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Abstract. Azmoodeh et al. established a criterion regarding convergence of
the second and other even moments of random variables in a Wiener chaos
with fixed order guaranteeing the central convergence of the random vari-
ables. This was a major step in studies of the fourth moment theorem. In
this paper, we provide further generalizations of the fourth moment theorem
by building on their ideas. More precisely, further criteria implying central
convergence are provided: (i) the convergence of the fourth and any other
even moment, (ii) the convergence of the sixth and some other even mo-
ments.
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1. INTRODUCTION

The fourth moment theorem (Nualart–Peccati criterion), discovered by Nualart
and Peccati [9], provides a concise criterion for central convergence of random
variables {Zn}∞n=1 belonging to a Wiener chaos of fixed order. More precisely,
Nualart and Peccati showed that if E[Z2

n] → 1 and E[Z4
n] → 3 as n → ∞,

then {Zn}∞n=1 converges in law to a standard Gaussian random variable N . Subse-
quently, many researchers began studying generalizations and applications of the
theorem. For example, Peccati and Tudor [11] extended it to the multidimensional
case, and Nualart and Ortiz-Latorre [8] provided another proof for the theorem
in terms of Malliavin calculus. Nourdin and Peccati [5] established Berry–Esséen
bounds in the Breuer–Major central limit theorem by combining Malliavin calculus
and Stein’s method.

An extension by Ledoux [3] was a major step in the ongoing study of the fourth
moment theorem. He provided another proof for the fourth moment theorem in the
framework of diffusive Markov generators inspired by a proof based on Malliavin
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calculus. More sophisticated and generalized results were given by Azmoodeh,
Campese, and Poly [1]. These papers were devoted to answering the following
question stated in [2] by Azmoodeh, Malicet, Mijoule, and Poly:

What moment conditions ensure central convergence?

This paper is also devoted to answering this question.
In order to be more precise, we introduce some notation. Let X = {X(h)}h∈H

be an isonormal Gaussian process over a real separable Hilbert space H. For every
p ∈ N ∪ {0}, we write Hp to denote the pth Wiener chaos of X . For precise
definitions, see [7, 6]. Let {Zn}∞n=1 be a sequence of elements in Hp for some
integer p ­ 2. We denote by I a finite subset of even numbers.

The question above may be reduced to equivalence of (CL) and (CM) for a
finite subset I of even numbers, where

(CL) Zn → N in law as n→∞.

(CM) E[Z2i
n ]→ E[N2i] as n→∞ for all 2i ∈ I.

Of course, the fourth moment theorem involves equivalence of (CL) and (CM) for
I = {2, 4}, and after it was shown, some researchers wondered whether the equiv-
alence held for any set of two distinct even numbers. The authors of [2] showed the
equivalence of (CL) and (CM) for I = {2, 2k}with 2k ­ 4. One of the ingredients
in their proofs was a formulation of central convergence in terms of polynomials
(this will be stated in Lemma 2.1).

In this paper, we build on their formulation to suggest directions for generaliza-
tion of the fourth moment theorem. Although we cannot provide a full answer to
the above question, we provide interesting examples of central convergence based
on a lemma in [2]. Our main theorem is as follows:

THEOREM 1.1. Let I be any of the following:

(1) I = {2, 2k}, where 2k ­ 4 is an arbitrary even integer.

(2) I = {4, 2k}, where 2k ­ 6 is an arbitrary even integer.

(3) I = {6, 8}, {6, 10}.

(4) I = {6, 12, 14, 2k}, where 2k ­ 16 is an arbitrary even integer.

(5) I = {6, 12, 18, 30, 32, 2k}, where 2k ­ 34 is an arbitrary even integer.

Then (CL) and (CM) for I are equivalent.

For the readers’ convenience, this theorem contains preceding results: asser-
tion (1), a part of assertion (2) (I = {4, 6}, {4, 8}, {4, 10}) and assertion (3) have
already been demonstrated in [2, Theorem 1.2 and Section 5]. The first contribu-
tion of this paper, in (2), is that convergence of the fourth and any even moment
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implies central convergence. We also show that the method of [2] is only effective
in cases (1), (2), and (3) (Proposition 3.1). Assertions (4) and (5) are entirely new
and are our third contribution.

Some remarks on our results are in order.
• The case I = {6, 12} cannot be treated with the method in [2] due to Propo-

sition 3.1; it is the first truely nontrivial case after cases (1), (2), and (3). Hence the
second smallest number in assertions (4) and (5) should be greater than or equal
to 12. If we replace 12 by 10, we obtain the equivalence due to assertion (3).
• At this stage, we have no counterexample for I = {6, 12}.
• Assertions (4) and (5) are nontrivial and their proofs are interesting from the

viewpoint of the properties of the polynomials that appear in the proof. For more
discussion on our main theorem, see Section 4.

The remainder of this paper is organized as follows. Section 2 reviews the prin-
cipal part of [2]. Section 3 is devoted to proving our main theorem. In Section 4,
we discuss our main theorem. Section 5 investigates asymptotic characteristics of
the hypergeometric function.

Throughout this paper, we use the following notation. Let N be a standard
Gaussian random variable with the density function w(x) = 1√

2π
e−x

2/2. Set µi =

E[N2i] = (2i− 1)!! for i ∈ N∪ {0} with the convention (−1)!! = 0. We consider
the following functions:

• The Hermite polynomials: Hn(x) = (−1)ne
x2

2
dn

dxn e
−x2

2 for n ∈ N ∪ {0}.

