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Abstract. Sorted ℓ1 Penalized Estimator (SLOPE) is a relatively new con-
vex regularization method for fitting high-dimensional regression models.
SLOPE allows the reduction of the model dimension by shrinking some
estimates of the regression coefficients completely to zero or by equating
the absolute values of some nonzero estimates of these coefficients. This
allows one to identify situations where some of true regression coefficients
are equal. In this article we will introduce the SLOPE pattern, i.e., the set
of relations between the true regression coefficients, which can be identi-
fied by SLOPE. We will also present new results on the strong consistency
of SLOPE estimators and on the strong consistency of pattern recovery
by SLOPE when the design matrix is orthogonal and illustrate advantages
of the SLOPE clustering in the context of high frequency signal denoising.
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1. INTRODUCTION

1.1. Introduction and motivations. Linear Multiple Regression concerns the model
Y = Xβ + ε, where Y ∈ Rn is an output vector, X ∈ Rn×p is a fixed design
matrix, β ∈ Rp is an unknown vector of predictors and ε ∈ Rn is a noise vector.
The primary goal is to estimate β. In the low-dimensional setting, i.e., when the
number p of predictors is not larger than the numbers n of explanatory variable and
X is of full rank, the ordinary least squares estimator β̂OLS has an exact formula
β̂OLS = (X ′X)−1X ′Y . For practical reasons there is an urge to avoid the high-
dimensionality curse, therefore we want the estimate to be sparse, i.e., to be de-
scribable by a smaller number of parameters. Several solutions were proposed
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to deal with that problem. One of them, the Least Absolute Shrinkage and Se-
lection Operator (LASSO [7, 24]) involves penalizing the residual sum of squares
∥Y −Xβ̂∥22 with the ℓ1 norm of β̂ multiplied by a tuning parameter λ:

β̂LASSO := argmin
b∈Rp

[
1
2∥Y −Xb∥22 + λ∥b∥1

]
.

The LASSO estimator is not unbiased, but is a shrinkage estimator which shrinks
some β̂LASSO

j completely to zero, resulting in a sparser estimate. In the case of X
being an orthogonal matrix, i.e. 1

nX
′X = Ip, the exact formula for β̂LASSO intro-

duced by Tibshirani [24] is based on β̂OLS:

β̂LASSO
i = sign(β̂OLS

i )max {|β̂OLS
i | − λ, 0}.

Another approach to reduce the dimensionality is the Sorted ℓ1 Penalized Esti-
mator (SLOPE [3, 2, 25]), which not only generalizes the LASSO method, but
also allows one to clusterize the similar coefficients of β. In SLOPE, the ℓ1 norm
is replaced by its sorted version JΛ, which depends on the tuning vector Λ =
(λ1, . . . , λp) ∈ Rp with λ1 ­ · · · ­ λp ­ 0:

JΛ(β) :=
p∑

i=1

λi|β|(i),

where {|β|(i)}
p
i=1 is a decreasing permutation of the absolute values of β1, . . . , βp:

β̂SLOPE := argmin
b∈Rp

[
1
2∥Y −Xb∥22 + JΛ(b)

]
.

The case of Λ being an arithmetic sequence was studied by Bondell and Reich
[5] and called the Octagonal Shrinkage and Clustering Algorithm for Regression
(OSCAR). The special case of SLOPE with λ1 = · · · = λp > 0 is LASSO.
For Λ = (0, . . . , 0) we obtain the OLS estimator.

Clustering the predictors allows for additional dimension reduction by identi-
fying variables with the same absolute values of regression coefficients. One can
recently observe the rise of interest in methods which cluster highly correlated
predictors [6, 12, 14, 17, 18, 23]. SLOPE is ideal for this task, since it is capable
of identifying the low-dimensional structure, which is called the SLOPE pattern,
defined by Schneider and Tardivel in terms of the subdifferential of the SLOPE
norm JΛ; see Remark 1.1. By convention, in this article we let sign(0) = 0. We
will denote by k the number of clusters of patt(b) = (m1, . . . ,mp)

′, i.e., the num-
ber of non-zero components of |b|.

DEFINITION 1.1 (SLOPE pattern [4]). The SLOPE pattern is a function

patt : Rp → Zp such that patt(b)i = sign(bi)rank(|bi|),

where the rank of |bi| ≠ 0 is defined to be the number of |cj |’s satisfying |bi| ­ |cj |,
where |c1|, . . . , |ck|, k ¬ p, are distinct non-zero values among |b1|, . . . , |bp|. We
adopt the convention that rank(0) = 0.
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We denote byMp the set of all possible SLOPE patterns of b ∈ Rp.

FACT 1.1 (Basic properties of SLOPE pattern [20]).

