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Abstract. Continuous-state branching processes (CSBPs) with immigration
(CBIs), stopped on hitting zero, are generalized by allowing the process
governing immigration to be any Lévy process without negative jumps. Un-
like CBIs, these newly introduced processes do not appear to satisfy any
natural affine property on the level of the Laplace transforms of the semi-
groups. Basic properties of these processes are described. Explicit formulae
(on neighborhoods of infinity) for the Laplace transforms of the first passage
times downwards and of the explosion time are derived.
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1. INTRODUCTION

1.1. Motivation and agenda. CSBPs (resp. CBIs) are the continuous analogues and
scaling limits of the basic, but fundamental Bienaymé–Galton–Watson branching
processes (resp. with independent constant-rate immigration). In [21] there was
added to the latter (so in discrete space) the phenomenon of “culling”, that is,
emigration (killing) of individuals at constant rate, but never more than one at
a time. One spoke of continuous-time Bienaymé–Galton–Watson processes with
immigration and culling. It was noted [21, Remark 2.1] that these in turn should
also allow for a continuous-space version.

In this article we construct said continuous-space analogues, and christen them
continuous-state branching processes with spectrally positive migration (CBMs).
Unlike the discrete-space case, it is no longer possible (in general) to separate im-
migration and culling, so it is no longer appropriate to speak about them separately.

∗ This research was supported by the Slovenian Research Agency under project No. N1-0174.
© Probability and Mathematical Statistics, 2022
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We derive the basic properties of the new processes and we study their first-passage
times downwards and explosion times (on the level of Laplace transforms).

The main results are as follows: Theorem 2.1 (construction and basic proper-
ties); Proposition 2.1 (Lamperti-style representation); Theorem 3.1 (first passage
times) and Theorem 3.2 (explosions).

1.2. General notation. For a probability measure P and a random element Y ,

(i) Y⋆P is the law of Y under P, i.e. the probability measure (A 7→ P(Y ∈ A)),
its domain being understood from context;

(ii) when Y is numerical, P[Y ] :=
∫
Y dP is its expectation under P;

(iii) when further G is a sub-σ-field, P[Y |G] := EP[Y |G] is the conditional expec-
tation of Y given G under P.

The symbols ↑ and ↓ mean nondecreasing and nonincreasing respectively.

2. CONSTRUCTION OF CBMS AND FIRST PROPERTIES

We are given two Laplace exponents of Lévy processes having no negative jumps:

Ψb(x) :=
σ2
b

2
x2 − γbx+

∫ (
e−xh − 1 + xh1(0,1](h)

)
πb(dh), x ∈ [0,∞),

where πb is a measure on (0,∞) satisfying
∫
(1 ∧ h2)πb(dh) < ∞, σb ∈ [0,∞),

and γb ∈ R; and

Ψm(x) :=
σ2
m

2
x2 − γmx+

∫ (
e−xh − 1 + xh1(0,1](h)

)
πm(dh), x ∈ [0,∞),

with the analogous qualifications on (πm, σm, γm). The subscripts b and m stand
for branching and migration, respectively. The corresponding generators are given
by

LΨbf(z) :=
σ2
b

2
f ′′(z)+γbf

′(z)+
∞∫
0

(
f(z+h)−f(z)−hf ′(z)1(0,1](h)

)
πb(dh),

LΨmf(z) :=
σ2
m

2
f ′′(z)+γmf ′(z)+

∞∫
0

(
f(z+h)−f(z)−hf ′(z)1(0,1](h)

)
πm(dh),

for f ∈ C2
0 (R) (i.e. for twice continuously differentiable f : R→ R with f, f ′, f ′′

all vanishing at infinity) and z ∈ R; more generally, LΨbf(z) and LΨmf(z) are
defined by the right-hand sides above whenever the relevant expressions are de-
fined. Let also µ be a Borel probability measure on [0,∞), to be thought of as the
initial distribution of the CBM.
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On a filtered probability space (Ω,H,F = (Ft)t∈[0,∞),P) satisfying the usual
assumptions we consider the following independent processes: an F-Poisson ran-
dom measure Mb(ds, dv,dh) on [0,∞)3 with intensity ds dv πb(dh) (for Pois-
son random measures, time will always be the first coordinate; also, when speak-
ing of adaptedness to F , independent increments relative to F , etc., the mea-
sures are canonically identified with the associated point processes); two indepen-
dent standard F-Brownian motions W and B; and an F-Poisson random mea-
sure Nm(ds, dh) on [0,∞)2 with intensity ds πm(dh). Let N̄m and M̄b denote
the compensated versions of Nm and Mb, respectively. There is also an F0-
measurable random variable X0 satisfying X0⋆P = µ. Clearly, constellations as
just described exist for any given triplet (µ, πb, πm). Note also that automatically
(Mb,W,B,Nm) has in fact F-independent increments (jointly, and not just each
component separately) [8, Theorem II.6.3, (II.6.12)].

We combine X0, Nm and B according to Lévy–Itô into a Lévy process X
having no negative jumps,

Xt = X0 + σmBt + γmt

+
∫

(0,t]×[0,1]
h N̄m(ds, dh) +

∫
(0,t]×(1,∞)

hNm(ds, dh), t ∈ [0,∞), a.s.-P,

in the filtration F , with Laplace exponent Ψb and starting law µ. For f and z for
which the right-hand side is defined we also set

(2.1) Af(z) := LΨmf(z) + zLΨbf(z).

Now the stage is set for the construction of CBMs.

THEOREM 2.1 (SDE construction of CBMs). There is a P-a.s. unique càdlàg,
nonnegative real, F-adapted process with lifetime ζ, which we denote Y =
(Yt)t∈[0,ζ), having 0 as an absorbing state, no negative jumps, and such that with
τ0 the first entrance time into {0} by Y , a.s.-P,

Yt = Xt∧τ0 +
∫

(0,t]×[0,Ys−]×[0,1]
hM̄b(ds, dv,dh)(2.2)

+
∫

(0,t]×[0,Ys−]×(1,∞)

hMb(ds, dv,dh)

+ σb
t∫
0

√
Ys dWs + γb

t∫
0

Ys ds

for t ∈ [0, ζ), and sup[0,ζ) Y = ∞ a.s.-P on {ζ < ∞} (implicitly, necessarily
ζ > 0 a.s.-P). The process Y further enjoys the following properties:

(i) it is adapted to the P-augmented natural filtration generated by X0, B, W ,
Nm,Mb (we mean of course X0 as a constant process here; Y is viewed as
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a process on [0,∞) by transferring it to the cemetery (natural: ∞) after ζ)
and its P-law, Pµ := Y⋆P (completion implied), is uniquely determined by the
triplet (µ,Ψb,Ψm);

(ii) it is quasi-left-continuous on [0, ζ) in the filtration F , in the sense that for any
sequence (Sn)n∈N of F-stopping times with Sn ↑ S a.s.-P for some S one
has limn→∞ Y (Sn) = Y (S) a.s.-P on {S < ζ};

(iii) it is strong Markov on [0, ζ) in the filtration F , in the sense that for any F-
stopping time S, FS is P-independent of YS+· given YS on {S < ζ}, further-
more, for any nonnegative measurable map G, P[G(YS+·) |S < ζ] = Pν [G],
where ν is the P-law of YS conditionally on {S < ζ} (assuming of course
P(S < ζ) > 0);

(iv) limζ− Y =∞ a.s.-P on {0 < ζ <∞};

(v) (I) for any {α, ᾱ} ⊂ [0,∞) and any f ∈ C2
c ([0,∞)) (i.e. compactly sup-

ported and admitting a C2 extension to a neighborhood of [0,∞)) satis-
fying LΨmf(0) = 0, the process M given by, for t ∈ [0,∞),

Mt := f(Yt)e
−αt−ᾱ

∫ t

0
Ys ds1{t<ζ} − f(Y0)

−
t∧ζ∫
0

e−αs−ᾱ
∫ s

0
Yu du

(
Af(Ys)− αf(Ys)− ᾱYsf(Ys)

)
ds

is an F-martingale under P, vanishing at zero, and bounded up to every
finite deterministic time, so that in particular A is the generator of Y on
the set {g ∈ C2

c ([0,∞)) : LΨmg(0) = 0};
(II) if f ∈ C2([0,∞)) is merely bounded and LΨmf(0) = 0, then the same

process M (restricted to [0, ζ)) is a local martingale on [0, ζ) in F un-
der P, in the sense that there exists a sequence (Sn)n∈N of F-stopping
times that is ↑ ζ, and such that for each n ∈ N, Sn < ζ a.s.-P on
{ζ <∞}, and MSn = MSn∧ · is an (F ,P)-martingale.