• The Gamma function: Γ(a) =
∫∞
0
ua−1e−u du for a > 0.

• The Beta function: B(a, b) =
∫ 1

0
(1− u)a−1ub−1 du = Γ(a)Γ(b)

Γ(a+b) for a, b > 0.

• The hypergeometric function:

F (a, b, c; z) =
1

B(a, c− a)

1∫
0

ua−1(1− u)c−a−1(1− uz)−b du

for 0 < a < c and |z| < 1.

We define {κi(m)}m­i­2 and {ξi(m)}m,i­2 by

κi(m) = B (i− 1, 1/2)F (i− 1,−(m− i), i− 1/2, 1/2)(1.1)

=
1∫
0

ui−2(1− u)−1/2(1− u/2)m−i du,

and

(1.2) ξi(m) =

{
(m−1)!
(m−i)!κi(m), 2 ¬ i ¬ m,
0, otherwise.
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2. REVIEW OF AZMOODEH ET AL. [2]

In this section, we summarize the most important part of [2] and extend it. For
every i ­ 2, we define even polynomials Wi and ψi of degree 2i by

Wi(x) = (2i− 1)Φ[HiHi−2](x), ψi(x) = E[Wi(xN)],

where Φ is defined as

Φ[Q](x) = x
x∫
0

Q(t) dt−Q(x).

Note that Wi is monic. Let T be a monic even polynomial of degree 2k ­ 4 of the
form

T (x) =
k∑

i=2

αiWi(x)(2.1)

for some α2, . . . , αk−1 ∈ R and αk = 1. The next lemma is a major result of [2].

LEMMA 2.1 ([2, Lemma 4.2]). Let {Zn}∞n=1 be a sequence of elements in Hp

for some integer p ­ 2, and let T be a monic even polynomial of degree 2k ­ 4
of the form (2.1) with positive α2, nonnegative α3, . . . , αk−1, and αk = 1. Then
Zn → N in law as n→∞ if and only if E[T (Zn)]→ 0 as n→∞.

Lemma 2.1 tells us that we can obtain central convergence of {Zn}∞n=1 by find-
ing a suitable polynomial T . In general, a monic even polynomial T of degree
2k ­ 4 is defined as

T (x) =
k∑

i=1

aix
2i + a0(2.2)

for some a0, . . . , ak−1 and ak = 1. To use Lemma 2.1, we seek to determine what
conditions on a0, . . . , ak imply that T is of the form (2.1) with some α2, . . . , αk,
and we provide a formula for calculating α2, . . . , αk from a0, . . . , ak. We know
that

E[T (N)] = lim
n→∞

E[T (Zn)] = 0

if {Zn}∞n=1 ⊂ Hp satisfies E[Z2i
n ] → µi as n → ∞. This is equivalent to

ϕ(1) = 0, where ϕ(x) = E[T (xN)].

PROPOSITION 2.1. Let T be an even polynomial of degree 2k ­ 4 and set
ϕ(x) = E[T (xN)]. The following are equivalent:

(1) ϕ(1) = ϕ′(1) = 0; in other words,

(2.3)
k∑

i=1

aiµi + a0 = 0,
k∑

i=1

ai2iµi = 0.

(2) There exist constants α2, . . . , αk ∈ R such that (2.1) holds.
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Proof. In this proof, we use ψi(1) = ψ′i(1) = 0 for i ­ 2 (see [2, Lemma 4.1]).
We first show that (1) implies (2). Since Wi is an even polynomial of degree 2i,

there exists a unique expansion of the form

T (x) =
k∑

i=2

αiWi(x) + βx2 + γ.

We see that β = γ = 0 as follows. We have

ϕ(x) =
k∑

i=2

αiE[Wi(xN)] + βE[(xN)2] + γ =
k∑

i=2

αiψi(x) + βx2 + γ.

Since ϕ(1) = ϕ′(1) = 0 and ψi(1) = ψ′i(1) = 0 for i ­ 2, it follows that β+γ = 0
and 2β = 0 so β = γ = 0. Hence, (2) holds.

Next, we show that (2) implies (1). The assumption implies that ϕ(x) =∑k
i=2 αiψi(x). This expression and the identity ψi(1) = ψ′i(1) = 0 yield (1). ■

Hereafter, we assume ϕ(1) = ϕ′(1) = 0. Then, as a result of Proposi-
tion 2.1, a0, . . . , ak in (2.2) and α2, . . . , αk in (2.1) are related. We will find an
explicit formula for α2, . . . , αk in terms of a0, . . . , ak. More precisely, setting
ci = (2i−1)i!(i−2)! for i ­ 2, we demonstrate the next proposition, an analogue
of [2, Proposition 4.1] proved in a similar manner.

PROPOSITION 2.2. For every 2 ¬ i ¬ k,

αici =
1

2i−1

k∑
m=i

m!κi(m)

(m− i)!
amµm.

Here, {κi(m)}m­i­2 are defined by (1.1).

The next corollary follows immediately from Proposition 2.2. It will be used in
Section 3 and will play an important role in the proof of the main theorem.

COROLLARY 2.1. Let 1 ¬ l < k and assume that am = 0 for all 1 ¬ m ¬
l − 1. Then, for every 2 ¬ i ¬ k,

αici =
1

2i−1

k∑
m=l+1

{ξi(m)− ξi(l)}mµmam.