(a) For every 1 ¬ l ¬ ∥patt(b)∥∞ there exists j such that |patt(b)j | = l,

(b) sign(patt(b)) = sign(b) (sign preservation),

(c) |bi| = |bj | ⇒ |patt(b)i| = |patt(b)j | (cluster preservation),

(d) |bi| > |bj | ⇒ |patt(b)i| > |patt(b)j | (hierarchy preservation).

EXAMPLE 1.1. patt(4, 0,−1.5, 1.5,−4) = (2, 0,−1, 1,−2).

REMARK 1.1 (Subdifferential description of the SLOPE pattern [20]). Let
Λ = (λ1, . . . , λp) satisfy λ1 > · · · > λp > 0. Then

patt(b1) = patt(b2) ⇐⇒ ∂JΛ(b1) = ∂JΛ(b2),

where ∂f (b) is the subdifferential of the function f : Rp → R at b, i.e.

∂f (b) = {v ∈ Rp : f(z) ­ f(b) + v′(z − b) ∀z ∈ Rp}.

The subdifferential approach may be applied to a wider class of penalizers that
are polyhedral gauges (see [22]).

DEFINITION 1.2 (Pattern recovery by SLOPE). We say that the SLOPE esti-
mator β̂SLOPE recovers the pattern of β when

patt(β̂SLOPE) = patt(β).

The clustering properties of SLOPE have been studied before in [5, 11], but the
researchers considered strongly correlated predictors, used in financial mathemat-
ics to group the assets with respect to their partial correlation with the hedge fund
return times series [13]. In our article we assume the orthogonal design

(1.1) X ′X = nIp.

This is a classical and natural assumption in case of experimential data [24]. More-
over, in the asymptotic case, where n → ∞ and p is fixed, it is usually supposed
that X ′X/n→ C > 0 [26, 27]. In (1.1) the design matrix X is orthogonal. Then
the Euclidean norm of each n-dimensional column of X equals n. If it was 1, the
terms of X would approach zero for large n, which is not natural. Such matrices
are widely used in signal analysis [19, 8]. For general X the problem is considered
in the companion article [4].



286 T. Skalski et al.

To study the properties of SLOPE we often use the closed unit ball CΛ in the
dual norm of JΛ, which was studied e.g. by Zeng and Figueiredo [25]. This dual
ball is described explicitly as a signed permutahedron (see e.g. [16, 20])

(1.2) CΛ =
{
π = (π1, . . . , πp) ∈ Rp :

∑
j¬i
|π|(j) ¬

∑
j¬i

λj , i = 1, . . . , p
}
.

In this article we prove novel results on the strong consistency of SLOPE both
in estimation and in pattern recovery. We also introduce a new method, based on
the minimax approach, to find the relationship between β̂SLOPE and β̂OLS.

1.2. Outline of the paper. In Section 2 we derive connections between β̂SLOPE and
β̂OLS in the orthogonal design. We use the minimax theorem of Sion [1]. In Sec-
tion 3 we focus on the properties of β̂SLOPE. We use the geometric interpretation
of SLOPE to explain its ability to identify the SLOPE pattern, and we provide new
theoretical results on the support recovery and clustering properties using a repre-
sentation of SLOPE as a function of the ordinary least squares (OLS) estimator.
A similar approach to LASSO was used by Ewald and Schneider [10].

To analyze the asymptotic properties of the SLOPE estimator, e.g. its consis-
tency, we have to assume that the sample size n tends to infinity. Therefore, in Sec-
tion 4 we define a sequence of linear regression models

Y (n) = X(n)β + ε(n)n .

In this sequence, the response vector Y (n) ∈ Rn, the design matrix X(n) ∈ Rn×p

and the error term ε(n) = (ε
(n)
1 , . . . , ε

(n)
n )′ ∈ Rn vary with n. The error term has a

normal N(0, σ2In) distribution. We make no assumptions about relations between
ε(n) and ε(m) for n ̸= m. In this paper we consider the specific, but statistically
important model in which n ­ p and the columns of X are pairwise orthogonal.
The orthogonality assumption allows us to derive, by simple techniques, relatively
precise results on the SLOPE estimator (e.g. Theorem 3.1), which seem unavailable
when the columns of X are not orthogonal.

