiting probability measures {limn→∞ F k
n}k∈N satis-

fies the consistency condition, and thus by Kolmogorov’s existence theorem, there
exists a stationary process Y = {Yn}n∈N0 such that any finite-dimensional distri-
bution of Y , FY0,...,Yk−1

, is given by

FY0,...,Yk−1
= lim

n→∞
F k
n .

The process Y=Yx is unique in distribution since all of its finite-dimensional dis-
tributions are completely determined by the empirical measures of the sequence x.
We call Yx the stationary process induced by the numerical sequence x ∈ A1.

Define the set
A := {x ∈ A1 : Y

x is ergodic}.

Also, notice that to make Yx well-defined, we only need a weaker version of
Property E, where limn→∞

NI
k(n)
n exists for any k ∈ N and I ∈ Ik, but N I

k(∞) > 0

does not necessarily imply limn→∞
NI

k(n)
n > 0.

3. COVERAGE BY A OF PATHS FROM STATIONARY PROCESSES

The following theorem shows that the set A is large enough, so that every
discrete-time stationary process puts mass one on A.

THEOREM 3.1. Let X = {Xn}n=0,1,... be a stationary process. Then we have
P (X ∈ A) = 1.

P r o o f. Firstly, by ergodic decomposition, it suffices to prove the result for
the case where X is ergodic. Moreover, for the ergodic process X, once we prove
that P (X ∈ A0) = 1, it follows immediately that P (X ∈ A) = 1 as well, since
Property T and the ergodicity of the path are guaranteed by the pointwise ergodic
theorem. Thus, it suffices to prove that P (X ∈ A0) = 1.

The fact that Property E holds for any fixed k and any single I almost surely is
a trivial consequence of the pointwise ergodic theorem. As a result, Property E also
holds for any countable set of (k, I) almost surely. What is in question is whether
this implies that Property E is satisfied for all (k, I). In the rest of the proof, for
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ease of notation, we will focus on the case where k = 1, and prove that Property E
holds for all I ∈ I almost surely. The cases for k > 1 follow in a similar way.

Let F1 be the marginal distribution of Xk for any k = 0, 1, . . . Denote by D1

the set of atoms of F1,

D1 =
{
a ∈ R : F1({a}) > 0

}
,

and put D = D1 ∪Q∪ {−∞,∞}; then both D1 and D are at most countable sets.
Hence the set

A2 := {x ∈ RN0 : Property E holds for k = 1 and any I = (a, b), a, b ∈ D}

satisfies P (X∈A2)=1. Thus, from now on we can assume that the paths are in A2.
For any open interval (a, b), there exists an increasing sequence of open inter-

vals {(ai, bi)}i=1,2,... such that ai, bi ∈ D for i = 1, 2, . . ., and (a, b) =
⋃

i(ai, bi)
= limi→∞(ai, bi). Let the corresponding sets be S and Si, and the correspond-
ing counting functions be N(n) and Ni(n). By construction, S = limi→∞ Si, and
N(n) = limi→∞Ni(n) for n ∈ N. Suppose N(∞) > 0 but limn→∞

N(n)
n = 0 for

some path in A2; then limn→∞
Ni(n)

n = 0 for any i, and Ni(∞) > 0 for i large
enough, which contradicts the construction of A2. Therefore, the only possibility
that a path x is in A2 \A is that the corresponding ratio N(n)

n does not admit a limit
as n→∞.

By the pointwise ergodic theorem, for any fixed open interval I , we have

n−1∑
i=0

1{xi∈I}

n
→ E(1{X0∈I}) = P (X0 ∈ I)

almost surely. Thus, if we define the set

B :=
{
x :

n−1∑
i=0

1{xi∈I}/n→ P (X0 ∈ I) for all I = (a, b), a, b ∈ D
}
,

then P (B) = P (A2 ∩ B) = 1. As a result, we can almost surely assume that x ∈
A2 ∩B.

Suppose that for such an x and for an open interval I = (a, b), a, b ∈ R, the
corresponding ratio N(n)

n does not admit a limit as n→∞. Without loss of gen-
erality, assume that a ∈ D and b /∈ D. The cases where a /∈ D, b ∈ D and a /∈ D,
b /∈ D are similar. The non-existence of the limit implies that

u := lim sup
n→∞

N(n)

n
6= lim inf

n→∞

N(n)

n
=: d.
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By definition, for any b′ ∈ D ∩ (a, b),

(3.1) lim
n→∞

n−1∑
i=0

1{xi∈(a,b′)}

n
¬ lim inf

n→∞

N(n)

n
= d.

On the other hand, for b′′ ∈ D ∩ (b,∞),

(3.2) lim
n→∞

n−1∑
i=0

1{xi∈(a,b′′]}

n
­ lim sup

n→∞

N(n)

n
= u.

