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1. INTRODUCTION

Consider a stationary Gaussian process with continuous trajectories and its “last
exit time over a moving boundary”, i.e. the last time when the process hits a bound-
ary εf(t), where t denotes time and ε > 0 is a drift (or trend) parameter. After this
time, the process stays forever under the boundary. We are interested in the asymp-
totic distribution of the last exit time when the parameter ε goes to zero. In this
work, we prove the convergence of the distribution of the properly centered and
scaled last exit time to a double exponential (Gumbel) law.

A special case of this problem, for a particular process and a linear boundary,
emerged in recent works [1, 2], that provide a mathematical study of a physical
model (Brownian chain break). In [9] the same question for a wide class of pro-
cesses was studied. In this work we give a natural generalization of this result to a
variety of boundaries.

As far as we know, the problem setting, dealing with small trends, is new, al-
though the last exit time is a fairly popular object in economical applications, such
as studies of ruin probabilities. In risk theory, for a centered Gaussian process with
continuous trajectories Y (t), the process

R(t) = u+ εf(t)− Y (t)

represents company balance. For instance, when f(t) = t, this process can be used
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as the simplest model of an insurance company balance with starting balance u,
fixed income per time ε and stochastic expenses Y . In this setting the values inf {t :
R(t) < 0} and max {t : R(t) ¬ 0} are called the ruin time and the ultimate
recovery time respectively.

There are plenty of works dedicated to the times when a process with trend hits
some level. In order to achieve a positive result one has to balance between the
variety of trends and the variety of the processes considered.

For instance, the classical ruin time is well studied. The result for a locally
stationary Gaussian process Y (t) is given in [7].

In [5] the asymptotic behavior of the distance between the ruin time and the
ultimate recovery time when u goes to infinity and Y (t) has stationary increments
is studied.

In [4] the Paris ruin time inf {t : ∀δ ∈ [0,∆], R(t − δ) ¬ 0} for a fixed ∆ is
considered.

On the other hand, in [15] the ruin time and the recovery time for any smooth
trend are studied for the standard Brownian motion Y (t).

In those settings, however, as a rule, one considers processes with stationary
increments and a fixed trend; see also [8, 12]. In this work we consider the ultimate
recovery time for a stationary process without starting balance and small ratio of
trend to volatility. The covariance function of the process is of Hölder type at 0 and
decreasing at infinity faster than 1/ln t. Moreover, the class of trends is quite wide,
covering, among others, the cases εtβ and ε exp{tq}.

2. MAIN RESULT

Throughout we use the following notation for positive functions f(x) and g(x):

• f(x) ≺ g(x) if ∃C > 0 : f(x) < Cg(x) asymptotically as x approaches x0,

• f(x) ≍ g(x) if simultaneously f(x) ≻ g(x) and f(x) ≺ g(x),

• f(x) ∼ g(x) if limx→x0 f/g = 1.

Sometimes we consider fa(x) and ga(x) depending on a parameter a. We say
that the first relation above is uniform over a ∈ K if the constant C does not depend
on a. The third relation is uniform over a ∈ K if the convergence is uniform.

Let Y (t), t ∈ R, be a real-valued centered stationary Gaussian process with
covariance function ρ(t) := E[Y (t)Y (0)]. We make two assumptions on the co-
variance function:

• at zero (Pickands condition): for some v > 0, Q > 0, α ∈ (0, 2],

(2.1) ρ(t) = v2(1−Q|t|α + o(|t|α)) as t→ 0;

• at infinity (Berman condition):

(2.2) ρ(t) = o((ln t)−1) as t→ +∞.
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The Berman condition appears in the context of limit theorems for maxima of
Gaussian stationary sequences and processes [3], [6, Theorem 3.8.2].

Define Y ’s last exit time over a boundary f as

T = T (ε) := max {t : Y (t) = ε f(t)}.

We are interested in the asymptotic behavior of T (ε) when ε→ 0. Therefore, if not
specified otherwise, we consider all the asymptotic relations when ε→ 0. Clearly
T (ε) = max

{
t : 1

vY (t) = ε
vf(t)

}
= T1(ε/v), where T1 is the last exit time

of the scaled process 1
vY (t). Therefore, one can study only normalized processes

with v = 1 and then substitute ε/v for ε in the result for generality. Let us denote
εv = ε/v for convenience.

There are three conditions on the boundary function f :

• Ultimate monotonicity: when x tends to infinity, f(x) is strictly increasing,
twice differentiable and tends to infinity.

• Restriction on growth rate: for some 0 < λ ¬ 1 we have f ′′(x)/f ′(x) ≍ x−λ

when x→∞.

To state the third restriction we need to introduce two parameters. Take γ=γ(ε)
such that

(2.3) γ2 = 2 ln

[
(f−1)′(1/εv)

εv

]
+ o(1) when ε→ 0.

and τ0 = τ0(ε) such that

(2.4) f(τ0) = γ/εv when ε→ 0.

They are important, because, in fact, τ0 is the main term of T (ε)’s asymptotics
and τλ0 γ

−2 is the precision, where the stochastic part appears. Assume that f also
satisfies the following condition:

• Regularity: for some κ > 0, β and β̃, when ε→ 0

(f−1)′(y/εv) ∼ yβ(f−1)′(1/εv) uniformly over y ∈ [(1−κ)γ, (1+κ)γ],

(2.5)

(f−1)′(y/εv) = o
(
yβ̃(f−1)′(1/εv)

)
uniformly over y ∈ [(1+κ)γ,∞).

(2.6)

Then we have the following limit theorem, in which the Pickands constant Hα

appears; see [11] for more information about it.
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THEOREM 2.1. Let Y (t), t ∈ R, be a real-valued centered stationary Gaussian
process satisfying (2.1) and (2.2). Let f be a function satisfying the conditions
above. Define Cα := Q1/αHα√

2π
. Then for any r ∈ R,

lim
εv→0

P
{
T (ε)−Aε

Bε
¬ r

}
= exp(−Cα exp(−r)),

for the shift and scaling constants defined via τ0 and γ as follows:

Aε := τ0 +
(2/α+ β − 2) ln γ

f ′(τ0)εvγ
+ o

(
1

f ′(τ0)εvγ

)
,

Bε :=
1 + o(1)

f ′(τ0)εvγ
.