Substantially more difficult techniques based on subdifferential calculus
are developed in [4]. These techniques are used there to establish properties
of the SLOPE estimator in the general case, when the columns of X are not ortho-
gonal, the sequence of error terms ε(n) is incremental, and p may be much larger
than n. In the asymptotic theorem proved in [4] under different assumptions on
X ′nXn stronger restrictions on the tuning λn are considered. We provide condi-
tions under which the SLOPE estimator is strongly consistent. Additionally, when
for each n the design matrix is orthogonal, we provide conditions on the sequence
of tuning parameters such that SLOPE is strongly consistent in pattern recovery.
In Section 5 we show applications of SLOPE clustering in terms of high frequency
signal denoising and illustrate them with simulations. The Appendix contains the
proofs of the technical results.
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2. APPROACH BY MINIMAX THEOREM

2.1. Technical results. Let rSLOPE denote the minimum value of the SLOPE crite-
rion, attained by β̂SLOPE, i.e.

rSLOPE := min
b∈Rp

[
1
2∥Y −Xb∥22 + JΛ(b)

]
= 1

2∥Y −Xβ̂SLOPE∥22 + JΛ(β̂
SLOPE).

Since

∥β̂SLOPE∥2 ¬
√
p ∥β̂SLOPE∥∞, λ1∥β̂SLOPE∥∞ ¬ JΛ(β̂

SLOPE) ¬ rSLOPE,

it follows that

λ1∥β̂SLOPE∥2 ¬
√
p rSLOPE ¬

√
p
[
1
2∥Y −X0∥22 + JΛ(0)

]
=

√
p

2
∥Y ∥22.

We immediately get the following result.

COROLLARY 2.1. ∥β̂SLOPE∥22 ¬M0, where M0 =
(p ∥Y ∥42

4λ2
1

)
.

By this corollary, we can clearly limit our search to vectors β from the com-
pact setM :=

{
b ∈ Rp : ∥b∥22 ¬M0

}
. Therefore, we can equivalently define a

SLOPE solution by

(2.1) β̂SLOPE = argmin
b∈M

[
1
2∥Y −Xb∥22 + JΛ(b)

]
.

PROPOSITION 2.1. Let CΛ be the unit ball in the dual SLOPE norm. Then,
for each b ∈ Rp,

(2.2) JΛ(b) = max
π∈CΛ

π′b.

The proof is a simple application of the definition of the dual norm and the
reflexivity of (Rp, JΛ) = (Rp, J∗Λ)

∗. Thus

JΛ(b) = ∥b∥(Rp,JΛ) = sup
x: J∗Λ(x)¬1

x′b.

REMARK 2.1. (a) A different, longer proof is given in [3, Proposition 1.1].
(b) Formula (2.2) holds in much greater generality for Lovász extensions

in place of the JΛ norm [15]. We thank the anonymous referee for pointing this
out.
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2.2. Saddle point. Let r :M× CΛ → R be defined by

r(b,π) := 1
2∥Y −Xb∥22 + π′b.

As an immediate consequence of (2.1) and Proposition 2.1 we obtain

rSLOPE = min
b∈Rp

[
1
2∥Y −Xb∥22 + JΛ(b)

]
= min

b∈M

[
1
2∥Y −Xb∥22 + JΛ(b)

]
= min

b∈M
max
π∈CΛ

[
1
2∥Y −Xb∥22 + π′b

]
= min

b∈M
max
π∈CΛ

r(b,π).

It turns out that maximization over π ∈ CΛ and minimization over b ∈ M can
be interchanged without affecting the result. To see this, note that both CΛ andM
are convex and compact. Moreover, for each fixed π ∈ CΛ, r(b,π) is a convex
continuous function of b ∈ M, and for each fixed b ∈ M, r(b,π) is concave
with respect to π ∈ CΛ (in fact, linear). Therefore, all assumptions of Sion’s
minimax theorem are fulfilled (see [1, p. 218]) and thus there exists a saddle point
(β∗,π∗) ∈M× CΛ such that

max
π∈CΛ

min
b∈M

r(b,π) = min
b∈M

r(b,π∗) = r(β∗,π∗)

= max
π∈CΛ

r(β∗,π) = min
b∈M

max
π∈CΛ

r(b,π) = rSLOPE.

In the next section we shall see that the first coordinate of any saddle point (β∗,π∗)
is SLOPE estimator.

2.3. SLOPE solution when X has full column rank. Since for each fixed π ∈ CΛ,
the function r(b,π) is convex with respect to b ∈M, any point bπ ∈M at which
the gradient ∂r(b,π)

∂b is zero, is a global minimum point. If we rewrite r(b,π) as

r(b,π) = 1
2Y
′Y − Y ′Xb+ 1

2b
′X ′Xb+ π′b

and differentiate with respect to b, we obtain

∂r(b,π)

∂b
= −X ′(Y −Xb) + π.

Equating this gradient to 0 gives the following equation for the optimum point bπ:

(2.3) X ′Xbπ = X ′Y − π.