Here, {ξi(m)}i,m­2 are defined by (1.2).

Proof. From Proposition 2.2, for all 2 ¬ i ¬ k, it follows that

αici2
i−1 =

k∑
m=i

ξi(m)mµmam =
k∑

m=2

ξi(m)mµmam =
k∑

m=l

ξi(m)mµmam.
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In the above, we used ξi(m) = 0 for 2 ¬ m ¬ i−1 and am = 0 for 1 ¬ m ¬ l−1.
Since ϕ′(1) = 0 (see (2.3)) and am = 0 for 1 ¬ m ¬ l − 1 imply

0 =
k∑

m=1

mµmam =
k∑

m=l

mµmam,

we have

ξi(l)lµlal = −
k∑

m=l+1

ξi(l)mµmam.

Substituting this equality into αici2
i−1 yields the assertion. ■

For the readers’ convenience, we provide a proof of Proposition 2.2. For de-
tails, see [2, Appendix A]. We introduce even polynomials Q and R of degree
2(k − 1) ­ 2 as

Q(x) =
k∑

i=2

αi(2i− 1)Hi(x)Hi−2(x), R(x) =
k∑

i=1

aiµi
i−1∑
r=0

x2r

µr
.

Then Φ[Q] = T = Φ[R] from direct computation, and Q = R as a consequence
of [2, Lemma A.2].

LEMMA 2.2. For all 1 ¬ n ¬ k − 1,

∞∫
−∞

Q(x)H2n(x)w(x) dx =
(2n)!

(n− 1)!(n+ 1)!

k∑
m=n+1

αmcm
(m− (n+ 1))!

,

∞∫
−∞

R(x)H2n(x)w(x) dx = 2n
k∑

m=n+1

amµm
m−1∑
r=n

r!

(r − n)!
.

Proof. We refer to [2, Lemma A.1]. The product formula and the orthogonality
of Hermite polynomials imply that

∞∫
−∞

Hi(x)Hi−2(x)H2n(x)w(x) dx =
(2n)!

(n+ 1)!(n− 1)!

i!(i− 2)!

(i− (n+ 1))!
1n+1¬i.

Hence, the first equality holds. The second assertion follows from

1

µr

∞∫
−∞

x2rH2n(x)w(x) dx =
1

µr

(2r)!

2r−n(i− n)!
1n¬r =

2nr!

(r − n)!
1n¬r. ■

Proof of Proposition 2.2. Set

f(x) =
k∑

i=2

αici
(i− 1)!

xi−1, g(x) =
k∑

i=1

aiµi
i−1∑
r=0

xr.
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Since f (n)(0) = αn+1cn+1 for every 1 ¬ n ¬ k−1, we look for other expressions
of f (n)(0). First, we show that

(2.4) f(1− 2x)− f(1) =
1∫
0

(1− u)−1/2u−1 d
du
{ug(1− ux)} du

and next we consider the nth derivatives of both sides at x = 1/2. We obtain the
assertion as a consequence.

For every n ∈ N,

f (n)(x) =
k∑

i=n+1

αici
(i− (n+ 1))!

xi−(n+1),

g(n)(x) =
k∑

i=n+1

aiµi
i−1∑
r=n

r!

(r − n)!
xr−n.

Combining Lemma 2.2 with the above yields

(2n)!

(n− 1)!(n+ 1)!
f (n)(1) = 2ng(n)(1).

Since (2n)!
(n−1)!(n+1)! = 22n

n+1
1

B(1/2,n) as a consequence of [10, (5.4.6), (5.5.5) and
(5.12.1)],

f (n)(1) =
n+ 1

2n
B(1/2, n)g(n)(1).

By the above,

f(1− 2x)− f(1) =
k−1∑
n=1

f (n)(1)

n!
(−2x)n

=
k−1∑
n=1

1

n!

(
n+ 1

2n

1∫
0

(1− u)−1/2un−1 du
)
g(n)(1)(−2)nxn

=
1∫
0

(1− u)−1/2
(

k−1∑
n=1

g(n)(1)

n!
(n+ 1)un−1 (−1)nxn

)
du.

Here, noting that g(1) =
∑k

i=1 aiµii = 0 and applying the Taylor formula to
g(1− ux) yields

d

du
{ug(1− ux)} = d

du

{
u

k−1∑
n=1

g(n)(1)

n!
(−ux)n

}
=

k−1∑
n=1

g(n)(1)

n!
(n+ 1)(−ux)n.

The two equalities imply (2.4).
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Next, we consider the nth derivative of (2.4) at x = 1/2. Substituting

d

du
{ug(1− ux)} = d

du

k∑
m=1

αmµmu
1− (1− ux)m

1− (1− ux)

=
k∑

m=1

amµm ·m(1− ux)m−1

into (2.4) yields

f(1− 2x)− f(1) =
k∑

m=1

amµm ·m
1∫
0

(1− u)−1/2u−1(1− ux)m−1 du.

Furthermore, for every n ¬ m− 1,

dn

dxn
(1− u)−1/2u−1(1− ux)m−1

=
(m− 1)!

(m− 1− n)!
(1− u)−1/2u−1(−u)n(1− ux)m−1−n

and

sup
x∈(1/4,3/4)

|RHS above| ¬ (m− 1)!

(m− 1− n)!
(1− u)−1/2un−1

(
1− u

4

)m−1−n
.

Hence, by Lebesgue’s differentiation theorem,

(−2)nf (n)(0) = (−1)n
k∑

m=n+1

amµm ·
m(m− 1)!