When X is a subordinator (resp. the zero process), we recognize in (2.2) the
stochastic equation solved by a CBI process stopped on hitting zero with branching
mechanism Ψb and immigration mechanism −Ψm (resp. a CSBP with branching
mechanism Ψb). We thus add here a further dynamics in that we allow X to be
any Lévy process without negative jumps. Oscillations or negative drift represent
the possibility of culling, so that immigration is counterbalanced by killing an in-
dividual independently of the population size at a constant rate in time. We stress
that because of the presence of culling it is only natural, in general, to stop the
process Y on hitting zero (unlike when X is a (nonzero) subordinator), at least
as long as we insist on the state space being [0,∞) (this is clearly visible if one
considers the special case when γb, γm are both < 0, πc and πb are nonzero and
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carried by (1,∞), σb = σm = 0). This, however, does not a priori preclude the
possibility that for other, but necessarily non-generic, constellations of input data
the Y of (2.2) could not be naturally prolongated after τ0 as a nonnegative process
(as happens for CBIs).

We may also mention here that squared Bessel processes of negative dimen-
sion [7, Definition 3] (stopped on hitting zero) are instances of CBMs. The SDE
technique is not uncommon in the branching literature; see e.g. [17, 4, 6] and the
references therein.

Proof of Theorem 2.1. Existence. Fix, for the time being, n ∈ N. We claim that
thanks to [15, Theorems 3.2 and 5.1] there exists a pathwise unique strong (global,
no lifetimes) solution Y n to the stochastic integral equation

Y n
t = Y n

0 +
t∫
0

(
γm + γb((Y

n
s− ∨ 0) ∧ n)

)
ds(2.3)

+
t∫
0

σb

√
(Y n

s− ∨ 0) ∧ n dWs +
t∫
0

σm dBs

+
∫

(0,t]×U0

g0(Y
n
s−, u0)N0(ds, du0)

+
∫

(0,t]×U1

g1(Y
n
s−, u1)N1(ds, du1), t ∈ [0,∞),

Y n
0 = X0,

where

U0 := ([0, n]× [0, 1]) ∪ [0, 1],
U1 := ([0, n]× (1,∞)) ∪ (1,∞),

N0(ds, dh) := Nm(ds, dh) for h ∈ [0, 1],

N0(ds, du0) :=Mb(ds, dv,dh) for u0 = (v, h) ∈ [0, n]× [0, 1],

N0 := the compensated measure of N0,

N1(ds, dh) := Nm(ds, dh) for h ∈ (1,∞),

N1(ds, du1) :=Mb(ds, dv,dh) for u1 = (v, h) ∈ [0, n]× (1,∞),

g0(x, h) := h for (x, h) ∈ R× [0, 1],

g0(x, u0) := 1[v,∞)(x)h for (x, u0) = (x, (v, h)) ∈ R× ([0, n]× [0, 1]),

g1(x, h) := h for (x, h) ∈ R× (1,∞),

g1(x, u1) := 1[v,∞)(x)h for (x, u1) = (x, (v, h)) ∈ R× ([0, n]× (1,∞)).

Indeed, (2.3) is just (2.2) except that one allows the process Y n to evolve after it
hits negative values (without branching, just following X) and that the branching
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is also “truncated” at level n (to preclude explosion), vis-à-vis the process Y . In
fact, we may write more succinctly

Y n
t = Xt +

∫
(0,t]×[0,(Y n

s−∨0)∧n]×[0,1]
hM̄b(ds, dv,dh)(2.4)

+
∫

(0,t]×[0,(Y n
s−∨0)∧n]×(1,∞)

hMb(ds, dv,dh)

+ σb
t∫
0

√
(Y n

s ∨ 0) ∧ n dWs + γb
t∫
0

(Y n
s ∨ 0) ∧ n ds,

Y n
0 = X0.

However, it is the form (2.3) given above, not (2.4), that relates directly to [15,
(2.1)].

Now, strictly speaking the stochastic equation for Y n does not fall under [15]
because of the following minor point: in [15, (2.1)] the Brownian motion is one-
dimensional, while here it is two-variate. However, the generalization of the results
of [15] to a setting allowing a multidimensional Brownian motion is straightfor-
ward, especially if one of the two Brownian motions is just integrated against a
constant (which is the present case). Furthermore, as far as the question of the
existence of a strong pathwise unique solution is concerned, the integral

∫
[0,t]×U1

may be ignored [15, Proposition 2.1]. Once this has been noted it is easy to check
that all the conditions of [15] required to establish the strong pathwise unique so-
lution Y n of the above stochastic equation (trivialy adjusted to allow a two-variate
Brownian motion) are in fact met.

Let next ζn be the first time the stopped process (Y n)τ
n
0 exits the interval [0, n];

here τn0 is the first entrance time of Y n into {0}. Then ζn+1 ­ ζn and Y n+1 = Y n

on [0, ζn) a.s.-P. Set ζ := limn→∞ ζn and Y := limn→∞ Y n on [0, ζ) a.s.-P.
We get all the properties stipulated for Y in the “unique existence” part of the
proposition. Thus existence is proved.

Uniqueness. Let Y I = (Y I
t )t∈[0,ζI) and Y II = (Y II

t )t∈[0,ζII) both have the
properties listed for Y in the “unique existence” part of the proposition. Let τ in
(resp. τ i0) be the first exit time from [0, n] (resp. first entrance time into {0}) of
Y i, n ∈ N, i ∈ {I, II}. Then, for each i ∈ {I, II}, n ∈ N, the stopped process
(Y i)τ

i
n∧τ i0 satisfies, on [0, τ in ∧ τ i0] ∩ [0, ζi), the stochastic equation given above

for Y n. By the pathwise uniqueness of these solutions we obtain Y I = Y II a.s.-P
on [0, τ In ∧ τ IIn ∧ τ I0 ∧ τ II0 ] ∩ [0, ζI ∧ ζII). Since sup[0,ζi) Y

i = ∞ a.s.-P on
{ζi <∞} and since Y i is càdlàg, therefore locally bounded on [0, ζi), we see that
τ in ↑ ζi a.s.-P as n → ∞, i ∈ {I, II}. Therefore, letting n → ∞, Y I = Y II

a.s.-P on [0, τ I0 ∧ τ II0 ] ∩ [0, ζI ∧ ζII). Because 0 is absorbing for Y i, i ∈ {I, II},
it follows further that Y I = Y II a.s.-P on [0, ζI ∧ ζII). Next, write I ′ := II
and II ′ := I; because again sup[0,ζi) Y

i = ∞ a.s.-P on {ζi < ∞} and because
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Y i′ admits left limits on [0, ζi
′
) we get ζi ­ ζi

′
a.s.-P for each i ∈ {I, II}. In

conclusion, ζI = ζII a.s.-P and finally Y 1 = Y 2 a.s.-P. Therefore there is a.s.-P
unique existence.

We now establish the other properties of Y .
(i) Adaptedness to the augmented natural filtration is by construction, since

each Y n, n ∈ N, is a strong solution in its own right. That Pµ is uniquely
determined by the triplet (µ,Ψb,Ψm) is because pathwise uniqueness implies
uniqueness in law by a well-known general argument (as in [18, proof of Theo-
rem IX.1.7]).