Substituting this into the equation for r(bπ,π), we find that

r(bπ,π) =
1
2Y
′Y − b′πX

′Y + 1
2b
′
πX
′Xbπ + π′bπ

= 1
2Y
′Y − b′πX

′Y + b′πX
′Xbπ + b′ππ − 1

2b
′
πX
′Xbπ

= 1
2Y
′Y − 1

2b
′
πX
′Xbπ = 1

2Y
′Y − 1

2b
′
πX
′X(X ′X)−1X ′Xbπ

= 1
2Y
′Y − 1

2(X
′Y − π)′(X ′X)−1(X ′Y − π).

Let pj = |{i : |mi| = k + 1− j}| be the number of elements of the jth cluster
of β, Pj =

∑
i¬j pi and Pk+1 = p.
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LEMMA 2.1. Assume that X has full column rank, i.e. (X ′X)−1 exists. Let
π∗ = (π∗1, . . . , π

∗
p)
′ ∈ CΛ be any solution of

π∗ = argmin
π∈CΛ

[(X ′Y − π)′(X ′X)−1(X ′Y − π) ]

and let β∗ = (β∗1 , . . . , β
∗
p)
′ be the corresponding point fromM given by

β∗ = (X ′X)−1(X ′Y − π∗).

Then (π − π∗)′β∗ ¬ 0 for all π ∈ CΛ and hence

(a) sign(β∗i ) · sign(π∗i ) ­ 0, i = 1, . . . , p,

(b) (|π∗1|, . . . , |π∗p|) and (|β∗1 |, . . . , |β∗p |) are similarly sorted, i.e. if |(patt(β))i| =
k + 1− j, then |π∗|i ∈ {|π∗|(Pj−1+1), . . . , |π∗|(Pj)},

(c) for any permutation τ satisfying |β∗τ(1)| ­ · · · ­ |β
∗
τ(p)|, if there is a k ∈

{2, . . . , p} such that
∑k−1

i=1 |π
∗
τ(i)| <

∑k−1
i=1 λi and |π∗τ(k)| > 0, then |β∗τ(k−1)|

= |β∗τ(k)|.

The proof is given in the Appendix. An immediate consequence of the lemma
is the following result.

LEMMA 2.2. Assume that X has full column rank, i.e. (X ′X)−1 exists. The
point (β∗,π∗) defined as in Lemma 2.1 is a saddle point of the function r(b,π).

The proof is given in the Appendix. We use the last lemma to prove the main
result of this section.

THEOREM 2.1. Assume that X has full column rank, i.e. (X ′X)−1 exists. Let
the point β∗ be defined as in Lemma 2.1. Then β∗ is the SLOPE estimator of β.

Proof. Using the fact that

max
π∈CΛ

r(β∗,π) = min
b∈M

max
π∈CΛ

r(b,π)

(see the previous lemma) we have

1
2∥Y −Xβ∗∥22 + JΛ(β

∗) = max
π∈CΛ

[
1
2∥Y −Xβ∗∥22 + π′β∗

]
= max

π∈CΛ

r(β∗,π) = min
b∈M

max
π∈CΛ

r(b,π) = min
b∈Rp

[
1
2∥Y −Xb∥22 + JΛ(b)

]
. ■

COROLLARY 2.2. In the linear model satisfying 1
nX
′X = Ip we have

β̂OLS − β̂SLOPE =
1

n
π∗ =

1

n
argmin
π∈CΛ

∥β̂OLS − π∥22 = argmin
π∈CΛ/n

∥β̂OLS − π∥22,

is the proximal projection of β̂OLS onto CΛ/n.
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Projections onto CΛ are widely used in [15] in the study of the notion of degrees
of freedom. However, Corollary 2.2 is not stated there explicitly.

REMARK 2.2. Assume that X has full column rank, i.e. (X ′X)−1 exists. For
each π ∈ CΛ, the point bπ defined in (2.3) is in {b ∈ Rp : ∥b∥22 ¬ M} for
M > max {M0,M1} with

M1 := max
π∈CΛ

∥(X ′X)−1(X ′Y − π)∥22.