(m− 1− n)!
κn+1(m),

where κn+1(m) is the constant defined by (1.1). This is the conclusion of the
proposition. ■

3. EXPRESSION OF T AND PROOF OF MAIN THEOREMS

In this section, we consider the positivity of {αi}2¬i¬k in several cases and prove
our main theorem. Set k ­ 2, and write α̃i = α̃i(k) = αici2

i−1

kµk
. From Corol-

lary 2.1, we have

(3.1) α̃i = α̃i(k) =
k∑

m=l+1

{ξi(m)− ξi(l)}
mµm
kµk

am.

3.1. T (x) = x2k + alx
2l + a0 for 2k > 2l ­ 2. Then the function ϕ(x) =

E[T (xN)] satisfies ϕ(1) = ϕ′(1) = 0 if and only if al = −kµk
lµl

and a0 =

(k/l − 1)µk.

PROPOSITION 3.1. The polynomial T (x) = x2k + alx
2l + a0 is expressed as

in (2.1) with positive coefficients α2, . . . , αk if and only if k > l = 1 or k > l = 2
or (k, l) = (4, 3), (5, 3).
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Proof. Substituting al+1 = · · · = ak−1 = 0 and ak = 1 into (3.1) we have
α̃i(k) = ξi(k)− ξi(l) for every 2 ¬ i ¬ k. Recall ξi(l) ̸= 0 only for 2 ¬ i ¬ l due
to (1.2).

We can obtain the “only if” part of the assertion by focusing on α2. If l = 3,
then

α̃2(k) = ξ2(k)− ξ2(3) ¬ ξ2(6)− ξ2(3) =
166

63
− 8

3
< 0

for all k ­ 6 (see Propositions 5.2(3) and 5.1). If l ­ 4, then α̃2(k) = ξ2(k)−ξ2(l)
< 0 for all k > l (see Proposition 5.2(3)). This yields the “only if” part.

Now, we show the “if” part. If l = 1, then α̃i(k) = ξi(k) > 0 for all 2 ¬ i ¬ k.
If l = 2, then

α̃i(k) =

{
ξi(k), 3 ¬ i ¬ k,
ξ2(k)− ξ2(2), i = 2.

Hence we have α̃i(k) > 0 for i = 2 (resp. 3 ¬ i ¬ k) due to Proposition 5.2(1)
(resp. ξi(k) > 0). If l = 3, then α̃i(k) = ξi(k) − ξi(3) > 0 for k = 4, 5 for the
same reason as in the case l = 2. This completes the proof. ■

3.2. T (x) = x2k+ax14+bx12+a3x
6+a0 for k ­ 8. Here, a3 and a0 are chosen

to ensure that ϕ(1) = ϕ′(1) = 0. Then, from Corollary 2.1,

α̃i(k) = {ξi(k)− ξi(3)}+ {ξi(7)− ξi(3)}
7µ7
kµk

a+ {ξi(6)− ξi(3)}
6µ6
kµk

b.

In what follows, we consider the case α7 = 0 and α6 = 0 and show that αk, . . . ,
α8, α5, α4, α3, α2 are positive. In this case, we have

7µ7
kµk

a = −ξ7(k)
ξ7(7)

,
6µ6
kµk

b =
ξ7(k)

ξ6(7)

ξ6(7)

ξ6(6)
− ξ6(k)

ξ6(6)
.

Hence,

α̃i(k) = {ξi(k)− ξi(3)}+ {ξi(7)− ξi(3)}
(
−ξ7(k)
ξ7(7)

)
+ {ξi(6)− ξi(3)}

(
ξ7(k)

ξ7(7)

ξ6(7)

ξ6(6)
− ξ6(k)

ξ6(6)

)
= ξi(k) +

[
−ξi(7)− ξi(3)

ξ7(7)
+
ξ6(7)(ξi(6)− ξi(3))

ξ7(7)ξ6(6)

]
ξ7(k)

+

[
−ξi(6)− ξi(3)

ξ6(6)

]
ξ6(k)− ξi(3).

Since α̃i(k) = ξi(k) > 0 for 8 ¬ i ¬ k, we consider α̃i(k) for i = 2, 3, 4, 5.

LEMMA 3.1. Let k ­ 8. Then α̃i(k) > 0 for any i = 2, 3, 4, 5.



186 N. Naganuma

Proof. For 8 ¬ k < 3000, the assertion follows by direct computation using
Mathematica. For the source code used, see Listing 1. Next we show the asser-
tion for k ­ 3000. As a consequence of Proposition 5.3, {ξi(k)}∞k=2 converges to
2i−1(i − 2)! as k → ∞, and we estimate the error of this convergence. Setting
ri(k) = ξi(k)− 2i−1(i− 2)! yields

α̃i(k) =


ξ2(k) +

1
3072ξ6(k) +

1
15360ξ7(k)−

8
3 , i = 2,

ξ3(k)− 29
768ξ6(k) +

121
7680ξ7(k)−

8
3 , i = 3,

ξ4(k)− 7
32ξ6(k) +

1
12ξ7(k), i = 4,

ξ5(k)− 5
8ξ6(k) +

29
160ξ7(k), i = 5,

=


r2(k) +

1
3072r6(k) +

1
15360r7(k) +

1
12 , i = 2,

r3(k)− 29
768r6(k) +

121
7680r7(k) +

280
3 , i = 3,

r4(k)− 7
32r6(k) +

1
12r7(k) + 488, i = 4,

r5(k)− 5
8r6(k) +

29
160r7(k) + 1008, i = 5,

which implies

α̃i(k) ­


−(|r2(k)|+ 1

3072 |r6(k)|+
1

15360 |r7(k)|) +
1
12 , i = 2,

−(|r3(k)|+ 29
768 |r6(k)|+

121
7680 |r7(k)|) +

280
3 , i = 3,

−(|r4(k)|+ 7
32 |r6(k)|+

1
12 |r7(k)|) + 488, i = 4,

−(|r5(k)|+ 5
8 |r6(k)|+

29
160 |r7(k)|) + 1008, i = 5,

> 0.