The limit above exists because
n−1∑
i=0

1{xi∈(a,b′′]} =
n−1∑
i=0

1{xi∈(a,∞)} −
n−1∑
i=0

1{xi∈(b′′,∞)}.

Subtracting (3.1) from (3.2), we have

lim
n→∞

n−1∑
i=0

1{xi∈[b′,b′′]}

n
­ u− d > 0

for any b′, b′′ ∈ D and b′ < b < b′′. Recall that since we work with A2 ∩ B, this
also implies that

P (X0 ∈ [b′, b′′]) ­ u− d.

Because D is dense in R, we can take b′ ↑ b and b′′ ↓ b, leading to the result

P (X0 = b) ­ u− d > 0.

However, since b /∈ D, b is not an atom of F1. Thus P (X0 = b) = 0, which is a
contradiction. Hence the assumption is almost surely false and the limit exists with
probability one. �

In reality, checking the ergodicity of Yx for a given x by definition firstly
requires us to fully recover the distribution of Yx from x, then determine whether
the process Yx is ergodic given its distribution. Unfortunately, none of these two
steps is practical enough to implement. However, for a given sequence x, we can
derive an equivalent characterization of the ergodicity, which is directly built upon
the behavior of the sequence rather than the property of the measure it induces.

DEFINITION 3.1. An asymptotically proportional contraction of the index set
N0 is a subset G of N0 consisting of disjoint intervals Gi of consecutive integers,

G =
∞⋃
i=1

Gi,

satisfying:
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1. Gi, i ∈ N, are increasingly ordered, that is, min{n : n ∈ Gi+1} > max{n :
n ∈ Gi}, i ∈ N;

2. |Gi|→∞ as i→∞, where | · | is the number of elements (integers) in a set;
3. |[0,n−1]∩G|n → c > 0 as n→∞.

DEFINITION 3.2. An asymptotically proportional contraction of a numerical
sequence x = {xn}n=0,1,... is a subsequence {xni}ni∈G of {xn}n∈N0 , where G is
an asymptotically proportional contraction of the index set N0.

Intuitively, an asymptotically proportional contraction of a numerical sequence
consists of pieces of the original sequence with length of the pieces going to infin-
ity and the fraction of coverage converging to a fixed positive level.

THEOREM 3.2. Let x be a numerical sequence in A1. Then x ∈ A if and only
if all of its asymptotically proportional contractions induce the same process as
the original sequence. That is, for any asymptotically proportional contraction x′,
k ∈ N and I ∈ Ik,

lim
n→∞

N ′Ik(n)

n
= lim

n→∞

N I
k(n)

n
,

where N ′ is the counting function defined in the same way as previously but for the
subsequence x′.

To prove Theorem 3.2, let us first introduce the following lemma. A similar
result was presented in [5]. However, the proof to be presented below is much
simpler, due to the difference in the framework used in this paper and that used in
[5], and the fact that we only need a one-directional result.

LEMMA 3.1. Let x be a path in A, therefore Yx be ergodic. Let k ∈ N, I =
I0 × . . . × Ik−1 ∈ Ik and SI

k = SI
k(x) be defined as previously. Then for every

ϵ > 0, there is an N such that the set

RI
k,N :=

{
n ∈ N :

∣∣∣∣ 1N n+N−1∑
i=n

1SI
k
(i)− pIk

∣∣∣∣ > ϵ

}
has a density in N0 smaller than ϵ, where the constant pIk equals P (Y x

0 ∈ I0, . . . ,
Y x
k−1 ∈ Ik−1).

P r o o f. Note that the existence of the density in N0 for the sets RI
k,N , that is,

lim
n→∞

n−1∑
m=0

1RI
k,N

(m)

n
,

is guaranteed by Property E. Moreover, by the ergodicity of the path, the density
of a set RI

k,N in N0 is exactly the probability of the corresponding event. In other
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words,

lim
n→∞

n−1∑
m=0

1RI
k,N

(m)

n

= P

(∣∣∣∣ 1N N−1∑
i=0

k−1∏
j=0

1Ij (Y
x
i+j)− pIk

∣∣∣∣ > ϵ

)
= P

(∣∣∣∣ 1N N−1∑
i=0

1{θi◦Y∈AI
k}
− pIk

∣∣∣∣ > ϵ

)
,

where θ is the shift operator, and AI
k is a subset of the path space H defined as

AI
k = {x ∈ H : xi ∈ Ii, i = 0, . . . , k − 1}.