3. PROPERTIES OF SLOPE IN THE ORTHOGONAL DESIGN

3.1. SLOPE vs. OLS. By Theorem 2.1 and Corollary 2.2, when 1
nX
′X = Ip, the

orthogonal projection of the ordinary least squares estimator β̂OLS = 1
nX
′Y onto

the unit ball CΛ/n is equal to β̂OLS − β̂SLOPE. For Λ = (200, 100)′ and n = 50

this property is illustrated in Figure 1. The figure represents β̂
SLOPE

(black arrows)
depending on the localization of β̂OLS in the orthogonal design. For β̂OLS being
the blue point (for colors, see the pdf file) located in the area labelled by (1, 0)

the first component of β̂
SLOPE

is positive and the second is null. For β̂OLS being
the yellow point in the area labelled by (−1, 1) both components of β̂

SLOPE
have

equal absolute value (clusterization), but their signs are opposite. For β̂OLS being
the red point in the area labelled by (1, 2) both components of β̂SLOPE are positive
and the first component is smaller than the second one. The blue polytope is the

β1

β2

π∗
SLOPE OLS

π∗
SLOPE

OLS

π∗

SLOPE

OLS

(-2,1)

(-1,2) (1,2)

(2,1)

(2,-1)

(1,-2)(-1,-2)

(-2,-1)

(-1,0)

(-1,1) (0,1) (1,1)

(1,0)

(1,-1)(0,-1)(-1,-1)

(0,0)

Figure 1. The dual unit ball CΛ/n for Λ = (200, 100)′ and examples of β̂SLOPE and β̂OLS in the or-
thogonal design for n = 50 and p = 2. The labels of each colored set refer to the pattern of β̂SLOPE

for β̂OLS lying in this set. The arrows point from β̂OLS − β̂SLOPE to β̂OLS.
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dual SLOPE unit ball CΛ, and the labels

M2 = {(0, 0), (±1, 0), (0,±1), (±1,±1), (±2,±1), (±1,±2)}

associated to the areas of this figure correspond to all SLOPE patterns for n = 50
and p = 2. In the orthogonal design, one may also explicitly compute the SLOPE
estimator. Indeed, by Corollary 2.2, β̂

SLOPE
is the image of β̂

OLS
by the proximal

operator of the SLOPE norm. Therefore, this operator has a closed form formula [2,
21, 9]. This explicit expression gives an analytical way to learn that SLOPE solu-
tion is sparse and built of clusters.

LEMMA 3.1. In the linear model satisfying 1
nX
′X = Ip we have

(3.1) argmin
b∈Rp

[
1

2n
∥Y −Xb∥22+JΛ(b)

]
= argmin

b∈Rp

[
1

2
∥β̂OLS−b∥22+JΛ(b)

]
.

As (3.1) is not proven in [3, (1.14)], we give the proof in the Appendix.
The next theorem gives a sufficient condition for the clustering effect

of the SLOPE estimator in the orthogonal design.

THEOREM 3.1. Consider a linear model with orthogonal design 1
nX
′X = Ip.

Let π be a permutation of (1, . . . , p) such that

|β̂OLS

π(1)| ­ · · · ­ |β̂
OLS

π(p)|.

For i ∈ {1, . . . , p− 1},

if |β̂OLS

π(i)| − |β̂
OLS

π(i+1)| ¬
λi − λi+1

n
, then |β̂SLOPE

π(i) | = |β̂
SLOPE

π(i+1)|.

Proof. By Lemma 3.1, in the orthogonal design, β̂SLOPE is the proximal map
of JΛ/n(·) at β̂OLS. The result may be inferred from [2, Lemma 2.3]. ■

We now derive necessary and sufficient conditions under which SLOPE in
the orthogonal design recovers the support of the vector β = (β1, . . . , βp)

′, i.e.
β̂SLOPE
i = 0⇔ βi = 0.

THEOREM 3.2. Under the orthogonal design 1
nX
′X = Ip, let π be a permu-

tation of (1, . . . , p) satisfying |β̂OLS

π(1)| ­ · · · ­ |β̂
OLS

π(p)|. Without loss of generality
suppose that supp(β) = {1, . . . , p0} with p0 < p. A necessary and sufficient con-
dition for SLOPE to identify the set of relevant covariables is:

min
1¬i¬p0

|β̂OLS
i | > max

p0+1¬i¬p
|β̂OLS

i |,(a)

p0∑
i=k

|β̂OLS

π(i)| >
1

n

p0∑
i=k

λi for k = 1, . . . , p0,(b)

k∑
i=p0+1

|β̂OLS

π(i)| ¬
1

n

k∑
i=p0+1

λi for k = p0 + 1, . . . , p.(c)
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Proof. The result may be inferred from the properties of the proximal SLOPE
[3, Lemmas 2.3 and 2.4] and from Lemma 3.1. ■

4. ASYMPTOTIC PROPERTIES OF SLOPE

In this section we discuss several asymptotic properties of SLOPE estimators in
the low-dimensional regression model in which p is fixed and the sample size n
tends to infinity. For each n ­ 1 we consider a linear model

(4.1) Y (n) = X(n)β + ε(n),

where Y (n) = (y
(n)
1 , . . . , y

(n)
n )′ ∈ Rn is a vector of observations, X(n) ∈ Rn×p is

a deterministic design matrix with rank(X(n)) = p, β = (β1, . . . , βp)
′ ∈ Rp is a

vector of unknown regression coefficients and ε(n) = (ε
(n)
1 , . . . , ε

(n)
n )′ ∈ Rn is a

noise term, which has a normal N(0, σ2In) distribution. We make no assumptions
about the dependence between ε(n) and ε(m) for n ̸= m. In particular, ε(n) need
not be a subsequence of ε(m).