(ii) Quasi-left-continuity is immediate from (2.2).
(iii) Let us prove the strong Markov property. On {S < ζ} introduce

• W ′ := (WS+t −WS)t∈[0,∞), the increments of W after time S;

• B′ := (BS+t −BS)t∈[0,∞), the increments of B after time S;

• X ′ := YS + (XS+t −XS)t∈[0,∞), the increments of X after S offset by YS ;

• M′b(ds, dv,dh) :=Mb((ds−S)∩ (S,∞), dv,dh), the shifted Poisson random
measureMb;

• N ′m(ds, dh) := Nm((ds − S) ∩ (S,∞), dh), the shifted Poisson random mea-
sure Nm;

• Y ′ := YS+· with lifetime ζ ′ := ζ − S, the shifted process Y .

Then we have, with τ ′0 the first entrance time of Y ′ into {0}, a.s.-P,

Y ′t = X ′t∧τ ′0
+

∫
(0,t]×[0,Y ′s−]×[0,1]

hM̄′b(ds, dv,dh)

+
∫

(0,t]×[0,Y ′s−]×(1,∞)

hM′b(ds, dv,dh)

+ σb
t∫
0

√
Y ′s dW

′
s + γb

t∫
0

Y ′s ds, t ∈ [0, ζ ′),

on {S < ζ} (the bar in M̄′b designates the compensated measure); also, 0 is absorb-
ing for Y ′, Y ′ has no negative jumps and sup[0,ζ′) Y

′ =∞ a.s.-P on {ζ ′ <∞}. By
the strong Markov property of (Mb,W,B,Nm) in F (applied to the stopping time
S′ = S1{S<ζ} +∞1{ζ¬S}; note S′ = S on {S′ <∞} = {S < ζ}) and the very
construction of Y this means two things: first, Y ′, being a measurable function of
(YS ,M′b, B′,W ′,N ′m), is P-independent of FS given YS on {S < ζ}; second,
Y ′⋆P(· |S < ζ) = Pν for ν := (YS)⋆P(· |S < ζ). But this is precisely what is
required for the strong Markov property.
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(iv) If it is not the case that limζ− Y = ∞ a.s.-P on {0 < ζ < ∞}, then, for
some c ∈ (0,∞), with positive P-probability, Y hits the level c after having first
gone above the level c+1, and does so consecutively infinitely many times in finite
time, which is in contradiction with the strong Markov property (coupled with the
downwards skip-free property) and the strong law of large numbers.

(v) The first martingale claim is a consequence of the second by bounded con-
vergence. For the second martingale claim we appeal, for each n ∈ N, to Itô’s
formula [8, Theorem II.5.1] for the stopped (F ,P)-vector semimartingale((

Y n
t , t,

t∫
0

Y n
s ds

)
t∈[0,∞)

)ζn∧τn0

to obtain P-a.s., for t ∈ [0, ζn ∧ τn0 ] ∩ [0,∞),

f(Yt)e
−αt−ᾱ

∫ t

0
Ys ds−f(Y0) =

t∫
0

e−αs−ᾱ
∫ s

0
Yu duf ′(Ys)(σm dBs+σb

√
Ys dWs)

+
t∫
0

e−αs−ᾱ
∫ s

0
Yu du

(
f ′(Ys)(γm+γbYs)−αf(Ys)− ᾱYsf(Ys)

)
ds

+
1

2

t∫
0

e−αs−ᾱ
∫ s

0
Yu duf ′′(Ys)(σ

2
m ds+σ2

bYs ds)

+
∫

(0,t]×(0,∞)

e−αs−ᾱ
∫ s

0
Yu du(f(Ys−+h)−f(Ys−)) N̄m(ds, dh)

+
t∫
0

∫
(0,∞)

e−αs−ᾱ
∫ s

0
Yu du

(
f(Ys+h)−f(Ys)−hf ′(Ys)1(0,1](h)

)
πm(dh) ds

+
∫

(0,t]×[0,Ys−]×(0,∞)

e−αs−ᾱ
∫ s

0
Yu du(f(Ys−+h)−f(Ys−))M̄b(ds, dv,dh)

+
t∫
0

∫
(0,∞)

e−αs−ᾱ
∫ s

0
Yu du

(
f(Ys+h)−f(Ys)−hf ′(Ys)1(0,1](h)

)
Ys πb(dh) ds

=
t∧ζ∫
0

e−αs−ᾱ
∫ s

0
Yu du

(
Af(Ys)−αf(Ys)− ᾱYsf(Ys)

)
ds

+
t∫
0

e−αs−ᾱ
∫ s

0
Yu duf ′(Ys)(σm dBs+σb

√
Ys dWs)

+
∫

(0,t]×(0,∞)

e−αs−ᾱ
∫ s

0
Yu du(f(Ys−+h)−f(Ys−)) N̄m(ds, dh)

+
∫

(0,t]×[0,Ys−]×(0,∞)

e−αs−ᾱ
∫ s

0
Yu du(f(Ys−+h)−f(Ys−))M̄b(ds, dv,dh).

On the r.h.s. above we recognize local martingales in the last three lines (once we
have stopped them at ζn ∧ τn0 ). We deduce that M ζn∧τn0 = M ζn (the equality
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thanks to LΨmf(0) = 0, which renders Af(0) = 0) is an (F ,P)-local martingale
for each n ∈ N, so M is “locally a local martingale on [0, ζ)”. By the usual trick
(basically of [9, Lemma 1.35], mutatis mutandis to handle the lifetime ζ) it follows
that M is a local martingale on [0, ζ) in the sense stipulated. ■

We call the (law of the) process Y as rendered in the preceding theorem
a continuous-state branching process with spectrally positive migration (CBM),
branching mechanism Ψb, migration mechanism Ψm, and initial law µ. If needed,
to emphasize µ, we write Y µ and/or Pµ in lieu of Y and/or P, respectively (which
should not be confused with Pµ = Y⋆P = (Y µ)⋆(Pµ)). For a ∈ [0,∞) we let τa
be the first entrance time of Y into [0, a].

REMARK 2.1. By a standard general argument (cf. [8, Theorem IV.1.1]) one
shows that the map [0,∞) ∋ x 7→ Px(A) is universally measurable for each
measurable A, that P[G(YS+·) | FS ] = PYS

[G] holds a.s.-P on {S < ζ} in Theo-
rem 2.1(iii), and that Pµ =

∫
Pz µ(dz). Here we have written (and will continue

to write) Px := Pδx , x ∈ [0,∞), for short.

REMARK 2.2. In Theorem 2.1(v), if for some a ∈ [0,∞) the initial law µ is
carried by [a,∞) and if, ceteris paribus, the process M is stopped at τa, then one
can drop the assumption LΨmf(0) = 0 and it is enough for the C2 and bounded-
ness property to prevail on [a,∞), and still the same martingale claims hold true.

In complete analogy with the discrete-space case [21, Remark 2.1], the process
Y satisfies a random time-change integral equation involving two Lévy processes
having no negative jumps, one of which is X .

PROPOSITION 2.1 (Lamperti transform for CBMs). On an extension of the un-
derlying probability space there exists a Lévy process L having no negative jumps,
vanishing at zero a.s., with Laplace exponent Ψb, and such that

(2.5) Yt = Xt∧τ0 + L∫ t

0
Ys ds

, t ∈ [0, ζ), a.s.,

and also [in what follows, −1 means the left-continuous inverse]

(a) L has independent increments relative to the augmented natural filtration of
the pair of processes (L, (

∫ ·∧ζ
0

Ys ds)
−1) initially enlarged by σ(X), in par-

ticular L is independent of X , while

(b) X has independent increments relative to the augmented join of the natural
filtration of (L, (

∫ ·∧ζ
0

Ys ds)
−1), time-changed by

∫ ·∧ζ
0

Ys ds, and the natural
filtration of X .