Assume that the result in Lemma 3.1 is not true. Then it follows that there ex-
ists ϵ > 0 such that, for any N ∈ N, either

{
n∈N : 1

N

∑n+N−1
i=n 1SI

k
(i)− pIk>ϵ

}
or

{
n ∈ N : 1

N

∑n+N−1
i=n 1SI

k
(i)− pIk < −ϵ

}
has a density in N0 which is greater

than or equal to ϵ
2 . Without loss of generality, assume that the set{

n ∈ N :
1

N

n+N−1∑
i=n

1SI
k
(i)− pIk > ϵ

}
has a density in N0 greater than or equal to ϵ

2 for infinitely many N ∈ N, which
will be denoted by {Ni}i∈N. By ergodicity of the path x, this implies that

P

(
1

Ni

Ni−1∑
j=0

1{θj◦Y∈AI
k}

> pIk + ϵ

)
­ ϵ

2

for i ∈ N. As a result, the event{
1

N

N−1∑
j=0

1{θj◦Y∈AI
k}

> pIk + ϵ for infinitely many N

}
has a probability greater than or equal to ϵ

2 . This implies that

lim sup
n→∞

1

n

n∑
j=1

1{θj◦Y∈AI
k}
­ pIk + ϵ

happens with a probability greater than or equal to ϵ
2 .

However, since Y is ergodic,

lim
n→∞

1

n

n∑
j=1

1{θj◦Y∈AI
k}

= pIk

almost surely, which is a contradiction. Therefore, we conclude that the assumption
is invalid and the result in Lemma 3.1 holds. �
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P r o o f o f T h e o r e m 3.2. Let x ∈ A. For k ∈ N, I = I0 × . . .× Ik−1 ∈
Ik, define SI

k(x) as previously. Let x′ = {xni}ni∈G be an asymptotically pro-
portional contraction of x, where G =

⋃
iGi is the corresponding asymptotically

proportional contraction of N0. To prove the “only if” direction, our goal is to show
that the set

SI
k(x
′) = {n ­ 0 : x′n ∈ I0, . . . , x

′
n+k−1 ∈ Ik−1}

= {i ­ 0 : xni ∈ I0, . . . , xni+k−1
∈ Ik−1}

has the same density in N0 as SI
k(x). Let c = limn→∞

|[0,n−1]∩G|
n . By Lemma 3.1,

for any ϵ > 0, there exists N such that the set

RI
k,N =

{
n ∈ N0 :

∣∣∣∣ 1N n+N−1∑
j=n

1SI
k(x)

(j)− pIk

∣∣∣∣ > ϵ

}
has a density in N0 smaller than ϵ. Hence, the upper density of RI

k,N in the set G,
defined as

lim sup
n→∞

|RI
k,N ∩ [0, n− 1] ∩G|
|[0, n− 1] ∩G|

,

is smaller than ϵ
c . Similar to RI

k,N , one can define

R′
I
k,N :=

{
ni ∈ G :

∣∣∣∣ 1N i+N−1∑
j=i

1SI
k(x
′)(j)− pIk

∣∣∣∣ > ϵ

}
.

Since the operation of contraction will join different segments of the original
path together, R′Ik,N and RI

k,N will not completely agree in G. However, since
limn→∞ |Gn| =∞, the two sets will have the same upper density in G. Therefore,
the upper density of R′Ik,N in G is also smaller than ϵ

c . It is easy to see that

lim sup
n→∞

1

n

n−1∑
i=0

1SI
k(x
′)(i)

¬ lim sup
n→∞

|R′Ik,N ∩ [0, n− 1] ∩G|
|[0, n− 1] ∩G|

· 1 + 1 · (pIk + ϵ) ¬ pIk + ϵ

(
1 +

1

c

)
.

Since ϵ can be arbitrarily small, we must have

lim sup
n→∞

1

n

n−1∑
i=0

1SI
k(x
′)(i) ¬ pIk.

Symmetrically, lim infn→∞
1
n

∑n−1
i=0 1SI

k(x
′)(i) ­ pIk. Thus

lim
n→∞

1

n

n−1∑
i=0

1SI
k(x
′)(i) = pIk,
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which shows that SI
k(x
′) always has the same density in N0, being also the density

of SI
k(x) in N0.
Conversely, assume that x ∈ A1 but x /∈ A. Thus x induces a stationary pro-

cess Y = Yx, but it is not ergodic. Therefore, there exists p ∈ (0, 1) and stationary
processes Z and W with distinct distributions such that FY = pFZ + (1− p)FW.
In particular, there exists k ∈ N and I = I0 × . . . × Ik−1 ∈ Ik such that z :=
P (Zi ∈ Ii, i = 0, . . . , k − 1) 6= P (Wi ∈ Ii, i = 0, . . . , k − 1) =: w. Without loss
of generality, assume that z > w. Note that since x induces Y, we have

lim
n→∞

|SI
k(x) ∩ [0, n− 1]|

n
= P (Yi ∈ Ii, i = 0, . . . , k − 1) = pz + (1− p)w.

For m ∈ N, define

V0 :=

{
j ∈ N0 :

|SI
k(x) ∩ [j, j +m− 1]|

m
­ (1 + p)z + (1− p)w

2

}
.