When defining the sequence (β̂SLOPE
n ) of SLOPE estimators, we assume that

the tuning vector varies with n. More precisely, for each n ­ 1 its coefficients
λ
(n)
1 ­ · · · ­ λ

(n)
p ­ 0 are fixed and λ

(n)
1 > 0. We denote by β̂SLOPE

n the SLOPE
estimator corresponding to the tuning vector Λ(n) = (λ

(n)
1 , . . . , λ

(n)
p )′:

(4.2) β̂SLOPE
n = argmin

b∈Rp

[
1
2∥Y

(n) −X(n)b∥22 + JΛ(n)(b)
]
.

4.1. Strong consistency of the SLOPE estimator. Let us recall the definition of a
strongly consistent estimator β̂SLOPE

n of β: for all β ∈ Rp we have β̂SLOPE
n → β

almost surely.
Below we discuss consistency of the sequence (β̂SLOPE

n ) of SLOPE estimators,
defined by (4.2).

THEOREM 4.1. Consider the linear regression model (4.1) and assume that

lim
n

n−1(X(n))′X(n) = C,

where C is a positive definite matrix. Let β̂SLOPE
n , n ­ 1, be the SLOPE estimator

corresponding to the tuning vector Λ(n) = (λ
(n)
1 , . . . , λ

(n)
p )′.

(a) If limn→∞ λ
(n)
1 /n = 0, then β̂SLOPE

n
a.s.−−→ β.

(b) If the true parameter β satisfies λ0∥β∥∞ > β′Cβ/2 and λ
(n)
1 /n → 0,

then β̂SLOPE
n does not converge to β. Hence, β̂SLOPE

n is not strongly consistent
for β.
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Before proving the above theorems we state a simple technical lemma. It fol-
lows quickly from the Borel–Cantelli Lemma and the tail inequality: If Z ∼
N(0, 1), then P(Z > t) ¬ t−1e−t

2/2/
√
2π, t > 0.

LEMMA 4.1. Assume that (Qn)n∈N is a sequence of Gaussian random var-
iables, defined on the same probability space, which converges in distribution
to N(0, σ2) for some σ ∈ (0,∞). Then, for any δ > 0,

lim
n→∞

Qn

(log n)1/2+δ
= 0 a.s.

Our proof of the strong consistency of SLOPE is based on the strong consis-
tency of the OLS estimator. The latter result is folklore and we prove it in our
setting.

PROPOSITION 4.1. Consider the linear regression model (4.1). If we have
limn n

−1(X(n))′X(n) = C, where C is positive definite, then β̂OLS
n

a.s.−−→ β.

Proof. We have

β̂OLS
n − β = ((X(n))′X(n))−1(X(n))′Y (n) − β

= ((X(n))′X(n))−1(X(n))′ε(n).

Then
√
n (β̂OLS

n − β) has a normal N(0, σ2(n−1(X(n))′X(n))−1) distribution
and its components satisfy the assumptions of Lemma 4.1. Since (log n)1/2+δ =
o(
√
n), we get the assertion by Lemma 4.1. ■

Proof of Theorem 4.1. (a) It follows from Theorem 2.1 that there exists a vector
π∗n ∈ C(Λ(n)) such that

β̂SLOPE
n = ((X(n))′X(n))−1((X(n))′Y (n) − π∗n).

Since π∗n takes values in CΛ(n) , it follows that ∥π∗n∥∞ ¬ λ
(n)
1 . Hence,

(4.3) π∗n/n
a.s.−−→ 0,

because ∥π∗n/n∥∞ ¬ λ
(n)
1 /n → 0. The assumption that rank(X(n)) = p implies

that the matrix (X(n))′X(n) is invertible and hence the least squares estimator of
β is unique and has the form β̂OLS

n = ((X(n))′X(n))−1(X(n))′Y (n). Combining
(4.3) with the fact that β̂OLS

n
a.s.−−→ β, we conclude that

β̂SLOPE
n = ((X(n))′X(n))−1((X(n))′Y (n) − π∗n)

= β̂OLS
n − ((X(n))′X(n))−1π∗n

= β̂OLS
n −

(
(X(n))′X(n)

n

)−1π∗n
n

a.s.−−→ β −C−10 = β.