Note that in the recent work [9] the linear boundary was considered for the
same class of processes. The proof below is based on the same ideas. However,
working with a much larger class of boundaries requires more technical analysis.

2.1. Examples. There are several interesting examples of boundaries for which the
normalizing constants can be found in explicit form.

COROLLARY 2.1. For a boundary function f(x) = xd, d > 0, and a proc-
cess Y , constant Cα, parameter εv and the moment T (ε) defined as before one
has

lim
ε→0

P
{
T (ε)−Aε

Bε
¬ r

}
= exp(−Cα exp(−r)),

where the shift and scaling constants can be found explicitly:

Aε =
(−2 ln εv)

1
2d
−1

d
1
2d ε

1
d
v

(
−2 ln εv +

(
1

α
+

1

2d
− 3

2

)
ln(−2 ln εv)

−
(
1

α
+

1

2d
− 1

2

)
ln d

)
,

Bε =
(−2 ln εv)

1
2d
−1(1 + o(1))

d
1
2d ε

1
d
v

.

The following proof works for d ̸= 1. However, the statement remains true for
d = 1. First of all, exactly the case of f(x) = x was handled in [9]. Secondly,
one can prove that for f(x) = xd the convergence in the theorem is uniform over
d ∈ (1/2, 1). Since P

(T (ε)−Aε

Bε
¬ r

)
is continuous in d, we see that convergence

for d ∈ (1/2, 1) implies the convergence for d = 1. Now we proceed with the
proof of the corollary for d ̸= 1.
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Proof of Corollary 2.1. For f(x)=xd, d> 0, we get f ′′(x)= (d−1)x−1f ′(x),
i.e. λ = 1. Moreover, f−1(x) = x1/d and (f−1)′(x) = 1

dx
1/d−1. Therefore, we

take

γ2 = 2 ln

(
1

d
ε−1/dv

)
+ o(1) =

−2 ln εv
d

− 2 ln d+ o(1).

In addition, for every y,

(f−1)′(y/εv) =
1

d
y1/d−1ε1−1/dv = y1/d−1(f−1)′(1/εv),

i.e. the regularity conditions (2.5), (2.6) hold with β = β̃ = 1/d− 1.
Take

τ0 = f−1(γ/εv) = (γ/εv)
1/d.

Then

f ′(τ0) = d
f(τ0)

τ0
= d

γ

εvτ0
.

Hence, by substituting everything in Theorem 2.1 we obtain

Aε = τ0 +
(2/α+ β − 2)τ0 ln γ

dγ2
+ o

(
τ0
γ2

)
, Bε =

τ0 + o(τ0)

dγ2
.

Transforming these expressions, we get

Aε =
γ

1
d

ε
1
d
v

+

(
2

α
+

1

d
− 3

)
γ

1
d
−2 ln γ

dε
1
d
v

+ o

(
γ

1
d
−2

ε
1
d
v

)

=
(−2 ln εv)

1
2d
−1

d
1
2d ε

1
d
v

(
− 2 ln εv +

(
1

α
+

1

2d
− 3

2

)
ln(−2 ln εv)

−
(
1

α
+

1

2d
− 1

2

)
ln d

)
,

Bε =
γ

1
d
−2

dε
1
d
v

=
(−2 ln εv)

1
2d
−1(1 + o(1))

d
1
2d ε

1
d
v

. ■

COROLLARY 2.2. For a boundary function f(x) = exp{xq}, 0 < q < 1,
and a proccess Y (t), constant Cα, parameter εv and the moment T (ε) defined as
before one has

lim
ε→0

P
{
T (ε)−Aε

Bε
¬ r

}
= exp(−Cα exp(−r)),



200 N. Karagodin

where the shift and scaling constants can be found explicitly:

Aε =
(− ln εv)

1
q
−1

q

(
q(− ln εv) +

1

2
ln ln(− ln εv) +

1

2
ln

(
2

q
− 2

)
+

(
1

α
− 3

2

)
ln ln(− ln εv)(

2
q − 2

)
ln(− ln εv)

+

(
1
α −

3
2

)
ln
(
2
q − 2

)
− ln q(

2
q − 2

)
ln(− ln εv)

)
,

Bε =
(− ln εv)

1
q
−1

(2− 2q) ln(− ln εv)
.

Proof. For f(x) = exp{xq}, 0 < q < 1, we have

f ′(x) = qxq−1 exp{xq},
f ′′(x) = q(q − 1)xq−2 exp{xq}+ q2x2q−2 exp{xq}.

Therefore, the restriction on the growth rate holds with λ = 1− q, since

f ′′(x)/f ′(x) ∼ qx−(1−q).

In addition

(f−1)′(t) =
(ln t)

1
q
−1

qt
,

Therefore,

γ2 =

(
2

q
− 2

)
ln(− ln εv)− 2 ln q + o(1).

Then we get the regularity conditions (2.5), (2.6) with β = −1, β̃ = 0, because
uniformly over y ∈ [0.5γ, 2γ], as ε→ 0 we have

(f−1)′(y/εv) =
(ln y − ln εv)

1
q
−1

qy/εv
∼ y−1(f−1)′(1/εv),

and uniformly over y ∈ [2γ,∞], as ε→ 0 we have

(f−1)′(y/εv) =
(ln y − ln εv)

1
q
−1

qy/εv
= o((f−1)′(1/εv)).

Now we can use Theorem 2.1. Take

τ0 = f−1(γ/εv) = (ln γ − ln εv)
1
q ;

then
f ′(τ0)εv = qτ q−10 f(τ0)εv = qτ q−10 γ.
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Therefore, in the formula for Aε and Bε the precision we are interested in is

o

(
1

f ′(τ0)εvγ

)
= o

(
τ1−q0

qγ2

)
= o

(
(− ln εv)

1/q−1

γ2

)
.

Consequently,

Aε = τ0 +
(2/α+ β − 2)τ1−q0 ln γ

qγ2
+ o

(
τ1−q0

γ2

)
, Bε =

τ1−q0 (1 + o(1))

qγ2
.

Let us write

τ0 = (− ln εv)
1
q +

1

q
(− ln εv)

1
q
−1

ln γ + o

(
(− ln εv)

1
q
−1

γ2

)
.