Intuitively, V0 is the set of the starting points of the segments of length m
in x for which the local density of the points in SI

k(x) is greater than or equal
to (1+p)z+(1−p)w

2 , being a level between z and pz + (1 − p)w. It is clear by the
construction of A0 that V0 has a density in N0.

Consider the process Z. Similar to x, we now have a random set

SI
k(Z) = {n ­ 0 : Zn+i ∈ Ii, i = 0, . . . , k − 1}.

Then

z = P (Zi ∈ Ii, i = 0, . . . , k − 1) = E
(
1SI

k(Z)
(0)

)
= E

(
1

m

m−1∑
j=0

1SI
k(Z)

(j)

)
¬ P

(
1

m

m−1∑
j=0

1SI
k(Z)

(j) ­ (1 + p)z + (1− p)w

2

)
· 1

+ 1 · (1 + p)z + (1− p)w

2
.

Hence, we have

P

(
|SI

k(Z) ∩ [0,m− 1]|
m

­ (1 + p)z + (1− p)w

2

)
= P

(
1

m

m−1∑
j=0

1SI
k(Z)

(j) ­ (1 + p)z + (1− p)w

2

)
­ (1− p)(z − w)

2
.
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Since Y is a mixture of Z and W, we obtain

P

(
|SI

k(Y) ∩ [0,m− 1]|
m

­ (1 + p)z + (1− p)w

2

)
­ p(1− p)(z − w)

2
.

This implies that the density of V0 in N0 is greater than or equal to p(1−p)(z−w)
2

since Y is generated by x. Denote the elements of V0 in an increasing order by
V0 = {v0, v1, . . .}, and define a subset V1 of V0 as

V1 = {vim, i ∈ N}.

That is, we only take each m-th element in V0 to form V1. Then V1 has a density
in N0 which is greater than or equal to p(1−p)(z−w)

2m . Moreover, the construction
of V1 guarantees that the intervals [j, j +m − 1], j ∈ V1, are disjoint. We further
take a subset of V1, denoted by V2, which has a density in N0 exactly equal to
p(1−p)(z−w)

2m . Finally, define

H =
⋃

j∈V2

[j, j +m− 1];

then H consists of disjoint sections of integers, each with length (number of inte-
gers) m, and the set H has density p(1−p)(z−w)

2 in N0.
Recall that V0, V1, V2 and H all depend on m, so we can also denote them

respectively by V0(m), V1(m), V2(m) and H(m). Notice, however, that the den-
sity of H(m) in N0 does not depend on m. Now, we construct an asymptotically
proportional contraction G of the index set N0 in the following inductive way:

1. Define the set G(1) = H(1). Since G(1) has a density in N0 given by
d := p(1−p)(z−w)

2 , for any ϵ1 > 0, there exists N(1) ∈ N such that N(1) ∈ G(1)
and ∣∣∣∣ |G(1) ∩ [0, n]|

n+ 1
− d

∣∣∣∣ ¬ ϵ1
3

for any n ­ N(1). Moreover, since H(2) also has a density in N0 given by d, we
can take N(1) large enough so that∣∣∣∣ |H(2) ∩ [0, n]|

n+ 1
− d

∣∣∣∣ ¬ ϵ1
3

for any n ­ N(1).
2. Let {ϵi} be a sequence of positive numbers decreasing to zero. Assume that

we already have a set G(m) and a positive integer N(m), where G(m) consists
of separate sections of consecutive integers with lengths of the sections increasing
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to m, and has a density in N0 given by d; N(m) is the endpoint of a section with
length m in G(m): N(m)− i ∈ G(m), i = 0, . . . ,m− 1, and satisfies∣∣∣∣ |G(m) ∩ [0, n]|

n+ 1
− d

∣∣∣∣ ¬ ϵm
3

and ∣∣∣∣ |H(m+ 1) ∩ [0, n]|
n+ 1

− d

∣∣∣∣ ¬ ϵm
3

for n ­ N(m). Then define

G(m+ 1) =
(
G(m) ∩ [0, N(m)]

)
∪

⋃
i∈V2(m+1),
i­N(m)+1

[i, i+m].