294 T. Skalski et al.

(b) Since β̂SLOPE
n minimizes over b ∈ Rp the function

l(b) := 1
2∥Y

(n) −X(n)b∥22 + JΛ(n)(b)

and since λ
(n)
1 ∥b∥∞ ¬ JΛ(n)(b), it follows that

0 ¬ l(0)− l(β̂SLOPE
n )

= (β̂SLOPE
n )′(X(n))′Y (n) − 1

2(β̂
SLOPE
n )′(X(n))′X(n)β̂SLOPE

n − JΛ(n)(β̂SLOPE
n )

¬ (β̂SLOPE
n )′(X(n))′Y (n) − 1

2(β̂
SLOPE
n )′(X(n))′X(n)β̂SLOPE

n − λ
(n)
1 ∥β̂

SLOPE
n ∥∞

= (β̂SLOPE
n )′(X(n))′X(n)β̂OLS

n

− 1
2(β̂

SLOPE
n )′(X(n))′X(n)β̂SLOPE

n − λ
(n)
1 ∥β̂

SLOPE
n ∥∞.

The last equality follows from the fact that (β̂SLOPE
n )′(X(n))′(Y (n) −X(n))β̂OLS

n

= 0. Suppose to the contrary that β̂SLOPE
n

a.s.−−→ β. Then, using the facts that
β̂OLS
n

a.s.−−→ β and limn n
−1(X(n))′X(n) = C, we have

0 ¬ l(0)− l(β̂SLOPE
n )

n

a.s.−−→ β′Cβ − 1
2β
′Cβ − λ0∥β∥∞ = 1

2β
′Cβ − λ0∥β∥∞.

For λ0 > 0 this provides a contradiction since the inequality λ0∥β∥∞ ¬ 1
2β
′Cβ

does not hold when the value of β is sufficiently close to 0. ■

REMARK 4.1. The proof of Theorem 4.1(b) does not exclude that β̂SLOPE
n → β

for ∥β∥ large enough.
However, the definition of strong consistency requires the convergence for

any β. We have proved that if the true parameter β satisfies λ0∥β∥∞ > β′Cβ/2

and limn λ1/n = λ0 > 0, then β̂SLOPE
n does not converge to β.

4.2. Asymptotic pattern recovery in the orthogonal design. We again consider
a sequence of linear models (4.1) but this time we assume that for each n the
deterministic design matrix X(n) of size n× p satisfies

(X(n))′X(n) = nIp.(4.4)

As usual, we assume Gaussian errors, ε(n) ∼ N(0, σ2In).
Let β̂SLOPE

n = (β̂SLOPE
1 (n), . . . , β̂SLOPE

p (n))′ be the SLOPE estimator defined
by (4.2). With the above notation we present the main result of this section.

THEOREM 4.2. Assume that

lim
n→∞

λ
(n)
1

n
= 0
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and there exists δ > 0 such that

lim inf
n→∞

λ
(n)
i − λ

(n)
i+1√

n (log n)1/2+δ
= m > 0 for i = 1, . . . , p− 1.(4.5)

Then
patt(β̂SLOPE

n )
a.s.→ patt(β).

Note that the above conditions are satisfied e.g. by λ
(n)
i = c(p+ 1− i)n2/3 for

any constant c > 0.

Proof of Theorem 4.2. Without loss of generality we may assume that β =
(β1, . . . , βp)

′ and β1 ­ · · · ­ βp ­ 0. Indeed, we can always achieve this by per-
muting the columns of X(n) and changing their signs.

Since the space of patterns is discrete, we have to show that for large n,

patt(β̂SLOPE
n ) = patt(β) a.s.

We divide the proof into the following four parts:

(i) βi = βj > 0 =⇒ β̂SLOPE
i (n) = β̂SLOPE

j (n) a.s. for large n,

(ii) βi > βi+1 =⇒ β̂SLOPE
i (n) > β̂SLOPE

i+1 (n) a.s. for large n,

(iii) βi = 0 =⇒ β̂SLOPE
i (n) = 0 a.s. for large n,

(iv) βi > 0 =⇒ β̂SLOPE
i (n) > 0 a.s. for large n.

Points (ii) and (iv) follow quickly by the strong consistency of β̂
SLOPE

n . To prove
(i) and (iii) we observe that for each n we are in the orthogonal design case.

Let πn be a permutation of (1, . . . , p) satisfying

|β̂OLS

πn(1)
(n)| ­ . . . ­ |β̂OLS

πn(p)
(n)|.

By the strong consistency of the OLS estimator, taking n sufficiently large, we may
ensure that the clusters of β do not interlace in β̂OLS

n in the sense that if βi > βj ,
then β̂OLS

i (n) > β̂OLS
j (n) a.s. for n sufficiently large.