Proof. We may and do assume that F is the augmented natural filtration of
(X0,W,Mb, B,Nm). By first extending (if necesary) the probability space by an
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independent factor supporting a standard Brownian motion H and a Poisson ran-
dom measure N(du,dh) on [0,∞)2 with intensity duπb(dh), we may and do also
assume the latter were there to begin with.

Put γt :=
∫ t∧ζ
0

Ys ds for t ∈ [0,∞); then γ|[0,ζ∧τ0) is strictly increasing, van-
ishing at zero and continuous. Let γ−1 be its inverse, defined, strictly increasing,
vanishing at zero and continuous on [0, ρ), where ρ :=

∫ ζ

0
Ys ds. Additionally put

γ−1 := ζ ∧ τ0 = limρ− γ
−1 on [ρ,∞). Thus γ−1 is just the left-continuous inverse

of γ and (γ−1(u))u∈[0,∞) is a continuous nondecreasing family of F-stopping
times, a time-change. Define the filtration G as the augmented join of the time-
changed filtration Fγ−1 , of the natural filtration of the pair of processes (H,N),
and of σ(B,Nm, X0) (initial enlargement). Since {ρ ¬ u} = {γ−1(u) = ∞}
for all u ∈ [0,∞), we see that ρ is a G-stopping time. For u ∈ [0, ρ) set W̃u :=∫ γ−1(u)

0

√
Ys dWs and

Ñb([0, u]×A) :=
γ−1(u)∫

0

Ys−∫
0

∫
A

Mb(ds, dv,dh), A ∈ B[0,∞)

(it is easy to check that this uniquely determines a random measure on [0, ρ) ×
[0,∞)).

By time-change (optional sampling) and independent enlargement we see that
the process W ′ =

∫ γ−1(·)
0

√
Y s dWs, which agrees with W̃ on [0, ρ), is a contin-

uous local martingale in the filtration G vanishing at zero that is stopped at ρ with
terminal value W̃ρ :=

∫ ζ

0

√
Y s dWs a.s. on {ρ < ∞}. Its quadratic variation pro-

cess is given by ⟨W ′⟩u =
∫ γ−1(u)

0
Ys dWs = u∧ρ a.s. for u ∈ [0,∞). Now define

W̃u := W̃ρ+H(u)−H(ρ) for u ∈ [ρ,∞). Then W̃ = W ′+1[[ρ,∞))(H−H(ρ)) is
a G-continuous local martingale vanishing at zero with increasing process given by
⟨W̃ ⟩u = u a.s. for u ∈ [0,∞). By Lévy’s martingale characterization of Brownian
motion [8, Theorem II.6.1] it follows that W̃ is a G-Brownian motion.

Similarly, again by time-change (optional sampling) and independent enlarge-
ment, we see that for each Borel set A ⊆ [0,∞) of finite πb-measure the process∫ γ−1(·)
0

∫ Ys−
0

∫
A
Mb(ds, dv,dh)− πb(A)(· ∧ ρ) is a G-martingale that is stopped

at ρ with terminal value

ζ∫
0

Ys−∫
0

∫
A

Mb(ds, dv,dh)− πb(A)ρ =: Ñb([0, ρ]×A)− πb(A)ρ

a.s. on {ρ <∞}. Then define the random measure Ñb on [0,∞)2 unambiguously
by specifying further that Ñb([0, u] × A) := Ñb([0, ρ] × A) +N((ρ, u] × A) for
u ∈ [ρ,∞) and A ∈ B[0,∞). We see that for each Borel set A ⊂ [0,∞) of finite
πb-measure the process Ñb([0, ·]×A)− πb(A)· is a G-martingale. It follows from
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the martingale characterization of Poisson point processes [8, Theorem II.6.2] that
Nb(dw,dh) is a G-Poisson random measure with intensity πb(dh) dw.

Further, it is well-known that in a common filtration a Poisson point process
and a Brownian motion are automatically independent [8, Theorem II.6.3]; what is
more, they have jointly independent increments in that filtration, which is in fact
proved in [8, (II.6.12)]. Therefore, setting (as usual a bar indicates the compensated
measure)

Lu := σbW̃u + γbu

+
∫

[0,u]×[0,1]

¯̃Nb(dw,dh) +
∫

[0,u]×(1,∞)

Ñb(dw,dh), u ∈ [0,∞), a.s.,

we get a G-Lévy process L having no negative jumps, with Laplace exponent Ψb.
Moreover, from (2.2) we obtain exactly (2.5). The fact that L is a Lévy process in
the filtration G gives (a), just because G contains the augmented natural filtration
of the pair of processes (L, γ−1) initially enlarged by σ(X). On the other hand,
X has independent increments relative to F initially enlarged by σ(H,N) (and
augmented), which contains the natural filtration of X but also that of (L, γ−1)
time-changed by γ, since the latter is contained in

(Fγ−1 ∨σ(H,N))γ = (Fγ−1)γ ∨σ(H,N) = F· ∧τ0∧ζ ∨σ(H,N) ⊂ F ∨σ(H,N)

(for the second equality see [18, Exercise 1.12]; the first follows easily because
σ(H,N) is independent of F∞). ■

Some historical comments on the preceding are in order. When X = 0, the
time-change delineated above is originally due to Lamperti [13], which explains
the name “Lamperti transform”; see also [2]. In fact, the Lamperti transform for
CSBPs works also in the other direction, when constructing Y from L. Paper [1]
generalizes the transform to CBIs (without stopping on hitting zero), albeit only in
the latter direction, starting from the pair (X,L) to obtain Y . Paper [16] handles
the Lamperti transform of CSBPs with competition (both ways) in the SDE setting;
many of the ideas of the proofs of Theorem 2.1 and of Proposition 2.1 come from
that source.

It appears that obtaining the converse to Proposition 2.1 is more involved for
CBMs, vis-à-vis CBIs or CSBPs with competition, and this is left as an open prob-
lem. The main difficulty lies in establishing that (2.5) has a unique solution for Y
given (X,L), in the appropriate precise sense (if indeed it can be made precise
in any reasonable way). Note that, on the one hand, the approach of [1, p. 1603,
proof of Theorem 1, uniqueness, esp. last display] for CBIs relies heavily on the
monotonicity of X , which is absent in the setting of CBMs. On the other hand, the
line of attack of [16, proof of Theorem 2.2] (to relate uniqueness of (2.5) to the
uniqueness of (2.2)) is hindered by the fact that, roughly speaking, one has to work
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simultaneously with the filtrations of X and L which “run on different time-scales”
(it is not enough to just shift between time-changed filtrations, cf. items (a) and (b)
of Proposition 2.1).

We might also mention that a further Lamperti-style transform of a CBM pro-
cess leads to “CSBPs with collisions” (see e.g. [14, Section 2, the process R when
g is quadratic] for a special case); but this connection will not be explored here.

COROLLARY 2.1. Assume the CSBP with branching mechanism Ψb is non-
explosive. Then P(ζ <∞) = 0, i.e. the CBM is nonexplosive as well.

This result will be refined to an equivalence in Corollary 3.4 (under assump-
tion (3.1)).