That is, G(m + 1) is obtained by joining the part of G(m) before N(m) and the
part of H(m + 1) after N(m), but the area around the joint point is modified
so that only the whole intervals in H(m + 1) are kept. Note that such defined
G(m+ 1) consists of intervals of integers with lengths increasing to m+ 1. Since
both H(m+ 1) and H(m+ 2) have a density in the set N0 given by d, there exists
N(m+ 1) > N(m) such that N(m+ 1)− i ∈ G(m+ 1), i = 0, . . . ,m,∣∣∣∣ |G(m+ 1) ∩ [0, n]|

n+ 1
− d

∣∣∣∣ ¬ ϵm+1

3

and ∣∣∣∣ |H(m+ 2) ∩ [0, n]|
n+ 1

− d

∣∣∣∣ ¬ ϵm+1

3

for n ­ N(m+ 1).
3. Define G as

G = lim
m→∞

G(m) =
∞⋃

m=1

(
G(m) ∩ [N(m− 1) + 1, N(m)]

)
,

where N(0) = −1.
The set G that we constructed consists of sections of consecutive integers with

lengths going to infinity. Moreover, it is not difficult to see that we can make G to
have a density d in N0. Indeed, for m ∈ N and any n ∈ [N(m− 1) + 1, N(m)],∣∣∣∣ |G ∩ [0, n]|n+ 1

− d

∣∣∣∣ = ∣∣∣∣ |G(m) ∩ [0, n]|
n+ 1

− d

∣∣∣∣
¬

∣∣∣∣ |H(m) ∩ [0, n]|
n+ 1

− d

∣∣∣∣
+

∣∣∣∣G(m− 1) ∩ [0, N(m− 1)]

N(m− 1) + 1
− H(m) ∩ [0, N(m− 1)]

N(m− 1) + 1

∣∣∣∣+O(m/n)
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¬
∣∣∣∣ |H(m) ∩ [0, n]|

n+ 1
− d

∣∣∣∣+ ∣∣∣∣G(m− 1) ∩ [0, N(m− 1)]

N(m− 1) + 1
− d

∣∣∣∣
+

∣∣∣∣H(m) ∩ [0, N(m− 1)]

N(m− 1) + 1
− d

∣∣∣∣+O(m/n)

¬ ϵm−1
3

+
ϵm−1
3

+
ϵm−1
3

+O(m/n) = ϵm−1 +O(m/n).

The error term O(m/n) comes from the possible difference between H(m)
and G(m) over [N(m − 1) + 1, N(m)] due to the modification made around the
joint point, and converges to zero if we choose {N(m)}m∈N such that m

N(m−1) → 0
as m→∞.

As a result, G is an asymptotically proportional contraction of the index
set N0. Moreover, by construction, it is clear that the lower density of SI

k(x) in G,
defined as

lim inf
n→∞

|SI
k(x) ∩G ∩ [0, n− 1]|
|G ∩ [0, n− 1]|

,

is greater than or equal to (1+p)z+(1−p)w
2 . As before, let x′ be the asymptotically

proportional contraction of x determined by G. Then SI
k(x
′) will have the same

limiting behavior as SI
k(x) restricted in G. Hence, either SI

k(x
′) has a density in

N0 greater than or equal to (1+p)z+(1−p)w
2 or it does not have a density in N0,

while SI
k(x) has a density in N0 given by pz + (1 − p)w. Thus, we have found

an asymptotically proportional contraction of x which does not induce the same
process as the original sequence x. �

4. TESTING STATIONARITY FOR PATHS IN A

The previous section shows that the set of functions A is large enough, such
that any stationary process must put mass one on A. In this section, our goal is
to show that the set A is also small enough, in the sense that it only contains the
“essentially stationary” paths. As the results in this paper should be understood in
the context of time series and the set A is characterized mostly asymptotically, the
arguments used in this section, which serve as the last piece needed for the general
picture, take a time series and asymptotic perspective. To this end, we consider
the stationarity tests applied to the paths in A and prove that the results cannot be
distinguished from those for the typical paths from stationary processes.

Let T be a hypothesis test for sample size n and consider the null hypothesis
H0: X = {X0, . . . , Xn−1} is stationary, or more precisely, H0: X is from a station-
ary time series defined on RN0 or RZ. From a probabilistic theoretic point of view,
T is a mapping from Rn to {0, 1}, where 0 and 1 correspond to “acceptance” and
“rejection” of the null hypothesis, respectively. Alternatively, T can be represented
as 1CT

(x0, . . . , xn−1), where CT ∈ CRn is the critical region (or, equivalently, the
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rejection region) of the test, CRn being the cylindrical σ-field in Rn. Define

αT (P ) = P
(
T (X) = 1

)
= P (CT )

for P ∈ P0, the collection of stationary probability measures restricted to Rn; then
the size of the test T is

α = sup
P∈P0

αT (P ).

We further define gn = gn,0 to be the projection: gn(x)=(x0, . . . , xn−1),x∈RN0 ,
and gn,i := gn ◦ θi. Thus, gn,i is the operation of taking the moving window of size
n starting from xi.

THEOREM 4.1. Let x ∈ A. Let T be a given test for stationarity of size α
and with a given sample size n. Assume that T satisfies one of the following two
conditions:

1. the critical region CT is closed; or
2. the boundary of the critical region, bd(CT ), is a null set under any P ∈P0.

Then, the upper density of the index set

{i ∈ N0 : gn,i(x) ∈ CT }

in N0 is smaller than or equal to α.