Additionally, ln γ = 1
2 ln γ

2 yields

ln γ =
1

2

(
ln

((
2

q
− 2

)
ln(− ln εv)

)
+ ln

(
1− ln q(

1
q − 1

)
ln(− ln εv)

))
=

1

2
ln ln(− ln εv) +

1

2
ln

(
2

q
− 2

)
− ln q

(2q − 2) ln(− ln εv)
+

o(1)

ln(− ln εv)
.

After some transformations we get

Aε =
(− ln εv)

1
q
−1

q

(
q(− ln εv) +

1

2
ln ln(− ln εv) +

1

2
ln

(
2

q
− 2

)
+

(
1

α
− 3

2

)
ln ln(− ln εv)(

2
q − 2

)
ln(− ln εv)

+

(
1
α −

3
2

)
ln
(
2
q − 2

)
− ln q(

2
q − 2

)
ln(− ln εv)

)
,

Bε =
(− ln εv)

1
q
−1

(2− 2q) ln(− ln εv)
. ■

3. PROOF OF THE MAIN RESULT

The first restriction (2.1) on the covariance function appears in the following lem-
ma, which serves below as one out of the two basic tools in our calculations.

LEMMA 3.1 (Pickands, Piterbarg). Let Y (t), t ∈ R, be a real-valued centered
stationary Gaussian process satisfying the Pickands condition (2.1) and such that

lim sup
t→∞

ρ(t) < 1.

Then, with Hα being the Pickands constant (in particular, H1 = 1,H2 = π−1/2),
we have

P
{
max
s∈[0,t]

Y (s) ­ x
}
∼ Q1/αHα√

2π
· t · (x/v)2/α−1e−x2/(2v2)

for all x and t such that the right hand side tends to zero and tx2/α →∞.
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A first version of this lemma with fixed t was obtained by Pickands [13], while
this version with variable t (which is important for our results) is due to Piterbarg
[14, Lecture 9, Theorem 9.3.1].

As was mentioned before, by scaling Y (t) = vỸ (t) one may reduce the prob-
lem to the case v = 1. Hence from now on εv = ε.

Let us fix r ∈ R and let

τ = τ(ε, r) := Aε +Bεr.

The theorem’s statement is equivalent to

lim
ε→0

P {T (ε) > τ} = 1− exp(−Cα exp(−r)).

The basic plan of the proof is the following. We are interested in the event of
crossing the boundary εf(t) after time τ .

First of all, for appropriately large σ this crossing happens before time σ with
probability close to 1. For this purpose one can pick σ = Aε +BεR(ε) with R(ε)
growing to infinity with any speed.

Now, to analyze the event of crossing somewhere in [τ, σ] we divide [τ, σ] into
intervals and approximate the boundary εf(t) with a staircase, i.e. a function that
is constant on each interval and has jumps in between. The event of crossing the
staircase is much simpler and we can use Lemma 3.1 to analyze it, by studying the
events of crossing on different intervals. If those events of crossing were almost
independent for different intervals, we would have to work with a sum of inde-
pendent random variables. The only problem here is that the events of crossing on
neighboring intervals are unpredictably correlated.

To fix it, one has to choose the intervals appropriately. We divide [τ, σ] into
alternating long and short intervals of length ℓ(ε) and s(ε) respectively. Then we
show that the crossing happens on one of the small intervals with probability close
to 0. The role of the small intervals is to separate long intervals, so we can con-
trol the correlation of the process between different long intervals via the Berman
condition (2.2).

Finally, to work with the crossings on different long intervals we concentrate
the correlation between different intervals in one auxiliary term using the Slepian
inequality (3.16). This part of the proof starts with Lemma 3.4. It allows us to pass
to the sum of independent random variables and then find the probability we are
interested in.

The interval lengths ℓ = ℓ(ε), s = s(ε) must satisfy the following relations:

ln s ≻ γ2,(3.1)
s/ℓ→ 0,(3.2)

f(τ)f ′(τ)ε2 ℓ→ 0.(3.3)
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We need the first relation to get a lower bound on the correlation between different
long intervals. The second relation implies that the probability of crossing on a
small interval is close to 0. The third one is equivalent to ℓ = o(Bε) and implies
that ℓ = o(σ−τ) = o(Bε(R(ε)−r)), i.e. the number of intervals grows to infinity
and the staircase is a good enough approximation of the boundary.

The proof that one can pick ℓ and s satisfying these conditions is given in Sec-
tion 3.1.

We cover the halfline [τ,∞) with the following system of sets:

• the halfline [σ,∞), where σ := Aε+BεR and R = R(ε) slowly tends to infinity
as ε → 0; the choice of R is further specified at the end of the proof but note
that we assume only upper bounds on the growth rate of R,

• long intervals Li = [(ℓ+ s)i, (ℓ+ s)i+ ℓ], i ∈ Z, of length ℓ = ℓ(ε),

• short intervals Si = [(ℓ+ s)i+ ℓ, (ℓ+ s)(i+ 1)], i ∈ Z, of length s = s(ε).

Let
Xε

i := max
t∈Li

Y (t), V ε
i := max

t∈Si

Y (t).

By using stationarity, we infer from the Pickands–Piterbarg lemma the asymptotics

P{Xε
i ­ x} ∼ Cαℓx

2/α−1 exp(−x2/2),
P{V ε

i ­ x} ∼ Cαsx
2/α−1 exp(−x2/2),

as soon as the respective right hand sides tend to zero and sx2/α → ∞. We use
these relations for x ≻ f(τ)ε and clearly s(f(τ)ε)2/α ∼ sγ2/α →∞.

Define the index sets

I1 := {i : (ℓ+ s)i+ ℓ ­ τ, (ℓ+ s)i < σ},
I2 := {i : (ℓ+ s)i ­ τ, (ℓ+ s)i+ ℓ < σ},
I3 := {i : (ℓ+ s)(i+ 1) ­ τ, (ℓ+ s)i+ ℓ < σ}

chosen so that

(3.4)
⋃
i∈I2

Li ⊂ [τ, σ] ⊂
( ⋃
i∈I1

Li

)
∪
( ⋃
i∈I3

Si

)
.

Let us define the events related to the exits of our process over the boundary:

E1 :=
⋃
i∈I1
{Xε

i ­ f((ℓ+ s)i)ε},

E2 :=
⋃
i∈I2
{Xε

i ­ f((ℓ+ s)(i+ 1))ε},

E3 :=
⋃
i∈I3
{V ε

i ­ f((ℓ+ s)i)ε},

E4 := {∃ t > σ : Y (t) ­ εf(t)}.
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By using the inclusions (3.4) and ultimate monotonicity of f , it is easy to see
that

P{T (ε) > τ} = P{∃ t > τ : Y (t) ­ εf(t)} ¬ P{E1}+ P{E3}+ P{E4},
P{T (ε) > τ} ­ P{E2}.