Proof of Corollary 2.1. Coupling argument. Suppose per absurdum that
P(ζ < ∞) > 0. We may and do assume that µ = δz for some z ∈ (0,∞).
Let X = (Xt)t∈[0,∞) be the running supremum of X: Xt := sups∈[0,t]Xs for
t ∈ [0,∞). By continuity from below, P(ζ < ∞, Xζ < m) > 0 for some
m ∈ (z,∞). Let Ỹ be the solution to (2.5) with X ≡ m (for a constant X we
know that (2.5) has an a.s. unique solution). So Ỹ is a CSBP with starting point
m and branching mechanism Ψb. All the corresponding quantities get a tilde. We
claim that ζ̃ ¬ ζ a.s. on {ζ <∞, Xζ < m} (which implies that ζ̃ <∞ with pos-
itive probability, contradicting the nonexplosivity of Ỹ and completing the proof).
Suppose ζ < ζ̃ with positive probability on {ζ < ∞, Xζ < m}. Then we can-
not have

∫ t

0
Ys ds ¬

∫ t

0
Ỹs ds for all t ∈ [0, ζ) a.s. on {ζ < ζ̃,Xζ < m}, since

otherwise, letting t ↑ ζ yields (by the Lamperti transform for Y ) ∞ =
∫ ζ

0
Ỹs ds

a.s. on the event {ζ < ζ̃,Xζ < m} of positive probability, contradicting the local
boundedness of Ỹ on [0, ζ̃). So with positive probability on {ζ < ζ̃,Xζ < m}, we
have

∫ t

0
Ys ds >

∫ t

0
Ỹs ds for some t ∈ [0, ζ). Let

δ := inf
{
t ∈ [0, ζ ∧ ζ̃) :

t∫
0

Ys ds >
t∫
0

Ỹs ds
}
.

A.s. on {δ < ζ < ζ̃,Xζ < m}, an event of positive probability, we have by the
Lamperti transform

Yδ = Xδ + L∫ δ

0
Ys ds

< m+ L∫ δ

0
Ys ds

= m+ L∫ δ

0
Ỹs ds

= Ỹδ,

contradicting the fact that
∫ ·
0
Ys ds >

∫ ·
0
Ỹs ds immediately after δ. ■

Let us conclude this section by emphasizing, at least on an informal level, the
fundamental difference between CBI and CBM processes. The former are such
that for independent X1, X2, L1, L2, L, with L1 and L2 having the same law as L,
the process associated (via the Lamperti transform) to the pair (X1 + X2, L) has
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the same law as the sum of the processes associated to (X1, L1) and (X2, L2). Put
more succinctly, CBIs can be superposed.

This property fails for CBMs. Analytically it is a manifestation of the “affine”
property of the Laplace transform of a CBI process [11, (1.1)], which cannot hold
for the CBM class [11, Theorem 1.1]. In this connection, one should emphasize
that the exponential functions eα := e−α·, α ∈ (0,∞), do not actually fall under
Theorem 2.1(v) (not even the local martingale part, just because LΨmeα(0) need
not be 0), at least not generically. So even though as a matter of analytical fact

Azeα(z) = Ψm(α)eα(z) + zΨb(α)eα(z)

=

(
Ψm(α)−Ψb(α)

∂

∂α

)
eα(z) =: Bαeα(z),

and even if Ψm ­ 0 (so that Ψm may be interpreted as the instantaneous rate
of killing in the operator B), one is not able to simply “integrate” this duality on
the level of (sic) generators to a Laplace duality on the level of semigroups [10,
Proposition 1.2] (as is the case for CBI). Nevertheless:

PROPOSITION 2.2. Suppose two CBMs Y 1 and Y 2 have been defined accord-
ing to (2.2) using independent Brownian and Poisson drivers in the common fil-
tration F under a common probability P. All the quantities pertaining to Y i get
a superscript i ∈ {1, 2}. Suppose Ψ1

b = Ψ2
b =: Ψb. Then there exists (still on

the same probability space, in the same filtration) a CBM process Y = (Yt)t∈[0,ζ)
with initial distribution µ := µ1 ⋆ µ2, branching mechanism Ψb, and migration
mechanism Ψm := Ψ1

m +Ψ2
m, such that, a.s.-P, ζ ∧ τ10 ∧ τ20 = ζ1 ∧ ζ2 ∧ τ10 ∧ τ20

and Y = Y 1 + Y 2 on [0, τ10 ∧ τ20 ∧ ζ). If Ψ2
m = 0 then we may further insist that,

on the event {τ20 < τ10 ∧ ζ}, a.s.-P, ζ = ζ1 and Y = Y 1 on [τ20 , ζ).

Proof. Define the random measure

Mb(A) :=
∫
A

1[0,Y 1
s−)

(v)M1
b(ds, dv,dh)

+
∫
A

1[Y 1
s−,∞)(v)1A(s, v − Y 1

s−, h)M2
b(ds, dv,dh), A ∈ B[0,∞)3 ,

where we understand Y 1 = ∞ on [ζ1,∞). Then by [8, Theorem II.6.2] we find
thatMb(ds, dv,dh) is anF-Poisson random measure with intensity ds dv πb(dh).
More trivially,Nm := N 1

m+N 2
m is anF-Poisson random measure and the intensity

of Nm(ds, dh) is ds πm(dh) with πm := π1
m + π2

m. Besides, P-a.s.Mb has no
jumps in common with Nm.

Similarly, the process W := (Y 1+Y 2)−1/2 ·(
√
Y 1 ·W 1+

√
Y 2 ·W 2), defined

on [0, ζ1 ∧ ζ2 ∧ τ10 ∧ τ20 ) and extended by the increments of W 1 thereafter, is a
standard F-Brownian motion. Again more trivially,

B := ((σ1
m)2 + (σ2

m)2)−1(σ1
mB1 + σ2

mB2)
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(or just B := B1, say, if σ1
m = σ2

m = 0) is a standard F-Brownian motion. In
addition, P-a.s. the covariation process of W and B vanishes.

From the preceding it follows [8, Theorem II.6.3] that the processesMb, Nm,
B and W are independent. Let Y be the CBM corresponding to the initial value
X0 := X1

0 + X2
0 and these drivers according to (2.2). Its branching mechanism

is Ψb, its migration mechanism is Ψm and its initial value is µ. Taking the sum
of (2.2) corresponding to Y 1 and Y 2 we get the remainder of the claim (by the
uniqueness of Y as a solution to (2.2)). ■

COROLLARY 2.2. CBMs are stochastically monotone in the starting law, with
the (natural) convention that the coffin state is set equal to ∞, [0,∞] having the
usual order: if µ′ is another law on B[0,∞) with µ ¬ µ′ (in first-order stochastic
dominance) then Pµ[G] ¬ Pµ′ [G] for any measurable map G : [0,∞][0,∞) →
[−∞,∞] satisfying

ω ¬ ω′ ⇒ G(ω) ¬ G(ω′)

for {ω, ω′} ⊂ [0,∞][0,∞) (G is nondecreasing relative to the natural partial order
induced on [0,∞][0,∞) by the linear order ¬ on [0,∞]) and Pµ[G

−] <∞.

Proof. Coupling. In the context of Proposition 2.2 take X2 constant and equal
to X2

0 (so Ψ2
m = 0). The processes Y and Y 1 have the same branching and mi-

gration mechanisms but Y starts above Y 1 a.s.-P. Also, a.s.-P, ζ ∧ τ10 ∧ τ20 =
ζ1 ∧ ζ2 ∧ τ10 ∧ τ20 and Y = Y 1 + Y 2 on [0, τ10 ∧ τ20 ∧ ζ); furthermore, on the event
{τ20 < τ10 ∧ ζ}, a.s.-P, ζ = ζ1 and Y = Y 1 on [τ20 , ζ). It follows that Y ­ Y 1 ev-
erywhere a.s.-P [with the convention that the coffin state is set equal to∞, [0,∞]
having the usual order]. ■

3. FIRST PASSAGE TIMES AND EXPLOSIONS

To avoid the analysis of some special cases, which are perhaps not of much interest
in the present context, we assume for the remainder of this text that (in the notation
of the Lamperti transform, Proposition 2.1)

(3.1) neither X nor L have a.s. nondecreasing paths.

We call such CBMs nondegenerate. In other words, Ψb and Ψm are Laplace ex-
ponents of spectrally positive Lévy processes (SPLPs) [in the narrow sense] or of
strictly negative drifts. Recall that the case when X is a subordinator (resp. the
zero process) corresponds to a CBI (resp. a CSBP) process and this has been stud-
ied in [3] (at least as far as first passage times are concerned). So it is only the case
when L is a subordinator that is being left (completely) untreated.