Theorem 4.1 shows that if we apply a “well-behaved” stationarity test, in the
sense that it satisfies one of the two conditions listed in the theorem, to a mov-
ing window with length n of any path x in the set A, then the limiting frequency
that the null hypothesis of stationarity is rejected should not exceed the size of
the test. Intuitively, this ensures that when we apply a stationarity test to a path
in A, we get the best possible result that we come to expect. More precisely, no-
tice that the size α can be approached by the rejection rate of the null hypothesis
even if it is true. Then, by the ergodic decomposition, for arbitrarily small ϵ > 0,
there exists an ergodic process for which the rejection rate is larger than α − ϵ.
Interpreting ergodicity as the equivalence between the mean across time and the
mean across space, for a typical path of this ergodic process, the null hypothesis
should be rejected with a limiting frequency greater than α − ϵ when the window
of length n moves from the origin to +∞. Therefore, having a limiting frequency
of rejection smaller than or equal to α is the best that we should expect to get. Any
further requirement will exclude typical paths from certain stationary processes.
Here, a “typical path” from a stationary process refers to a path such that the paths
with the same statistical property happen with positive probability in the stationary
process. Mathematically, a path x is a typical path from a stationary process X
if the ergodic process that x induces is a component with positive probability in
the ergodic decomposition of X. The simplest way would be directly taking X as
the ergodic process induced by x, then almost all of its paths will have the same
limiting statistical behavior as x.
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The goal of Theorem 4.1 is to compare the behavior of a path in A and that
of a path sampled from a certain stationary process. As our paths are of an infinite
length while any test for stationarity only uses a time series with a finite length, a
natural idea for a performance evaluation would be to look at the limiting behavior
of the test applied to a moving window with a fixed length. From this perspective,
the significance of Theorem 4.1 resides in the conclusion that if a path x is known
to belong to the set A, then it is “statistically indistinguishable” with a typical path
from a stationary process, in the sense that its performance under any stationar-
ity test satisfying the conditions of Theorem 4.1 will be at least as good as the
path from the stationary process, measured by the limiting rejection rate of the null
hypothesis of stationarity. In other words, we should not expect to find any statis-
tical method to be able to discriminate between x and a typical path from some
stationary process.

P r o o f o f T h e o r e m 4.1. Let x ∈ A and Yx be the ergodic process that
x induces. Define

Jn =
{
J ∈ CRn : lim

m→∞

m−1∑
i=0

1J
(
gn,i(x)

)
/m = P

(
gn(Y

x) ∈ J
)}

,

where P is the stationary measure induced by x.
By the definition of the set A, Jn includes all of the n-dimensional open cylin-

der sets (i.e., open orthotopes for which each face and any given axis of Rn are
either perpendicular or parallel). In other words, In ⊂ Jn. Moreover, Jn clearly
has the following properties:

1. ∅ ∈ Jn,Rn ∈ Jn;
2. J1, J2 ∈ Jn, J1 ⊇ J2 implies J1 \ J2 ∈ Jn;
3. J1, J2 ∈ Jn, J1 ∩ J2 = ∅ implies J1 ∪ J2 ∈ Jn.

This is to say that Jn is closed under a true difference and a finite disjoint union.
The following proposition is a simple consequence of the fact that the Euclidean
space Rn with its usual topology is completely separable.

PROPOSITION 4.1. Let C be a CRn-measurable set and P be a probability
measure on (Rn, CRn). Then for any ϵ > 0 there exists J ∈ Jn such that J ⊆ C

and P (J) ­ P (C̊)− ϵ.

P r o o f. The proof of this proposition is fundamental. Here we only provide
a sketch of the proof. Consider the collection of all open cylinder sets whose ver-
tices have rational coordinates. This is a countable topological basis of Rn with
its usual topology. Thus, for any C, its interior C̊, as an open set, can be ex-
pressed as the (countable) union of some members of this topological basis, de-
noted by B1, B2, . . . For any ϵ > 0, there exists a finite number k(ϵ) such that
P
(⋃k(ϵ)

i=1 Bi

)
> P (C̊)− ϵ. Repartitioning

⋃k(ϵ)
i=1 Bi into finite disjoint hypercubes

completes the proof. �
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The proof of Theorem 4.1 now becomes simple. Let T be a given test of size
α and with a sample size n, and let P be the stationary measure induced by x.
Thus, P (CT ) ¬ α. If T satisfies one of the two conditions listed in the theorem,
then P

(
(Cc

T )
◦) = P (Cc

T ) ­ 1− α, where (Cc
T )
◦ is the interior of Cc

T . For ϵ > 0,
by Proposition 4.1, there exists J ∈ Jn, J ⊆ Cc

T , such that

P
(
gn(Y

x) ∈ J
)
­ P (Cc

T )− ϵ ­ 1− α− ϵ.