The last inequality follows from Proposition 5.3. ■

Listing 1. Proof of Lemma 3.1

kappa[i_,m_]:=Beta[i-1,1/2]*Hypergeometric2F1[i-1,-(m-i),
i-1/2,1/2];

xi[i_,m_]:=(m-1)!/(m-i)!*kappa[i,m]/;m>=i;
xi[i_,m_]:=0/;m<i;
tildeA[i_,k_]:=xi[i,k]+(-(xi[i,7]-xi[i,3])/xi[7,7]+

xi[6,7]*(xi[i,6]-xi[i,3])/(xi[7,7]*xi[6,6]))*xi[7,k]+
(-(xi[i,6]-xi[i,3])/xi[6,6])*xi[6,k]-xi[i,3]

(*Are tildeA[i,k]>0 for i=2,3,4,5 and k<3001?*)
Table[Map[tildeA[#,k]&,{2,3,4,5}],{k,8,3000}];
AllTrue[Flatten[%],Positive]

(*Are tildeA[i,k]>0 for i=2,3,4,5 and k>3000?*)
Map[tildeA[#,k]&,{2,3,4,5}]/.Array[xi[#,k]->2ˆ(#-1)*(#-2)!+

r[#,k]&,7,2]//Expand;
CoefficientArrays[%,Map[r[#,k]&,Range[2,16]]]//Normal;
Map[Abs,%];
%[[1]]+%[[2]].Map[-r[#,k]&,Range[2,16]];
%/.MapThread[#1->2ˆ#2&,{Map[r[#,k]&,Range

[2,16]],{-18,-9,-5,-2,2,6,10,14,18,23,28,32,37,42,47}}];
AllTrue[Flatten[%],Positive]
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3.3. T (x) = x2k + ax32 + bx30 + cx18 + dx12 + a3x
6 + a0 for k ­ 17. Here,

a3 and a0 are chosen to ensure that ϕ(1) = ϕ′(1) = 0. Then, from Corollary 2.1,

α̃i(k) = {ξi(k)− ξi(3)}+ {ξi(16)− ξi(3)}
16µ16
kµk

a+ {ξi(15)− ξi(3)}
15µ15
kµk

b

+ {ξi(9)− ξi(3)}
9µ9
kµk

c+ {ξi(6)− ξi(3)}
6µ6
kµk

d.

Here, we choose a, b, c, d to ensure that αi = 0 for all i ∈ {6, 7, 12, 13}. It follows
from this expression that α̃i(k) = ξi(k) > 0 for any 17 ¬ i ¬ k, and we can
demonstrate the next lemma in the same manner as Lemma 3.1.

LEMMA 3.2. Let k ­ 17. For every i ∈ {2, . . . , 16} \ {6, 7, 12, 13}, we have
α̃i(k) > 0.

3.4. Proof of the main theorem. Proposition 3.1 implies that T (x) = x2k −
kµk
lµl
x2l+(kl −1)µk can be written as in (2.1) with positive α2, . . . , αk for k > l = 1

or k > l = 2 or (k, l) = (4, 3), (5, 3). Combining this fact with Lemma 2.1 yields
assertions (1)–(3).

In the same manner, combining Lemmas 2.1, 3.1 and 3.2 yields (4) and (5). ■

4. DISCUSSION OF THE MAIN THEOREM

After [9, 2] and the present paper, the next conjecture is still open:

CONJECTURE 4.1. Let I = {2l, 2k} for 6 ¬ 2l < 2k. Then (CL) and (CM)
for I are equivalent.

As stated in Section 1, we cannot show Conjecture 4.1 by the method of [2]
(see Proposition 3.1). In this section, we discuss this in more detail. Write I =
{2l1, . . . , 2lM , 2k} with 2 ¬ 2l1 < · · · < 2lM < 2k.

Since our proof of (CM)⇒(CL) relies on Lemma 2.1, T should be expressed as
in (2.1) and ϕ(1) = ϕ′(1) = 0 should be satisfied (see Proposition 2.1). Note that
the conditions ϕ(1) = ϕ′(1) = 0 give a system of two linear equations (2.3) with k
unknowns a0, a1, . . . , ak−1 (ak = 1 because T is monic). Since we should obtain
E[T (Zn)] → 0 from convergence of moments in I, we should set ai = 0 for
i ∈ {1, . . . , k−1}\{l1, . . . , lM}. Hence we have two linear equations withM +1
unknowns a0, al1 , . . . , alM . If M = 1 (that is, I = {2l1, 2k} with 2 ¬ 2l1 < 2k),
the solution (a0, al1) to the two linear equations is unique. If M ­ 2, the solution
(a0, al1 , . . . , alM ) is not unique.