Let ξ be the canonical process on the space of càdlàg nonnegative real paths
with lifetime; let l be the lifetime of ξ and set σa := inf {t ∈ [0, l) : ξt ¬ a} for
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a ∈ [0,∞). We believe that no confusion can arise from the notation σa vis-à-vis
the diffusion coefficients σb and σm (we will never use b and m for the first passage
level).

Denote by Ψ−1b : [0,∞) → [0,∞) and Ψ−1m : [0,∞) → [0,∞) the so-called
right-continuous inverses of Ψb and Ψm, respectively:

Ψ−1w (t) := inf {z ∈ [0,∞) : Ψw(z) > t}, t ∈ [0,∞), w ∈ {b,m}

(finite, due to (3.1)). In the next theorem the case ᾱ = 0 is mainly of interest, but
the inclusion of ᾱ > 0 does not really make the proof any longer or more difficult,
and it allows us to procure some information on the “cumulative lifetime-to-date”
process

∫ ·
0
ξs ds.

THEOREM 3.1 (First passage times of CBMs). Let α, ᾱ ∈ [0,∞). Suppose
Ψm(Ψ−1b (ᾱ)) < α (i.e. Ψ−1b (ᾱ) < Ψ−1m (α) and [α > 0 or Ψ−1b (ᾱ) > 0]), or else
suppose that Φ := Ψ−1b (ᾱ) = Ψ−1m (α) > 0. For x ∈ [0,∞) put

Φα,ᾱ(x) :=
∞∫

Ψ−1
b (ᾱ)

dz

Ψb(z)− ᾱ
exp

(
−xz −

z∫
Ψ−1

m (α)

Ψm(u)− α

Ψb(u)− ᾱ
du

)
(3.2)

or
Φα,ᾱ(x) := e−Φx

according as Ψm(Ψ−1b (ᾱ)) < α or Ψ−1b (ᾱ) = Ψ−1m (α) > 0. Then for a ¬ x from
[0,∞),

(3.3) Px[e
−ασa−ᾱ

∫ σa
0

ξsds;σa < l] =
Φα,ᾱ(x)

Φα,ᾱ(a)
.

Before we proceed to the proof, some comments are in order.

REMARK 3.1. Any θ ∈ (Ψ−1b (ᾱ),∞) may replace Ψ−1m (α) in (3.2): it then
changes it only by a multiplicative constant, which is immaterial. The delimiter
Ψ−1m (α) seems most natural because it precisely separates the area of positivity
and negativity of the integrand. Equation (3.2) may be compared with the CBI
case [3, (11)]. It is somewhat agreeable that it actually attains a more “symmetric”
form when viewed through the lens of Laplace exponents of SPLPs (as opposed to
one SPLP and one subordinator).

REMARK 3.2. We see from (3.2)–(3.3), by dominated convergence, that for
all a ∈ [0,∞), limb→a τb = τa a.s.-P. This may also be gleaned from the general
properties of CBMs as follows. On the one hand, Proposition 2.1 and the regularity
downwards of SPLPs [12, p. 232] imply that Y is also regular downwards at all
levels from (0,∞), which renders ↓-limb↑aτb = τa a.s.-P for all a ∈ (0,∞).
On the other hand, quasi-left-continuity, coupled with the property limζ− Y = ∞
a.s.-P on {0 < ζ <∞}, yields ↑-limb↓aτb = τa a.s.-P for all a ∈ [0,∞).
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As a check:

EXAMPLE 3.1. Let {b,m} ⊂ (0,∞) and Ψb = b · id[0,∞), Ψm = m · id[0,∞).
Then for x ∈ [0,∞) and α ∈ (0,∞),

Φα,0(x) =
Γ
(
α
b

)
b
(
α
b + α

mx
)α

b

, hence Px[e
−ασ0 ;σ0 < l] =

(
1 +

b

m
x

)−α
b

;

therefore σ0⋆Px = δb−1 log(1+ b
m
x), as it should be (e.g. from (2.5)).

Formulas (3.2) above, and (3.6) to follow, may seem at first sight to appear “out
of the blue”. Of course they do not. First, they may be guessed from the discrete
counterparts [21, Corollary 4.14, Theorem 4.2], using [21, Remark 4.16], as was
actually the case. Second, they could be obtained by solving the relevant o.d.e.
problems (though this still involves “guessing” the “Laplace transform/completely
monotone” forms of (3.2) & (3.6), cf. the discrete case [21, p. 9]). The discrete
analogs being available, the first option seems decidedly preferable (and faster).

Proof of Theorem 3.1. We focus on the case Ψm(Ψ−1b (ᾱ)) < α, the version
with Ψ−1b (ᾱ) = Ψ−1m (α) > 0 being similar (and easier) and left to the reader.

First, Φα,ᾱ : [0,∞) → (0,∞) is well-defined, finite, strictly decreasing,
continuous and vanishing at infinity, which is easy to see using the assumption
Ψm(Ψ−1b (ᾱ)) < α by recalling that Ψm − α is continuous with lim∞Ψm = ∞,
also strictly negative on (0,Ψ−1m (α)) and strictly positive on (Ψ−1m (α),∞), with
the analogous observation being true for Ψb. Differentiating under the integral sign
we also see that Φα,ᾱ is C2 (indeed C∞) on (0,∞) (maybe also at zero, but we do
not need it).

We let µ = δx be the initial distribution of the CBM Y , thus Px is the P = Pµ-
law of Y = Y µ. If necessary, taking the limit as α ↓ 0, we see by monotone (or
bounded) convergence on the l.h.s. and by monotone and dominated convergence
on the r.h.s. of (3.3) that we may (and do) assume α > 0 (indeed, for α = 0,
one can first replace the delimiter Ψ−1m (α) with Ψ−1m (0) in the expression for Φα,ᾱ,
then pass to the limit α ↓ 0 by monotone convergence on z ∈ (Ψ−1b (ᾱ),Ψ−1m (0))
and by dominated convergence on z ∈ (Ψ−1m (0),∞)). Because Y is quasi-left-
continuous, due to the continuity of Φα,ᾱ and because now α > 0, we further infer
that it suffices to establish the Laplace transform formula for a > 0 (one can pass
to the limit a ↓ 0 by bounded convergence on the l.h.s. and by continuity of Φα,ᾱ

on the r.h.s. of (3.3)). Thus we may and do assume a > 0.
Consider now the process M of Theorem 2.1(v)(II) with f = Φα,ᾱ, but stopped

at τa, i.e., modulo its deterministic initial value, the process(
Φα,ᾱ(Yt∧τa)e

−α(t∧τa)−ᾱ
∫ t∧τa
0

Ys ds1{t∧τa<ζ}

−
t∧τa∧ζ∫

0

e−αs−ᾱ
∫ s

0
Yu du(AΦα,ᾱ − αΦα,ᾱ − ᾱ id[0,∞)Φα,ᾱ)(Ys) ds

)
t∈[0,∞)

.
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Notice that Yτa = a on {τa < ζ} = {τa < ∞} (since Y has no negative jumps),
while limt↑ζ Φα,ᾱ(Yt)e

−αt−ᾱ
∫ t

0
Ys ds = 0 a.s.-P on {τa = ∞} (since α > 0 and

Φα,ᾱ vanishes at infinity). Therefore, by Theorem 2.1(v)(II) & Remark 2.2, and be-
cause martingales have a constant expectation, the Laplace transform formula (3.3)
reduces further to establishing that Φα,ᾱ is C2, bounded on [a,∞) and satisfies

AΦα,ᾱ(x) = αΦα,ᾱ(x) + ᾱxΦα,ᾱ(x), x ∈ [a,∞).