Since J ∈ Jn, the set {i ∈ N0 : gn,i(x) ∈ J} has a density in N0 which is greater
than or equal to 1− α− ϵ. This implies that {i ∈ N0 : gn,i(x) ∈ Cc

T } has a lower
density in N0 which is greater than or equal to 1 − α − ϵ. Since ϵ can be taken
arbitrarily small, the lower density of {i ∈ N0 : gn,i(x) ∈ Cc

T } in N0 is at least
1 − α. In other words, the upper density of {i ∈ N0 : gn,i(x) ∈ CT } in N0 is
smaller than or equal to α. �

In practice, many stationarity tests introduce additional assumptions on the
stochastic processes (or time series) in their null hypotheses or alternative hy-
potheses in constructing the tests or in analyzing their powers. For example, the
classical unit root tests such as those proposed by [3] and [7] focus on linear au-
toregressive models; the papers [4] and [6] rely on a Markov structure, and some
results in [2] require a certain mixing condition. A close examination of the proof
of Theorem 4.1 reveals that such additional assumptions should not affect the result
of the theorem. That is, if we can check that the process Yx satisfies the additional
assumptions of a test, then applying the test to a moving window of the path x ∈ A
will still lead to a limiting frequency of rejection no larger than the size of the test.
Intuitively, the fact that the path x is in A still guarantees the stationarity; if the
test results in a higher frequency of rejection, this is due to the violation of the
additional assumptions rather than an evidence of non-stationarity.

On the other hand, the two conditions in Theorem 4.1 are very general. As
a matter of fact, a good test should have bd(CT ) to be a null set under the null
hypothesis after all, and this is almost always the case in practice. Thus, the result
of Theorem 4.1 applies to every existing time series test for stationarity. In some
sense, what we have shown is that all of these tests reduce to checking whether or
not the given path is in the set A.

In the above results, the stationarity of a path is evaluated using a moving
window with a fixed length, i.e., a fixed sample size. Next we discuss two types of
asymptotic behaviors of paths in A.

The first kind of asymptotic behavior does not require any additional assump-
tion or technical result. Many stationarity tests used in practice do not have a known
exact size, but only an asymptotic size. In other words, there are sequences of tests
with sample sizes n increasing to infinity, such that although the size for any test
with a fixed sample size is unknown, there exists a limiting size as n→∞. In this
case, Theorem 4.1 immediately allows us to claim the following result.
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COROLLARY 4.1. Let x ∈ A. Assume that {Tn}n∈N is a sequence of tests for
stationarity, where Tn is for sample size n and has size αn. If limn→∞ αn = α,
and for each n ∈ N, one of the two conditions in Theorem 4.1 is satisfied by the
critical region CTn of Tn, then for any ϵ > 0 there exists Nϵ ∈ N such that the
upper density in N0 of the index set

{i ∈ N0 : gn,i(x) ∈ CTn}

is smaller than α+ ϵ for any n ­ Nϵ.

The second kind of asymptotic result is more challenging. For a fixed path
x, we apply stationarity tests to a longer and longer fraction of the path, always
starting from the first term x0, and look at the limiting behavior of the results of
these tests. Such limiting results are typically strong and require more assumptions
about the tests, as well as some more powerful technical advances. To obtain the
results, it is helpful to consider the cylindrical σ-field C over the whole path space
RN0 , and define

J =
{
J ∈ C : lim

m→∞

m−1∑
i=0

1J
(
θi(x)

)
/m = P (YX ∈ J)

}
,

where θ is the shift operator, so that C and J do not correspond to any fixed n. We
can improve Proposition 4.1 with the following result.

PROPOSITION 4.2. Let C be a C-measurable set and let P be a probability
measure on (RN0 , C). Then for any ϵ > 0 there exists J ∈ J such that J ⊆ C and
P (J) ­ P (C̊)− ϵ.

P r o o f. For each n ∈ N, let Jn be defined as in the proof of Theorem 4.1.
Denote by Gn the collection of the sets C ∈ CRn such that for any ϵ > 0 there exists
J ∈ Jn, J ⊆ C, for which P (J) ­ P (C)− ϵ. Clearly, Jn ⊆ Gn. In particular, all
of the n-dimensional open cylinder sets are in Gn. Indeed, it is not difficult to verify
that all of the n-dimensional cylinder sets, regardless of the openess/closedness of
the boundaries, are all in Jn ⊆ Gn. Moreover, Gn is closed under finite disjoint
unions. To see this, let C1, . . . , Cm be disjoint sets in Gn. Let J1, . . . , Jm be the
sets satisfying Proposition 4.1 for C1, . . . , Cm and ϵi = 2−iϵ, i = 1, . . . ,m. Then
J =

⋃m
i=1 Ji is in Jn, J ⊆ C and satisfies P (J) ­ P (C) − ϵ. Denote by Fn the

field generated by the n-dimensional cylinder sets. Then a result in [1] shows that
each member in Fn can be expressed as a finite union of disjoint cylinder sets. As
a result, Fn ⊆ Gn.