Therefore, it is sufficient to prove that, as ε→ 0,

P{E1},P{E2} → 1− exp(−Cα exp(−r)), P{E3},P{E4} → 0.

The parameter R should grow to infinity so slowly that uniformly over ω ∈
[−1, 1] we have

τ0 ∼ τ0 + ω(σ − τ0),(3.5)
f ′(τ0) ∼ f ′(τ0 + ω(σ − τ0)),(3.6)
f(τ0) ∼ f(τ0 + ω(σ − τ0)).(3.7)

That is, f and f ′ do not change much in the interval around τ0 containing σ.
The following lemma provides useful asymptotic estimates and shows that we

can pick R satisfying (3.5). Since it is only technical, the proof is postponed to
Section 3.1.

LEMMA 3.2. Consider any function R̃(ε) such that R̃ = o(ln γ) and

BεR̃ =
R̃

f ′(τ0)εγ
+ o

(
1

f ′(τ0)εγ

)
Then for Aε and Bε described in Theorem 2.1 we have

(3.8) f(Aε +BεR̃)ε = γ +

(
2

α
+ β − 2

)
ln γ

γ
+

R̃

γ
+ o

(
1

γ

)
.

Moreover, for R(ε) corresponding to the same restriction, uniformly over ω ∈
[−1, 1] one has

f ′(τ0) ∼ f ′(τ0 + ω(σ − τ0)), f(τ0) ∼ f(τ0 + ω(σ − τ0)).

From (3.8) applied to R̃ = r and R̃ = R, we obtain

f(τ)ε ∼ γ,(3.9)

(f(τ)ε)2/α+β−2 exp{−(f(τ)ε)2/2} ∼ e−r−γ
2/2,(3.10)

(f(σ)ε)2/α+β−2 exp{−(f(σ)ε)2/2} = o(e−γ
2/2).(3.11)

These relations are crucial for our choice of τ and γ, because they appear in the
resulting probabilities of E1, E2, E3, E4.
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For the following relations we use an analogue of the restriction on the growth
rate but for f instead of f ′, namely the fact that

(3.12)
f ′(x)

f(x)
≍ x−λ, x→∞.

To check this note that (f ′(x)xλ)′ = f ′′(x)xλ + λf ′(x)xλ−1. Therefore, since
cf ′(x) < f ′′(x)xλ < Cf ′(x) and λ ¬ 1, we can write a similar inequality but
with new constants depending on λ:

cλf
′(x) < (f ′(x)xλ)′ < Cλf

′(x) for large enough x.

Now we integrate these inequalities to get

cλf(x) + const < f ′(x)xλ < Cλf(x) + const for large enough x.

Since f(x) → ∞ as x → ∞, we divide by f(x) and conclude that f ′(x)xλ ≍
f(x), i.e. f ′(x)/f(x) ≍ x−λ.

Notice that (3.12) and (3.9) imply that

(3.13) f(τ)f ′(τ)ε2 ≍ (f(τ)ε)2τ−λ ≍ γ2τ−λ.

Moreover, there is a connection between τ and γ. Due to (3.12) and the regu-
larity condition (2.5) combined with the definition (2.3) of γ we get

(f−1(γ/ε))λ ≍ f(f−1(γ/ε))

f ′(f−1(γ/ε))
=

γ

ε
(f−1)′(γ/ε) ∼ γ1+β

ε
(f−1)′(1/ε)γ1+βeγ

2/2,

and since τ ∼ τ0 = f−1(γ/ε) due to (3.5), we get

(3.14) τλ ≍ γ1+βeγ
2/2.

Now, having obtained the crucial relations, we proceed with the proof. Let us
first show that the probabilities of the events E1 and E2 are almost equal; thus it is
enough to find the limit of P{E1}. Indeed, let I1 = {m,m + 1, . . . , n}. Then, on
the one hand, P{E2} ¬ P{E1}; on the other hand,

P{E1} = P
{ n⋃
i=m

{Xε
i ­ f((ℓ+ s)i)ε}

}
¬ P{Xε

m ­ f((ℓ+ s)m)ε}+ P{Xε
m+1 ­ f((ℓ+ s)(m+ 1))ε}

+ P
{ n⋃
i=m+2

{Xε
i ­ f((ℓ+ s)i)ε}

}
¬ 2P{Xε

m ­ f((ℓ+ s)m)ε}+ P
{ n−1⋃
j=m+1

{Xε
j+1 ­ f((ℓ+ s)(j + 1))ε}

}
¬ 2P{Xε

m ­ f((ℓ+ s)m)ε}+ P{E2},
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where in the penultimate inequality we use the stationarity of the sequence Xε
i

following from the stationarity of Y . For the remaining term we use the Pickands–
Piterbarg asymptotics to obtain

P{Xε
m ­ f((ℓ+ s)m)ε}
¬ P{Xε

m ­ f(τ − ℓ)ε} ∼ Cαℓ(f(τ − ℓ)ε)2/α−1 exp{−(f(τ − ℓ)ε)2/2}.

From (3.3) we know ℓf(τ)f(τ)ε2 → 0 and from (3.9) and the definition of Bε

we infer that ℓ = o(σ − τ). Moreover, due to Lagrange’s theorem and (3.5), for
some ξ ∈ [τ − ℓ, τ ] one has

f(τ − ℓ)2ε2 = (f(τ)− ℓf ′(ξ))2ε2

= f(τ)2ε2 − 2ℓf(τ)f ′(ξ)ε2 + ℓ2f ′(ξ)2ε2 = f(τ)2ε2 + o(1).

Combining this with (3.9) and (3.10) we get

ℓ(f(τ − ℓ)ε)2/α−1 exp{−(f(τ − ℓ)ε)2/2} ∼ ℓ(f(τ)ε)2/α−1 exp{−(f(τ)ε)2/2}

∼ ℓ(f(τ)ε)1−βe−r−γ
2/2 ∼ ℓγ1−βe−r−γ

2/2.