This however is a straightforward computation made easy by the fact that we are
working on restriction to x ∈ [a,∞) ⊂ (0,∞) (justifying differentiation under the
integral sign):

AΦα,ᾱ(x) = LΨmΦα,ᾱ(x) + xLΨbΦα,ᾱ(x)

=
∞∫

Ψ−1
b (ᾱ)

dz

Ψb(z)− ᾱ
exp

(
−xz −

z∫
Ψ−1

m (α)

Ψm(u)− α

Ψb(u)− ᾱ
du

)
× (Ψm(z) + xΨb(z))

=
∞∫

Ψ−1
b (ᾱ)

dz

Ψb(z)− ᾱ
exp

(
−xz −

z∫
Ψ−1

m (α)

Ψm(u)− α

Ψb(u)− ᾱ
du

)
×
(
Ψm(z)− α+ α+ x(Ψb(z)− ᾱ+ ᾱ)

)
= αΦα,ᾱ(x) + ᾱxΦα,ᾱ(x)

+
∞∫

Ψ−1
b (ᾱ)

dz
Ψm(z)− α

Ψb(z)− ᾱ
exp

(
−xz −

z∫
Ψ−1

m (α)

Ψm(u)− α

Ψb(u)− ᾱ
du

)

+ x
∞∫

Ψ−1
b (ᾱ)

dz exp

(
−xz −

z∫
Ψ−1

m (α)

Ψm(u)− α

Ψb(u)− ᾱ
du

)
= αΦα,ᾱ(x) + ᾱxΦα,ᾱ(x)

−
[
exp

(
−xz −

z∫
Ψ−1

m (α)

Ψm(u)− α

Ψb(u)− ᾱ
du

)∣∣∣∣∞
z=Ψ−1

b (ᾱ)

]
= αΦα,ᾱ(x) + ᾱxΦα,ᾱ(x),

where the penultimate equality is integration by parts and the last equality is by
elementary estimation using Ψm(Ψ−1b (ᾱ)) < α (at z = ∞ it is trivial, at z =
Ψ−1b (ᾱ)+ one gets a divergent integral of the form ∼

∫
0+

du
u ). ■

COROLLARY 3.1. We have Px(σ0 < ∞) > 0 for all x ∈ [0,∞) and liml− ξ
= ∞ a.s. on {σ0 = ∞}, in particular there is no phenomenon of extinguishing
(i.e. the event {lim∞ ξ = 0} ∩ {σ0 =∞} is negligible).

REMARK 3.3. We recall that CSBPs can become extinguished [12, p. 343].
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Proof of Corollary 3.1. It is clear from the strict positivity of the scale function
of (3.2) that Px(σ0 <∞) > 0 for all x ∈ [0,∞).

Suppose per absurdum that limζ− Y ̸= ∞ with positive P-probability on
{τ0 = ∞}. Then for some N ∈ [0,∞), on an event A of positive P-probability,
the process Y will be ¬ N at arbitrarily large times, but never hit zero.

Fix some α ∈ (0,∞). Consider the sequence (Sk)k∈N of random times defined
as follows. First, if needed, enlarge the probability space to gain access to e

(k)
α ,

k ∈ N, independent exponentially with rate α distributed (0,∞)-valued random
variables, independent of Y . Second, put, inductively,

Sk := inf {t ∈ [Sk−1, ζ) : Yt ∈ [0, N ]}+ e(k)α , k ∈ N,

with the convention S0 := 0. Thus, in plainer tongue,

S1 = (the first time Y enters [0, N ]) + e(1)α ,

S2 = (the first time Y enters [0, N ] after S1) + e(2)α ,

and so on. Perhaps Sk =∞ at some k ∈ N, in which case Sl+1 =∞ for all l ∈ N,
l ­ k. But anyway A ⊂ {Sk < ∞ for all k ∈ N}. Now, Y always has a strictly
positive chance β > 0 to hit zero before an independent exponential random time
of rate α has elapsed, no matter where in [0, N ] it starts. On A it must fail to do
so infinitely many times. By the strong Markov property, this is impossible. (Of
course, a sufficiently large deterministic time could also be used in lieu of the e(k)α ,
k ∈ N.) ■

COROLLARY 3.2. Suppose (Ψb)
′(0+) ­ 0 (i.e. Ψ−1b (0) = 0) and fix a θ ∈

(0,∞). Then Px(σ0 <∞) = 1 for all x ∈ [0,∞) iff

(3.4)
θ∫
0

dz

Ψb(z)
exp

( θ∫
z

Ψm(u)

Ψb(u)
du

)
=∞

(which is true if (Ψm)′(0+) > −∞ and (Ψb)
′(0+) > 0); when (3.4) fails, then

(3.5) Px(σ0 <∞) =

∞∫
0

dz
Ψb(z)

e
−xz−

∫ z

θ
Ψm(u)
Ψb(u)

du

∞∫
0

dz
Ψb(z)

e
−
∫ z

θ
Ψm(u)
Ψb(u)

du
< 1 for all x ∈ (0,∞).

Thus when (Ψb)
′(0+) > 0 and (Ψm)′(0+) > −∞, migrations cannot off-

set the branching to turn the process from one that a.s. becomes extinct or extin-
guished to one for which this would not be the case, while for (Ψb)

′(0+) > 0 but
(Ψm)′(0+) = −∞ the situation appears to be more delicate:
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EXAMPLE 3.2. Let Ψb = id[0,∞) (so Ψ′b(0+) > 0), σ2
m > 0, γm = 0, πm

vanishing on (0, 2]. If πm((z,∞)) = 2/log(z) for z ∈ [2,∞) (so (Ψm)′(0+)
= −∞; such a situation can occur), then it is elementary (if tedious) to check using
the abelian theorem for Laplace transforms [5, Theorem XIII.5.2] that the integral
of (3.4) converges. On the other hand, if πm((z,∞)) = z−1/2 for z ∈ [2,∞)
(so (Ψm)′(0+) = −∞; and again such a situation can occur), then one checks
similarly that the integral of (3.4) diverges.

Condition (3.4) may also be compared with the recurrence/transience condition
of nonsupercritical CBIs [3, Theorem 3(a)]. Examples in which Ψ′b(0+) = 0,
Ψ′m(0+) > −∞ and when (3.4) fails or obtains can be reconstructed from those
of [3, Corollary 4] (say by adding a Brownian component to the Φ featuring there).

Proof of Corollary 3.2. Take ᾱ = 0, α > 0, a = 0 in (3.3) and pass to the
limit α ↓ 0 (with θ as per Remark 3.1) splitting the integral of Φα,0 into two parts:
monotone convergence applies on (0, θ), and dominated convergence on (θ,∞). If
(3.4) fails, (3.5) follows at once; otherwise we get Px(σ0 <∞) ­ e−θx, and since
θ ∈ (0,∞) is arbitrary, on letting θ ↓ 0, Px(σ0 <∞) = 1. ■

COROLLARY 3.3. Assume Ψ−1m (0) ­ Ψ−1b (0) > 0. Then Px(σ0 <∞) < 1 for
all x ∈ (0,∞).

Proof. Take α = ᾱ = a = 0 in (3.3). ■

REMARK 3.4. In the context of Theorem 3.1 let us restrict to ᾱ = 0 and
α > 0. (3.2)–(3.3) were given under the condition Ψm(Ψ−1b (0)) ¬ α, which
is a little mysterious. To make it somewhat less so, we shall argue that when
Ψm(Ψ−1b (0)) > 0, i.e. Ψ−1m (0) < Ψ−1b (0), then for α ∈ (0,Ψm(Ψ−1b (0))) (which
implies Ψ−1m (α) < Ψ−1b (0)) the identity

Φα(x) := Px[e
−ασ0 ;σ0 < l] =

∫
e−xz ν(dz), x ∈ [0,∞),

holds for no measure ν on B[0,∞). Suppose otherwise. Then for any start-
ing value x ∈ (0,∞), taking µ = δx in Theorem 2.1, the process
(Φα(Yt)e

−α(t∧τ0)1{t∧τ0<ζ})t∈[0,∞) would be a bounded martingale (essentially by
the Markov property; we refer to [20, Proposition 3.1] for the detailed computa-
tion) and so by Theorem 2.1(v) and Remark 2.2 we would have AΦα = αΦα on
(0,∞), i.e.∫

(xΨb(z) + Ψm(z))e−xz ν(dz) = α
∫
e−xz ν(dz), x ∈ (0,∞).