Next we prove that Fn ⊆ Jn. Note that Rn ∈ Fn ∩ Jn, and C ∈ Fn ∩ Jn
implies Cc ∈ Fn ∩ Jn. Furthermore, Fn ∩ Jn is closed under union. To see this,
let C1, C2 ∈ Fn ∩ Jn; then C1 ∪ C2 and (C1 ∪ C2)

c are both in Fn ⊆ Gn. Con-
sequently, for each ϵ > 0, there exist J1,ϵ, J2,ϵ ∈ Jn, J1,ϵ ⊆ C1 ∪ C2, J2,ϵ ⊆
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(C1 ∪C2)
c, such that P (J1,ϵ) ­ P (C1 ∪C2)− ϵ, P (J2,ϵ) ­ P

(
(C1 ∪C2)

c
)
− ϵ.

Therefore, we have

P (C1 ∪ C2)− ϵ ¬ P (J1,ϵ) = lim
m→∞

m−1∑
i=0

1J1,ϵ
(
gn,i(x)

)
/m

¬ lim inf
m→∞

m−1∑
i=0

1C1∪C2

(
gn,i(x)

)
/m.

Sending ϵ to zero leads to the following result:

lim inf
m→∞

m−1∑
i=0

1C1∪C2

(
gn,i(x)

)
/m ­ P (C1 ∪ C2).

Symmetrically, using J2,ϵ, we have

lim inf
m→∞

m−1∑
i=0

1(C1∪C2)c
(
gn,i(x)

)
/m ­ P (C1 ∪ C2)

c.

Thus, limm→∞
∑m−1

i=0 1C1∪C2

(
gn,i(x)

)
/m exists and is equal to P (C1 ∪ C2).

Hence C1 ∪ C2 ∈ Fn ∩ Jn. Fn ∩ Jn is a field. Since Fn is the field generated
by the n-dimensional cylinder sets, and all of the cylinder sets are both in Fn and
Jn, we must have Fn ⊆ Jn.

Finally, let F =
⋃

n∈NFn be the field on RN0 generated by all the open
cylinder sets. Notice that since any members in F only have a finite number of
finite-dimensional constraints, F ⊆

⋃
n∈N Jn ⊆ J . Denote by C′ the collection

of sets C in C such that for each ϵ > 0 there exists J ∈ F , J ⊆ C, for which
P (J) ­ P (C)− ϵ. By definition, it is easy to see that C′ contains ∅ and RN0 . More-
over, let C1, C2, . . . ∈ C′; then for any ϵ > 0 there exists N ∈ N and J1, . . . , JN ∈
F such that P

(⋃∞
i=N+1Ci \

⋃N
i=1Ci

)
¬ ϵ

2 and P (Ji) ­ P (Ci) − 2−iϵ for i =

1, . . . , N . The set J =
⋃N

i=1 Ji is in F and satisfies P (J) ­ P
(⋃

i∈NCi

)
− ϵ.

Hence
⋃

i∈NCi ∈ C′. Similarly, it is easy to see that C′ is closed under finite in-
tersections. As a result, C′ is a topology. Since clearly F ⊆ C′, C′ contains the
topology generated by F , which is the natural topology on RN0 . Thus, we can
conclude that for any C-measurable set C, for the open set C̊, there exists a set
J ∈ F ⊆ J such that P (J) ­ P (C̊)− ϵ. �

Proposition 4.1 and its consequence, Theorem 4.1, show that for any time se-
ries stationarity test with a fixed sample size satisfying some mild conditions, a
path in the set A will behave as well as a typical path from a stationary process.
Proposition 4.2 allows us to generalize this statement to any asymptotic property.
For instance, let {Tn}n∈N be a sequence of stationarity tests with sample sizes n
and satisfying the conditions in Theorem 4.1. At the risk of abusing the notation,
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we also use Tn for the corresponding test statistics. Then, for x ∈ A, the limit-
ing behavior of Tn(x) as n → ∞ will be comparable to that of Yx, which is a
stationary process.

EXAMPLE 4.1. If for any stationary time series X, the limiting rejection rate
of Tn,

lim
n→∞

n∑
i=1

Ti

(
gi(X)

)
/n,

almost surely exists and is bounded from above by a constant α, then Proposi-
tion 4.2 implies that for any x ∈ A and generic m ∈ N,

lim
n→∞

n∑
i=1

Ti

(
gi,m(x)

)
/n

exists and is bounded from above by α. “Generic” means that the set of m for
which the result does not hold has a limiting density zero in N. If the assumption
is relaxed to the existence of the upper/lower limit of the rejection rate and their
bounds, the corresponding results hold as well for the paths in A.
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