We know that
ℓf ′(τ)f(τ)ε2 → 0,

and from (3.13), (3.14),

ℓf ′(τ)f(τ)ε2 ≍ ℓγ2τ−λ ≍ ℓγ1−βe−γ
2/2.

Hence
ℓγ1−βe−r−γ

2/2 → 0.

We conclude that P{Xε
m ­ (ℓ + s)mε} → 0, thus the difference between P{E1}

and P{E2} is indeed negligible.
Below we repeatedly use the following technical lemma. Its proof is postponed

to Section 3.1.

LEMMA 3.3. For each α ̸= 0 and all θ(ε), a(ε), b(ε), c(ε) such that, as ε→ 0,
one has f ′(θ + ωa) ∼ f ′(θ) uniformly over ω ∈ [−1, 1], and

f(θ)ε ∼ γ, a = o(θ), f(θ)cε2 → 0, f(θ)f ′(θ)aε2 → 0,

it is true that

∞∑
i: ai+b­θ

(f(ai+ b)ε+ cε)2/α−1 exp{−(f(ai+ b)ε+ cε)2/2}

∼ eγ
2/2

a
(f(θ)ε)2/α+β−2 exp{−(f(θ)ε)2/2}.
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Let us evaluate P{E3}. From stationarity of the sequence V ε
i ,

P{E3} ¬
∑
i∈I3

P{V ε
i ­ f((ℓ+ s)i)ε},

and from Lemma 3.1 we obtain the following upper bound for this sum, uniform
in i:

Cαs(1 + o(1))
∑

i: (ℓ+s)(i+1)­τ
(f((ℓ+ s)i)ε)2/α−1 exp{−(f((ℓ+ s)i)ε)2/2}.

In order to find the asymptotic behavior of this sum, we apply Lemma 3.3 with
parameters a = ℓ+ s, b = 0, c = 0, θ = τ − ℓ− s. Then, by using (3.2), (3.3) and
(3.9), we have a ∼ ℓ, θ ∼ τ , (f(θ)ε)2 = (f(τ)ε)2 + o(1). Therefore, Lemma 3.3,
relation (3.10) and assumption (3.2) yield

Cαse
γ2/2

a
(f(θ)ε)2/α+β−2 exp{−(f(θ)ε)2/2}

∼ Cαse
γ2/2

ℓ
(f(τ)ε)2/α+β−2 exp{−(f(τ)ε)2/2} = o(1).

Let us bound P{E4} as follows:

P{E4} ¬
∞∑
j=0

P
{

max
t∈[σ+j,σ+j+1]

Y (t) > f(σ + j)ε
}

¬ Cα (1 + o(1))
∞∑
j=0

(f(σ + j)ε)2/α−1 exp{−(f(σ + j)ε)2/2}.

Lemma 3.3 applied with parameters a = 1, b = σ, c = 0, θ = σ and relation
(3.11) provide the following asymptotics for the sum:

Cαe
γ2/2(f(σ)ε)2/α+β−2 exp{−(f(σ)ε)2/2} = o(1).

The hardest part is to show that

(3.15) 1− P{E1} → exp(−Cα exp(−r)), ε→ 0.

Our main tool here is the following classical inequality due to Slepian (see, e.g.,
[10, §14], [14, Lecture 2]).

LEMMA 3.4 (Slepian). Let (U1, . . . , Un) and (V1, . . . , Vn) be two centered
Gaussian vectors such that EU2

j = EV 2
j , 1 ¬ j ¬ n, and E(UiUj) ¬ E(ViVj),

1 ¬ i, j ¬ n. Then for each r ∈ R one has

P
{
max
1¬j¬n

Uj ­ r
}
­ P

{
max
1¬j¬n

Vj ­ r
}
.
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One may write this inequality in a slightly more general form (see [14, Lec-
ture 2]): under the assumptions of the Slepian lemma, for all nonnegative r1, . . . , rn
one has

P{∃j : Uj ­ rj} ­ P{∃j : Vj ­ rj}.

This follows by applying the Slepian inequality to the vectors (U1/r1, . . . , Un/rn)
and (V1/r1, . . . , Vn/rn) and r = 1.

The latter inequality easily extends to Gaussian processes with continuous tra-
jectories defined on a metric space (by the way, the processes satisfying assump-
tion (2.1) belong to this class). Namely, let {U(t), t ∈ T} and {V (t), t ∈ T} be
two centered Gaussian processes with continuous trajectories defined on a com-
mon metric space T . Let EU(t)2 = EV (t)2, t ∈ T , and E(U(t1)U(t2)) ¬
E(V (t1)V (t2)), t1, t2 ∈ T . Then for all compact sets T1, . . . , Tn in T and all
nonnegative r1, . . . , rn we have

(3.16) P
{ n⋃
j=1

{
max
t∈Tj

U(t) ­ rj

}}
­ P

{ n⋃
j=1

{
max
t∈Tj

V (t) ­ rj

}}
.

Now we proceed to the proof of the remaining claim

(3.17) 1− P{E1} → exp(−Cα exp(−r)), ε→ 0.

We provide the corresponding upper and lower bounds. In both cases we use the
Slepian inequality in the form (3.16). Since E1 is defined by the process on long
intervals Li, i ∈ I1, when referring to long intervals in this part we mean Li, i ∈ I1.

Upper bound. Let us compare our process Y with an auxiliary process Z that
is defined as follows. First, let us consider a process Ỹ (t), t ∈

⋃
i∈I1 Li, which

consists of independent copies of Y (t) on the intervals Li. Define

δ2 = δ(ε)2 := sup
t­s(ε)

|E(Y (t)Y (0))|.

Taking into account the correlation decay assumption (2.2) and assumption (3.1)
concerning the choice of s, we have, as ε→ 0,

(3.18) δ2 = o((ln s)−1) = o(γ−2).

Let ξ be an auxiliary standard normal random variable independent of the pro-
cess Ỹ . We define the centered Gaussian process Z(t), t ∈

⋃
i∈I1 Li, by

Z(t) :=
√

1− δ2 Ỹ (t) + δξ.