Rearranging and applying Tonelli–Fubini gives∫
e−xzΨb(z) ν(dz) =

∞∫
0

e−xz
∫
[0,z]

(α−Ψm(y)) ν(dy) dz, x ∈ (0,∞);
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therefore

Ψb(z) ν(dz) = dz
∫
[0,z]

(α−Ψm(y)) ν(dy), z ∈ [0,∞).

Comparing the sign of the measure on the l.h.s. with the sign of the measure on
the r.h.s. we see that ν must be carried by [Ψ−1m (α),∞). In that case, since ν ̸= 0,
we infer that the r.h.s. has unbounded support and is a negative measure unless it
is carried by Ψ−1m ({α}) = {Ψ−1m (α)} (because α > 0) in which case the r.h.s. is
the zero measure. The former case is in contradiction with the fact that the l.h.s.
is nonnegative on [Ψ−1b (0),∞). The latter case requires that ν be also carried by
Ψ−1b ({0}), therefore Ψb(Ψ

−1
m (α)) = 0, which contradicts Ψ−1b (0) > Ψ−1m (α).

This means that we were not “completely dumb” by failing, for α belong-
ing to (0,Ψm(Ψ−1b (0))), to recognize a different would-be (nonnegative) “den-
sity kernel” in (3.2); the completely monotone [19, Definition 1.3] character of
(0,∞) ∋ x 7→ Px[e

−ασ0 ;σ0 < l], being true for α ∈ [Ψm(Ψ−1b (0)),∞), in
fact does not extend to α ∈ (0,Ψm(Ψ−1b (0))) (by Bernstein’s theorem [19, Theo-
rem 1.4]).

We turn to explosions.

THEOREM 3.2 (Explosion times of CBMs). Let α, ᾱ ∈ [0,∞). Suppose
Ψm(Ψ−1b (ᾱ)) < α. If ᾱ = 0, assume further that

∫
0+
|Ψb|−1 < ∞ (explosivity

condition for the associated CSBP with branching mechanism Ψb [12, Theo-
rem 12.3], in particular then Ψ−1b (0) > 0). For x ∈ [0,∞) put

Ψα,ᾱ(x) := 1− αZα,ᾱ(x)(3.6)

:= 1− α
Ψ−1

b (ᾱ)∫
0

dz

ᾱ−Ψb(z)
exp

(
−xz −

z∫
0

α−Ψm(u)

ᾱ−Ψb(u)
du

)
.

Then for a ¬ x from [0,∞):

(i) when
∫
0+
|Ψb|−1 <∞ (taking ᾱ = 0),

(3.7) Px[e
−αl; l < σa] = Ψα,0(x)−

Φα,0(x)

Φα,0(a)
Ψα,0(a);

(ii) for ᾱ > 0,

(3.8) Px

[σa∧l∫
0

e−αs−ᾱ
∫ s

0
Yu du ds

]
= Zα,ᾱ(x)−

Φα,ᾱ(x)

Φα,ᾱ(a)
Zα,ᾱ(a).

Just as in Theorem 3.1, the case ᾱ = 0 is of main interest here. However, (3.8)
has the following interpretation. The quantity

αPx

[σa∧l∫
0

e−αs−ᾱ
∫ s

0
Yu du ds

]
=
∞∫
0

αe−αsPx

[
e−ᾱ

∫ s

0
Yu du; s < σa ∧ l

]
ds
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is the probability that a CBM starting from x, and killed independently at rate α,
has neither reached a, nor exploded, nor has its running lifetime-to-date process∫ ·
0
Yu du exceeded an independent exponential random variable of rate ᾱ, before

it was killed. In the Lamperti transform it corresponds to, ceteris paribus, X being
killed at rate α, L being killed at rate ᾱ, and then asking for the probability that
starting from x, the process Y is killed by X before it has had a chance to be killed
by L, to reach a, or to explode.

Proof of Theorem 3.2. Ψα,ᾱ : [0,∞) → R is well-defined, finite, strictly in-
creasing, continuous with limit 1 at infinity, which follows easily from the assump-
tions made. These properties in turn are mirrored in those of Zα,ᾱ. Next, we check
that

AΨα,ᾱ(x) = αΨα,ᾱ(x) + ᾱxΨα,ᾱ(x)− ᾱx, x ∈ (0,∞),

which is again just a straightforward computation:

AΦα,ᾱ(x) = LΨmΨα,ᾱ(x) + xLΨbΨα,ᾱ(x)

= −α
Ψ−1

b (ᾱ)∫
0

dz

ᾱ−Ψb(z)
exp

(
−xz −

z∫
0

α−Ψm(u)

ᾱ−Ψb(u)
du

)
×(Ψm(z) + xΨb(z))

= αΨα,ᾱ(x) + ᾱxΨα,ᾱ(x)− α− ᾱx

+ α
Ψ−1

b (ᾱ)∫
0

dz
α−Ψm(z)

ᾱ−Ψb(z)
exp

(
−xz −

z∫
0

α−Ψm(u)

ᾱ−Ψb(u)
du

)

+ αx
Ψ−1

b (ᾱ)∫
0

dz exp

(
−xz −

z∫
0

α−Ψm(u)

ᾱ−Ψb(u)
du

)
= αΨα,ᾱ(x) + ᾱxΨα,ᾱ(x)− α− ᾱx

− α

[
exp

(
−xz −

z∫
0

α−Ψm(u)

ᾱ−Ψb(u)
du

)∣∣∣∣Ψ−1
b (ᾱ)

z=0

]
= αΨα,ᾱ(x) + ᾱxΨα,ᾱ(x)− ᾱx.

It follows from Theorem 2.1(v) & Remark 2.2 that for any a ∈ (0,∞), the process

Mt := Ψα,ᾱ(Y (t))e−αt−ᾱ
∫ t

0
Ys ds −Ψα,ᾱ(x) + ᾱ

t∫
0

e−αs−ᾱ
∫ s

0
Yu duYs ds

= −α
(
Zα,ᾱ(Y (t))e−αt−ᾱ

∫ t

0
Ys ds − Zα,ᾱ(x) +

t∫
0

e−αs−ᾱ
∫ s

0
Yu du ds

)
,

given for t ∈ [0, ζ), stopped at τa, is a local martingale on [0, ζ) under Pδx , for
x ∈ [a,∞).
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Because martingales have a constant expectation (the first form of M is the
most convenient, exploiting lim∞Ψα,0 = 1), and from (3.3), setting ᾱ = 0 we
get the Px-Laplace transform for the explosion time l on {l < σa}, x ∈ [a,∞),
a ∈ (0,∞). Letting a ↓ 0 gives (3.7) also for a = 0.

For ᾱ > 0, we get (3.8) similarly (but now the second form of M appears to be
more handy, using lim∞ Zα,ᾱ = 0). ■

COROLLARY 3.4. The CSBP with branching mechanism Ψb is explosive (an
equivalent integral condition is

∫
0+
|Ψb|−1 <∞ [12, Theorem 12.3]) iff the CBM

process Y is explosive (i.e. Pµ(ζ < ∞) > 0 for some, equivalently all, initial
distributions µ that are not concentrated at 0).

Proof. We already know that if for some initial distribution µ (not concentrated
at 0), Pµ(ζ <∞) > 0, then the CSBP with branching mechanism Ψb is explosive
(Corollary 2.1). Now suppose the latter, i.e.

∫
0+
|Ψb|−1 < ∞. Taking a = 0 in

(3.7) (with an arbitrary α ∈ (Ψm(Ψ−1b (ᾱ)) ∨ 0,∞)) we get Px(l < ∞) > 0
for x ∈ (0,∞) (just because Ψα,0 is strictly increasing, while Φα,0 is strictly
decreasing). ■
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