After finding a0, a1, . . . , ak−1, we can calculate α2, . . . , αk−1 (αk = 1 since T
andWk are monic) from a0, a1, . . . , ak−1 due to Proposition 2.2. IfM = 1, we see
that a0, a1, . . . , ak−1 are unique and so are α2, . . . , αk−1. Furthermore, for some
cases (e.g. I = {6, 12}), we have α2 < 0 and we cannot show the equivalence of
(CM) and (CL). If M ­ 2, we see that a0, a1, . . . , ak−1 are not unique and hence
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α2, . . . , αk−1 are not unique. Therefore we may be able to choose a0, a1, . . . , ak−1
so that α2, . . . , αk−1 are nonnegative.

From the observation above, we can find I in assertions (4) and (5) of The-
orem 1.1 so that α2, . . . , αk−1 are nonnegative. This procedure needs numerical
calculation (see Listing 2 in Mathematica). Other than I in assertions (4) and (5),
we consider the next examples:

• The largest number of I in assertions (4) (I = {6, 12, 14, 2k}) and (5) (I =
{6, 12, 18, 30, 32, 2k}) of Theorem 1.1 is arbitrary, but the theorem does not hold
in general. For example, all of α2, . . . , αk are nonnegative (resp. at least one of
α2, . . . , αk is negative) for I = {6, 12, 16, 2k} with 18 ¬ 2k ¬ 40 (resp. 42 ¬
2k ¬ 100).
• The smallest number of I may be arbitrary. For example, α2, . . . , αk are

nonnegative for I = {8, 12, 14, 18, 26, 32, 34, 36, 38, 1000}, I = {8, 12, 14,
18, 28, 30, 34, 36, 38, 1000} and I = {10, 14, 16, 18, 24, 28, 30, 32, 34, 36,
38, 1000}. However, we cannot find a rule guaranteeing that α2, . . . , αk−1 are
nonnegative. These examples suggest the following conjecture, which is a relaxed
version of Conjecture 4.1.

CONJECTURE 4.2. Let 2l1 ­ 8 be an arbitrary even integer, and chooseM−1
suitable even integers 2l2, . . . , 2lM with 2l1 < · · · < 2lM , where M ­ 1. Let
2k > 2lM be an arbitrary even integer. Set

I = {2l1, . . . , 2lM , 2k}.

Then (CL) and (CM) for I are equivalent.

Of course the cases 2l1 = 2, 4, 6 are obtained in Theorem 1.1 and this conjec-
ture might be shown by the method of [2].

Listing 2. How to find examples

he[k_,x_]:=he[k,x]=2ˆ(-k/2)HermiteH[k,x/Sqrt[2]];
(* Define w *)
w[l_,x_]:=w[l,x]=Module[{coeffList},coeffList=CoefficientList[he[l

/2,t]*he[l/2-2,t],t];
(2*l/2-1)*({0,0}˜Join˜(coeffList*Map[1/#&,Range[Length[coeffList

]]])-(coeffList˜Join˜{0,0})).Map[xˆ#&,Range[0,l]]]//Expand;
(* Set list={l,...,k}. Consider an identity with respect to x so

that a_0+a_lxˆl+...+a_kxˆk = b_4 w[4,x]+...+ b_k w[k,x] *)
equalities[list_]:=equalities[list]=Map[#==0&,CoefficientList[

Plus@@Map[Subscript[a, #]*xˆ#&,{0}˜Join˜list]-Plus@@Map[
Subscript[b, #]*w[#,x]&,Range[4,Last[list],2]],xˆ2]];

(* Find example a_k,...,a_1,b_1,...,b_k so that a_k=1, b_k=1, b_k
,...,b_4 are nonnegative *)

example[list_]:=FindInstance[Join[{Subscript[a, Last[list]]==1,
Subscript[b, Last[list]]==1},Map[Subscript[b, #]>=0&,Range[4,
Last[list],2]],equalities[list]],Map[Subscript[a, #]&,{0}˜Join
˜list]˜Join˜Map[Subscript[b, #]&,Range[4,Last[list],2]]]

list = {6, 12, 16, 100};
equalities[list]
example[list]
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5. APPENDIX

In this section, we study properties of ξi(k) defined by (1.2). First, we obtain the
next proposition by direct calculation.

PROPOSITION 5.1. The first few exact values of {ξi(m)}m­i­2 are

ξ2(2) = 2, ξ2(3) =
8

3
= 2.66 . . . , ξ2(4) =

14

5
= 2.8,

ξ2(5) =
96

35
= 2.74 . . . , ξ2(6) =

166

63
= 2.63 . . . , ξ2(7) =

584

231
= 2.52 . . . ,

ξ3(3) =
8

3
= 2.66 . . . , ξ3(4) =

24

5
= 4.8, ξ3(5) =

208

35
= 5.94 . . . .

In addition, we can obtain more information regarding ξi(k) by studying the
hypergeometric function:

PROPOSITION 5.2. Let i = 2. Then:

(1) ξ2(2) = 2 and 2 < ξ2(k) for k ­ 3.

(2) ξ2(2) < ξ2(3) < ξ2(4).

(3) ξ2(4) > ξ2(5) > ξ2(6) > · · · .
PROPOSITION 5.3. For every i ­ 2, {ξi(k)}∞k=2 converges to 2i−1(i − 1)! as

k →∞. In addition, for all 2 ¬ i ¬ 16 and k ­ 3000, ri(k) = ξi(k)−2i−1(i−2)!
satisfies

|ri(k)| ¬ 2pi .