Then for all t the variances are equal: EY (t)2 = EZ(t)2 = 1. For covariances we
have the following inequalities:
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• for t1 and t2 that belong to the same interval Li we have

E(Z(t1)Z(t2)) = E
((√

1− δ2 Ỹ (t1) + δξ
)(√

1− δ2 Ỹ (t2) + δξ
))

= (1− δ2)E(Y (t1)Y (t2)) + δ2 ­ E(Y (t1)Y (t2)),

where the last inequality follows from E(Y (t1)Y (t2)) ¬
√
EY (t1)2 EY (t2)2

= 1,

• for t1 and t2 that belong to different intervals Li and Lj , by the definition of δ
and by the intervals’ construction we have

E(Z(t1)Z(t2)) = E
((√

1− δ2 Ỹ (t1) + δξ
)(√

1− δ2 Ỹ (t2) + δξ
))

= δ2 ­ E(Y (t1)Y (t2)).

Let X̃ε
i := maxt∈Li Ỹ (t). By applying the Slepian inequality (3.16) to the

processes Y and Z, we obtain

P{E1} = P
{ ⋃
i∈I1
{Xε

i ­ f((ℓ+ s)i)ε}
}

­ P
{ ⋃
i∈I1
{
√
1− δ2 X̃ε

i + δξ ­ f((ℓ+ s)i)ε}
}
.

Let us pass to the complementary events. For every h = h(ε) > 0 the following
elementary bound holds:

(3.19) 1− P{E1} = P
{ ⋂
i∈I1
{Xε

i ¬ f((ℓ+ s)i)ε}
}

¬ P
{ ⋂
i∈I1
{
√
1− δ2 X̃ε

i + δξ ¬ f((ℓ+ s)i)ε}
}

¬ P
{ ⋂
i∈I1
{
√

1− δ2 X̃ε
i ¬ f((ℓ+ s)i)ε+ hε}

}
+ P{δξ ¬ −hε}

=
∏
i∈I1

P
{
Xε

i ¬
f((ℓ+ s)i)ε+ hε√

1− δ2

}
+ P{ξ ¬ −hε/δ},

where the last equality holds because the X̃ε
i ’s are independent copies of Xε

i . We
choose the level h = h(δ, ε) so that, as ε→ 0,

hε/δ →∞,(3.20)

hf(τ)ε2 ∼ hγε→ 0,(3.21)

which is possible under (3.18).
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Under (3.20) the last term of (3.19) is negligible. Therefore, we aim to show
that the product converges to exp(−Cα exp(−r)) as ε → 0. Taking the logarithm
and passing to the complementary events, we see that we have to prove that∑

i∈I1
ln

(
1− P

{
Xε

i ­
f((ℓ+ s)i)ε+ hε√

1− δ2

})
→ −Cα exp(−r).

The probabilities in the sum tend to 0 uniformly over i ∈ I1, since the Xε
i ’s are

identically distributed. Hence∑
i∈I1

ln

(
1− P

{
Xε

i ­
f((ℓ+ s)i)ε+ hε√

1− δ2

})
= −(1 + o(1))

∑
i∈I1

P
{
Xε

i ­
f((ℓ+ s)i)ε+ hε√

1− δ2

}
.

Let us prove that∑
i∈I1

P
{
Xε

i ­
f((ℓ+ s)i)ε+ hε√

1− δ2

}
→ Cα exp(−r).

By Lemma 3.1 we know the exact asymptotics of each term of the sum. Moreover,
due to stationarity of the sequence Xε

i the equivalence is uniform over i ∈ I1.
Therefore the whole sum is equivalent to

Cαℓ
∑
i∈I1

(
f((ℓ+ s)i)ε+ hε√

1− δ2

)2/α−1
exp

(
−
(
f((ℓ+ s)i)ε+ hε√

1− δ2

)2

/2

)
.

We represent this expression as the difference of two sums

(3.22)

Cαℓ
∑

i:(ℓ+s)i+ℓ­τ

(
f((ℓ+ s)i)ε+ hε√

1− δ2

)2/α−1
exp

(
−
(
f((ℓ+ s)i)ε+ hε√

1− δ2

)2

/2

)
and

(3.23)

Cαℓ
∑

i:(ℓ+s)i­σ

(
f((ℓ+ s)i)ε+ hε√

1− δ2

)2/α−1
exp

(
−
(
f((ℓ+ s)i)ε+ hε√

1− δ2

)2

/2

)
.

The asymptotics of the first sum follows from Lemma 3.3 applied with the variable
change ε̃ = ε/

√
1− δ2 ∼ ε and parameters a = ℓ + s ∼ ℓ, b = 0, c = h and

θ = τ − ℓ ∼ τ . Note that because of our choice (3.21), c fits the assumptions of
the lemma. Due to (3.9), (3.3) and (3.18),

(f(θ)ε̃)2 = (f(τ − ℓ)ε̃)2 = (f(τ)ε̃)2 + o(1) = (f(τ)ε)2/(1− δ2) + o(1)

= (f(τ)ε)2 +O((f(τ)εδ)2) + o(1) = (f(τ)ε)2 + o(1).
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Combining this with condition (3.10), Lemma 3.3 gives us the following asymp-
totics for (3.22):

Cαℓ
eγ

2/2

a
(f(θ)ε̃)2/α+β−2 exp{−(f(θ)ε̃)2/2}

∼ Cαℓ
eγ

2/2

ℓ
(f(τ)ε)2/α+β−2 exp{−(f(τ)ε)2/2} ∼ ce−r.

At the same time, Lemma 3.3 with the same ε̃ and with a = ℓ+s ∼ ℓ, b = 0, c = h
and θ = σ provides the asymptotics of (3.23). Since (f(θ)ε̃)2 = (f(σ)ε)2 + o(1)
and (3.11), we obtain

Cαℓ
eγ

2/2

a
(f(θ)ε̃)2/α+β−2 exp{−f(θε̃)2/2}

∼ Cαℓ
eγ

2/2

ℓ
(f(σ)ε)2/α+β−2 exp{−(f(σ)ε)2/2} = o(1).

Subtraction of the sums’ asymptotics implies the required upper bound for
1− P{E1}.

Lower bound. In order to obtain an opposite bound for 1 − P{E1}, we introduce
and compare two more auxiliary processes Y1, Ỹ1. Let ξ be an auxiliary standard
normal random variable independent of the process Y . Let Y1(t) := Y (t) + δξ,
t ∈

⋃
i∈I1 Li. Furthermore, let us consider a sequence of independent standard

Gaussian random variables ξi independent of Ỹ (t), and let

Ỹ1(t) := Ỹ (t) + δξi, t ∈ Li.