The values of pi are listed in Table 1.

Table 1. Definition of pi

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pi −18 −9 −5 −2 2 6 10 14 18 23 28 32 37 42 47

5.1. Proof of Proposition 5.2. First,

(1− u)−1/2 ¬ (1− u/2)−2 for 0 ¬ u ¬ 1/2,(5.1)

(1− u)−1/2 ­ (1− u/2)−1 for 0 ¬ u ¬ 1.(5.2)

Then, assertions (1) and (2) for k = 2, 3 follow from Proposition 5.1. For k ­ 4, it
follows from (5.2) that

ξ2(k) ­ (k − 1)
1∫
0

(
1− u

2

)−1(
1− u

2

)k−2
du = 2 +

2

k − 2

(
1− k − 1

2k−2

)
.

Since the last term is positive for k ­ 4, we have ξ2(k) > 2 for k ­ 4.
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Now, we demonstrate (3). Since ξ2(4) > ξ2(5) > ξ2(6) > ξ2(7) from Propo-
sition 5.1, we will show that ξ2(k) > ξ2(k + 1) for k ­ 7. If we set δk =
ξ2(k + 1)− ξ2(k), then

δk =
1∫
0

(1− u)−1/2
(
1− u

2

)k−2(
1− k

2
u

)
du.

Noting that 1− k
2u ≷ 0 for u ≶ 2

k and using estimates (5.1) and (5.2) yields

δk ¬
2/k∫
0

(
1− u

2

)k−4(
1− k

2
u

)
du+

1∫
2/k

(
1− u

2

)k−3(
1− k

2
u

)
du

= 2

[
− 2

(k − 3)(k − 2)

+
3k2

(k − 3)(k − 2)(k − 1)2

(
1− 1

k

)k

+
2(k2 − 2k + 2)

(k − 2)(k − 1)

(
1

2

)k]
.

Here, the facts that (i) k 7→ (1− 1
k )

k is increasing and converges to 1/e (< 7/19)

as k → ∞, (ii) k 7→ k2

(k−1)2 is decreasing, and (iii) k 7→ 2(k2−2k+2)
(k−2)(k−1) is decreasing,

imply that for k ­ 7, δk is no greater than

2

[
− 2

(k − 3)(k − 2)
+

3 · 72

(k − 3)(k − 2)(7− 1)2
7

19
+

2(72 − 2 · 7 + 2)

(7− 2)(7− 1)

(
1

2

)k]
= 2

[
−113
228

1

(k − 3)(k − 2)
+

37

15

(
1

2

)k]
= − 2 · 37

15(k − 3)(k − 2)2k

[
15

37

113

228
2k − (k − 3)(k − 2)

]
.

Since the last term is negative if k ­ 7, the assertion is demonstrated. ■

5.2. Proof of Proposition 5.3. Now, we examine the hypergeometric function
F (a, b, c; z).

LEMMA 5.1 (Watson’s lemma, [4, Proposition 2.1]). Let ϕ : (0, 1) → R be
integrable. Assume that there exist constants σ > 0 and 0 < ρ < 1 and a smooth
function ψ on [0, ρ] such that ϕ(s) = ψ(s)sσ−1. Then∣∣∣∣ 1∫

0

ϕ(s)e−λs ds− ψ(0)Γ(σ)

λσ

∣∣∣∣
¬ 2|ψ(0)|

ρλeρλ
+

(max0¬s¬ρ |ψ′(s)|)Γ(σ + 1)

λσ+1
+

1

eρλ

1∫
ρ

|ϕ(s)| ds

for any λ ­ 2σ/ρ.
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Proof. Follow the proof in [4], using the monotonicity of t 7→ e−
t
2 tσ−1 on

[2σ,∞) in estimating an incomplete Gamma function. ■

LEMMA 5.2. Let a ­ 1, 0 < c− a < 1, and 0 < z < 1. Then∣∣∣∣B(a, c− a)F (a,−b, c; z)− Γ(a)

za(b+ 1)a

∣∣∣∣ ¬Ma,c;z(−(b+ 1) log(1− z))

whenever −(b + 1) log(1 − z) > 2a/ρ. Here, 0 < ρ < 1 is an arbitrary constant
and

Ma,c;z(λ) =
1

(1− z)a+1

(
2

ρλeρλ
+

(1− ρ)c−a−2Γ(a+ 2)

λa+1
+
B(a, c− a)

eρλ

)
.

Proof. We expand

B(a, c− a)F (a,−b, c; z) =
1∫
0

ua−1(1− u)c−a−1(1− zu)b du

with respect to b+ 1 making use of Lemma 5.1.
Set v = log(1−zu)

log(1−z) , ξ = − log(1−z)
z , η = −(1−z) log(1−z)

z , and h(w) = ew−1
w .

Then

u

v
= ξh(v log(1−z)), 1− u

1− v
= ηh((v−1) log(1−z)), 1−zu = ev log(1−z),

so that

ua−1(1−u)c−a−1(1−zu)b =
(
u

v

)a−1(1−u
1−v

)c−a−1
va−1(1−v)c−a−1(1−zu)b

= ξ−1ϕ(v)evb log(1−z) = ξ−1ψ(v)va−1evb log(1−z),

where

ϕ(v) = ψ(v)va−1, ψ(v) = Kg(v)(1− v)c−a−1,
K = ξaηc−a−1, g(v) = h(v log(1− z))a−1h((v − 1) log(1− z))c−a−1.