Then for all t we have the equality of variances: EY1(t)
2 = E Ỹ1(t) = 1+ δ2. For

covariances we have the following inequalities:

• for t1 and t2 that belong to the same interval Li we have

E(Y1(t1)Y1(t2)) = E(Ỹ1(t1)Ỹ1(t2)),

• for t1 and t2 that belong to different intervals Li and Lj we have

E(Y1(t1)Y1(t2)) = E((Y (t1) + δξ)(Y (t2) + δξ)) = E(Y (t1)Y (t2)) + δ2

­ 0 = E(Ỹ1(t1)Ỹ1(t2)).

We choose h = h(δ, ε) as before, i.e. satisfying (3.20) and (3.21).
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The Slepian inequality (3.16) yields

P
{ ⋃
i∈I1
{X̃ε

i + δξi ­ f((ℓ+ s)i)ε− hε}
}

= P
{ ⋃
i∈I1
{max
t∈Li

Ỹ1(t) ­ f((ℓ+ s)i)ε− hε}
}

­ P
{ ⋃
i∈I1
{max
t∈Li

Y1(t) ­ f((ℓ+ s)i)ε− hε}
}

= P
{ ⋃
i∈I1
{Xε

i + δξ ­ f((ℓ+ s)i)ε− hε}
}
.

By passing to the complementary events, we obtain

P
{ ⋂
i∈I1
{Xε

i + δξ ¬ f((ℓ+ s)i)ε− hε}
}

­ P
{ ⋂
i∈I1
{X̃ε

i + δξi ¬ f((ℓ+ s)i)ε− hε}
}

=
∏
i∈I1

P{X̃ε
i + δξi ¬ f((ℓ+ s)i)ε− hε}

=
∏
i∈I1

P{Xε
i + δξ ¬ f((ℓ+ s)i)ε− hε}.

Further, we apply an elementary bound

1− P{E1} = P
{ ⋂
i∈I1
{Xε

i ¬ f((ℓ+ s)i)ε}
}

­ P
{ ⋂
i∈I1
{Xε

i + δξ ¬ f((ℓ+ s)i)ε− hε}
}
− P{δξ ¬ −hε}

­
∏
i∈I1

P{Xε
i + δξ ¬ f((ℓ+ s)i)ε− hε} − P{δξ ¬ −hε}.

Under assumption (3.20), we have P{δξ ¬ −hε} → 0 as ε → 0. It remains to
prove that the product is greater than exp(−Cα exp(−r))(1 + o(1)). Taking the
logarithm and passing to the complementary events, we see that we have to prove
the bound∑

i∈I1
ln(1− P{Xε

i + δξ ­ f((ℓ+ s)i)ε− hε}) ­ −c exp(−r)(1 + o(1)).

Since all the probabilities in the sum tend to zero uniformly over i ∈ I1, we have∑
i∈I1

ln(1− P{Xε
i + δξ ­ f((ℓ+ s)i)ε− hε})

= −(1 + o(1))
∑
i∈I1

P{Xε
i + δξ ­ f((ℓ+ s)i)ε− hε}.
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Let us prove that∑
i∈I1

P{Xε
i + δξ ­ f((ℓ+ s)i)ε− hε} ¬ Cα exp(−r)(1 + o(1)).

We start with the estimate

(3.24)
∑
i∈I1

P{Xε
i + δξ ­ f((ℓ+ s)i)ε− hε}

¬
∑
i∈I1

(
P{Xε

i ­ f((ℓ+ s)i)ε− 2hε}+ P{δξ > hε}
)

¬
∑

i: (ℓ+s)i+ℓ­τ
P{Xε

i ­ f((ℓ+ s)i)ε− 2hε}+N1P{δξ > hε},

where N1 denotes the number of elements in the set I1; it has asymptotics

N1 ∼
σ − τ

ℓ+ s
=

(R− r)Bε

ℓ+ s
∼ R

f ′(τ)εγℓ
∼ R

f(τ)f ′(τ)ε2ℓ
.

For the sum in (3.24) Lemma 3.1 provides an equivalent expression

(3.25) Cαℓ
∑
i∈I1

(f((ℓ+ s)i)ε− 2hε)2/α−1 exp
(
−(f((ℓ+ s)i)ε− 2hε

)2
/2).

The asymptotics for the last sum follows from Lemma 3.3 with parameters a =
ℓ+ s, b = 0, c = −2h, θ = τ − ℓ, moreover, similarly to the upper bound, we have
a ∼ ℓ, θ ∼ τ , (f(θ)ε)2 = (f(τ)ε)2 + o(1). Therefore Lemma 3.3 combined with
(3.10) yields

Cαℓe
γ2/2

a
(f(θ)ε)2/α+β−2 exp{−(f(θ)ε)2/2}

∼ Cαe
γ2/2(f(τ)ε)2/α+β−2 exp{−(f(τ)ε)2/2} ∼ Cαe

−r.

We have obtained the asymptotics of the first term on the right hand side in (3.24):∑
i:(ℓ+s)i+ℓ­τ

P{Xε
i ­ f((ℓ+ s)i)ε− 2hε} = Cαe

−r(1 + o(1)).

It remains to estimate the second term in (3.24). To this end, we have to specify the
choice of ℓ and R.

So far we have assumed a lower bound for ℓ in (3.2) and an upper bound in (3.3).
We claimed that they are compatible (see Section 3.1 for details). Now we need
another lower bound on ℓ, namely

P(δξ > hε)

ℓf(τ)f ′(τ)ε2
→ 0.
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This does not contradict the upper bound in (3.3), since P(δξ > hε) → 0, so we
may choose ℓ(ε) satisfying this new condition too. Then R = R(ε) can be chosen
growing so slowly that

N1P{δξ > hε} ∼ RP(δξ > hε)

ℓf(τ)f ′(τ)ε2
→ 0.

By summing up the estimates for the terms of (3.24), we arrive at the required
lower estimate for 1− P{E1}.

3.1. Proofs of technical lemmas

3.1.1. Proof of Lemma 3.2. Define

∆ =
1

f ′(τ0)ε

((
2

α
+ β − 2

)
ln γ

γ
+

R̃

γ

)
.

Then, due to (2.4) it is sufficient to show that

f

(
τ0 +∆+ o

(
1

f ′(τ0)εγ

))
= f(τ0) + ∆f ′(τ0) + o

(
1

γε

)
.

Notice that
∆τ−λ0 ∼

ln γ

f ′(τ0)γετλ0
≺ ln γ

f(τ0)γε
∼ ln γ

γ2
.

In particular, ∆ = o(τ0). Moreover, uniformly over ω ∈ [−2, 2] one has

f(τ0 + ω∆) ∼ f(τ0) and f ′(τ0 + ω∆) ∼ f ′(τ0),

since for λ < 1,

ln

(
f(τ0 + ω∆)

f(τ0)

)
=

τ0+ω∆∫
τ0

(ln f)′(x) dx ≍
τ0+ω∆∫

τ0

x−λ dx

≍ (τ0 + ω∆)1−λ − τ1−λ0 ≍ ω∆τ−λ0 = o(1),

and for λ = 1,

ln

(
f(τ0 + ω∆)

f(τ0)

)
≍

τ0+ω∆∫
τ0

x−1 dx = ln(1 + ω∆τ−10 ) = o(1).

A similar reasoning works for f ′. This already shows the second part of the state-
ment, since σ − τ0 can be represented as ∆ for a right choice of R̃.

Uniformly over ω ∈ [0, 2],

f ′′(τ0 + ω∆) ≍ f ′(τ0 + ω∆)(τ0 + ω∆)−λ ∼ f ′(τ0)τ
−λ
0 ≍ f ′′(τ0).
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By the mean value theorem for some ω ∈ [0, 2] we have

f

(
τ0 +∆+ o

(
1

f ′(τ0)εγ

))
− f(τ0) = f ′(τ0 + ω∆)

(
∆+ o

(
1

f ′(τ0)εγ

))
,

since the increase in the argument is smaller than 2∆ as ε goes to 0. Notice that

f ′(τ0 + ω∆) · o
(

1

f ′(τ0)εγ

)
= o

(
1

γε

)
.

It remains to show that

(f ′(τ0 + ω∆)− f ′(τ0))∆ = o

(
1

γε

)
,

or equivalently
(f ′(τ0 + ω∆)− f ′(τ0)) ln γ

f ′(τ0)εγ
= o

(
1

γε

)
.

By the mean value theorem, for some ω̃ ∈ [0, ω],

f ′(τ0 + ω∆)− f ′(τ0) = ω∆f ′′(τ0 + ω̃∆) ≍ ω∆f ′′(τ0) ≍ ω∆f ′(τ0)τ
−λ
0 .

We complete the proof by noticing that ∆τ−λ0 ln γ = o(1). ■

3.1.2. Choice of ℓ(ε) and s(ε). Recall that we are to choose ℓ and s such that (3.1)–
(3.3) hold true, i.e.

ln s ≻ γ2, s/ℓ→ 0, f(τ)f ′(τ)ε2ℓ→ 0.

We recall that due to (3.13) and (3.14),

f(τ)f ′(τ)ε2 ≍ γ2τ−λ ≍ γ1−βe−γ
2/2.

Therefore we can pick s = eγ
2/4 and any ℓ ≻ s such that γ1−βe−γ

2/2ℓ → 0 as
ε→ 0. Note that ℓ = eγ

2/3 clearly fits these conditions, thus the set of choices for
ℓ is not empty.

3.1.3. Proof of Lemma 3.3. The monotone decay of x 7→ x2/α−1 exp{−x2/2} for
large x combined with (f(θ − a) + c)ε→∞ allows us to squeeze the sum in the
statement between two integrals:

1

a

∞∫
θ±a

(f(x)ε+ cε)2/α−1 exp{−(f(x)ε+ cε)2/2} dx.

By changing variables y = (f(x) + c)ε we get x = f−1(y/ε − c). Then dx =
1
ε (f
−1)′(y/ε− c)dy. The integrals transform into

1

aε

∞∫
(f(θ±a)+c)ε

y2/α−1 exp{−y2/2}(f−1)′(y/ε− c) dy.
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To deal with these integrals we estimate (f−1)′(y/ε−c) for large y and for small y
separately via the regularity conditions (2.5) and (2.6) and the relation

(f(θ ± a) + c)ε ∼ γ.

Since f(θ ± a)ε ∼ γ as ε goes to 0,

[f(θ ± a)ε, (1 + κ/2)f(θ ± a)ε] ⊂ [(1− κ)γ, (1 + κ)γ].

For convenience denote L± = (f(θ ± a) + c)ε. Then (2.5) gives

1

aε

(1+κ/2)L±∫
L±

y2/α−1 exp{−y2/2}(f−1)′(y/ε− c) dy

∼ (f−1)′(1/ε)

aε

(1+κ/2)L±∫
L±

y2/α−1 exp{−y2/2}(y − cε)β dy

∼ (f−1)′(1/ε)

aε

(1+κ/2)L±∫
L±

y2/α+β−1 exp{−y2/2} dy

∼ (f−1)′(1/ε)

aε
(L±)

2/α+β−2 exp{−L2
±/2}

∼ (f−1)′(1/ε)

aε
(f(θ)ε)2/α+β−2 exp{−(f(θ)ε)2/2}.

The last equivalence follows from the Lagrange theorem and our conditions, since
for some ω ∈ [−1, 1] one has

L2
± = (f(θ ± a) + c)2ε2

= (f(θ) + f ′(θ + ωa)a+ c)2ε2

= f(θ)2ε2 +O
(
f(θ)f ′(θ + ωa)aε2 + f(θ)cε2

)
= f(θ)2ε2 + o(1).

Moreover, the second regularity condition (2.6) yields

(f−1)′
(
y − cε

ε

)
< (y − cε)β̃(f−1)′

(
1

ε

)
,

implying

1

aε

∞∫
(1+κ/2)L±

y2/α−1 exp{−y2/2}(f−1)′(y/ε− c)dy

≺ (f−1)′(1/ε)

aε
((1 + κ/2)L±)

2/α+β̃−2 exp{−((1 + κ/2)L±)
2/2}

= o

(
(f−1)′(1/ε)

aε
(f(θ)ε)2/α+β−2 exp{−(f(θ)ε)2/2}

)
.
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Finally, the integral is asymptotically equal to

(f−1)′(1/ε)

aε
(f(θ)ε)2/α+β−2 exp{−(f(θ)ε)2/2},

which is equivalent to

eγ
2/2

a
(f(θ)ε)2/α+β−2 exp{−(f(θ)ε)2/2}. ■
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