Combining this with du
dv = ξev log(1−z) and writing λ = −(b+1) log(1− z) yields

B(a, c− a)F (a,−b, c; z) =
1∫
0

ϕ(v)e−λv dv.

In what follows, we expand the integral above with respect to λ making use of
Lemma 5.1. First, we list the properties of h:

• h is strictly increasing and positive;

• h(log(1− z)) = ξ−1, h(0) = 1 and h(− log(1− z)) = η−1;
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• h′/h is strictly increasing and 0 < (h′/h)(w) < 1 for w ∈ R;

• (h′/h)(0) = 1/2 and (h′/h)(− log(1− z)) = 1/z + 1/ log(1− z);

• 0 < (h′/h)′(w) ¬ |(h′/h)′(0)| = 1/12 for w ∈ R.

Now, ψ(0) = Kg(0) = Kh(0)a−1h(− log(1− z))c−a−1 = ξa. From this and
0 < ξ ¬ (1− z)−1, it follows that

ψ(0)Γ(a)

λa
=

Γ(a)

za(b+ 1)a
, |ψ(0)| ¬ (1− z)−a.

Next, we estimate max0¬v¬ρ |ψ′(v)|. Note that g′(v) = g(v)f(v), where

f(v) =

{
(a− 1)

h′(v log(1− z))
h(v log(1− z))

+ (c− a− 1)
h′((v − 1) log(1− z))
h((v − 1) log(1− z))

}
log(1− z),

implying that

ψ′(v) = Kg(v)(1− v)c−a−2{f(v)(1− v)− (c− a− 1)}.

It follows from a− 1 ­ 0, −1 < c− a− 1 < 0, and the properties of h that

max
0¬v¬1

|g(v)| ¬ h(0)a−1h(0)c−a−1 = 1,

max
0¬v¬1

|f(v)| ¬ {|a− 1|+ |c− a− 1|}|log(1− z)| ¬ a|log(1− z)|.

Hence, using K = ξc−1(1− z)c−a−1 ¬ (1− z)−a (c ­ 1) and |log(1− z)| ∨ 1 ¬
(1− z)−1 for 0 < z < 1 yields

max
0¬v¬ρ

|ψ′(v)| ¬ K(1− ρ)c−a−2{a|log(1− z)|+ 1}

¬ (1− ρ)c−a−2(a+ 1)(1− z)−(a+1).

and finally,

1∫
ρ

|ϕ(v)| dv ¬ K max
0¬s¬1

|g(s)|
1∫
0

va−1(1− v)c−a−1 dv ¬ (1− z)−aB(a, c− a).

Hence, the remainder is bounded by

1

(1− z)a

(
2

ρλeρλ
+

(1− ρ)c−a−2(a+ 1)

1− z
Γ(a+ 1)

λa+1
+

1

eρλ
B(a, c− a)

)
.

This bound and 1 ¬ (1− z)−1 complete the proof. ■
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Proof of Proposition 5.3. Recalling (1.1) and applying Lemma 5.2 with a =
i − 1, b = k − i and c = i − 1/2 yields ri(k) = ξi(k) − 2i−1(i − 2)! =
r1,i(k) + r2,i(k), where

r1,i(k) =
(k−1)!
(k−i)!

{
B(i−1, 1/2)F (i−1,−(k−i), i−1/2; 1/2)− 2i−1(i−2)!

(k−i+1)i−1

}
,

r2,i(k) =
(k − 1)!

(k − i)!
2i−1(i− 2)!

(k − i+ 1)i−1
− 2i−1(i− 2)!.

Write ci(k) =
(k−1)!

(k−i)!(k−i+1)i−1 . Then ci(k) =
∏i−1

α=1

(
1+ α−1

k−i+1

)
is monotonically

convergent to 1 as k →∞.
Setting λ = (k − i+ 1) log 2 yields

|r1,i(k)| ¬
(k − 1)!

(k − i)!
Mi−1,i−1/2;1/2(λ) =

ci(k)

(log 2)i−1
· λi−1Mi−1,i−1/2;1/2(λ)

for all λ ­ 2(i − 1)/ρ. Since, for every n ­ 0, the functions λ 7→ λne−ρλ

and λ 7→ λ−n are decreasing on [n/ρ,∞), the function [0,∞) ∋ λ 7→
λi−1Mi−1,i−1/2;1/2(λ) is decreasing on [(i − 1)/ρ,∞) and converges to 0 as
λ→∞. In addition,

0 ¬ r2,i(k) = 2i−1(i− 2)!{ci(k)− 1}.

From the above, it follows that ξi(k)→ 2i−1(i− 2)! as k →∞.
Choose k0 ∈ N and i ∈ N so that (k0 − i + 1) log 2 ­ 2(i − 1)/ρ, in other

words, (k0+1)ρ log 2+2
ρ log 2+2 ­ i. Then, for all k ­ k0,

|ri(k)| ¬
ci(k0)

(log 2)i−1
· λi−1Mi−1,i−1/2;1/2(λ)|λ=(k0−i+1) log 2

+ 2i−1(i− 2)!{ci(k0)− 1}.

Since (k0+1)ρ log 2+2
2+ρ log 2 ­ 64 for k0 = 3000 and ρ = 2−4, we can choose i =

2, . . . , 16 and obtain the estimate of |ri(k)| for i = 2, . . . , 16. ■
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