Let us now consider point (i). Let Si denote the cluster containing βi > 0, that
is, the set Si = {j ∈ {1, . . . , p} : βj = βi}. In view of the ordering of β, there
exists ki ∈ {1, . . . , p} such that

Si =
{
πn(j) : j ∈ {ki, ki + 1, . . . , ki +#Si − 1}

}
.

We will show that if πn(k), πn(k + 1) ∈ Si, then for large n,

β̂SLOPE

πn(k)
(n) = β̂SLOPE

πn(k+1)(n) a.s.,(4.6)

thus β̂SLOPE
j (n) = β̂SLOPE

k (n) for j, k ∈ Si, which finishes the proof of (i).
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Now assume that πn(k), πn(k+1) ∈ Si. Then, by Theorem 3.1, condition (4.6)
is satisfied if

|β̂OLS

πn(k)
(n)| − |β̂OLS

πn(k+1)(n)| ¬
1

n
(λ

(n)
k − λ

(n)
k+1)(4.7)

for large n and both β̂OLS

πn(k)
(n) and β̂OLS

πn(k)
(n) have the same sign. The latter is

ensured by the strong consistency of the OLS estimator and the fact that βi > 0.
If πn(k), πn(k + 1) ∈ Si, then we have the bound

|β̂OLS

πn(k)
(n)− β̂OLS

πn(k+1)(n)| ¬
∑
j∈Si

|β̂OLS
j (n)− β̂OLS

i (n)|.(4.8)

Take any j ∈ Si. Since both β̂OLS
j (n) and β̂OLS

i (n) have a normal distribution with
the same mean, by Lemma 4.1 we have

lim
n→∞

√
n (β̂OLS

j (n)− β̂OLS
i (n))

(log n)1/2+δ
= 0 a.s.

In view of (4.8) and (4.5), this implies that (4.7) holds true for large n. Hence,
(a) follows.

It remains to establish (iii). Assume that βp0 > 0 = βp0+1 = · · · = βp.
Clearly, condition (a) from Theorem 3.2 is satisfied thanks to the strong consistency
of the OLS estimator. For (b), we have for k = 1, . . . , p0,

1

n

p0∑
i=k

λ
(n)
i ¬ p0

λ
(n)
1

n
,

which converges to 0. On the other hand, the left-hand side of (b) converges a.s.
to

∑p0
i=k βi, which is positive. Thus, condition (b) from Theorem 3.2 holds for

large n. Condition (c) there follows from Lemma 4.1. Indeed, for δ > 0 and k =
p0 + 1, . . . , p we have

lim
n→∞

√
n

(log n)1/2+δ

k∑
i=p0+1

|β̂OLS

πn(i)
(n)| =

k∑
i=p0+1

lim
n→∞

|
√
n β̂OLS

πn(i)
(n)|

(log n)1/2+δ
= 0 a.s.,

while

lim
n→∞

1
√
n (log n)1/2+δ

k∑
i=p0+1

λ
(n)
i ­

k∑
i=p0+1

lim
n→∞

λ
(n)
i − λ

(n)
i+1√

n (log n)1/2+δ
= m > 0.

Thus, all assumptions of Theorem 3.2 are satisfied and the proof is complete. ■



Pattern recovery by SLOPE in the orthogonal design 297

5. NUMERICAL EXPERIMENT

Below we present an application of SLOPE in signal denoising. In our example
X ∈ R300×100 is an orthogonal system of trigonometric functions, i.e.

Xi,(2∗j−1) = sin(2πij/n) and Xi,(2∗j) = cos(2πij/n)

for i = 1, . . . , 100 and j = 1, . . . , 150. Here β ∈ Rp is a vector consisting of
two clusters: 20 coordinates with absolute value 100 and 20 coordinates with abso-
lute value 80. The absolute values of the coordinates of β are sorted in a decreasing
way. The signs of the non-zero coordinates are chosen independently with random
uniform distribution. To avoid large bias caused by the shrinkage nature of LASSO
and SLOPE, we debias them by combining with the OLS method. For that reason
we use the following definition of the pattern matrix UM and the clustered design
matrix X̃M , which is based on the SLOPE pattern:

DEFINITION 5.1. Let M ̸= 0 be a pattern inMp with k = ∥M∥∞ non-zero
clusters. The pattern matrix UM ∈ Rp×k is defined as follows:

(UM )ij = sign(mi)1(|mi|=k+1−j), i ∈ {1, . . . , p}, j ∈ {1, . . . , k}.

DEFINITION 5.2. Let M ̸= 0 be a pattern in Rp and k = max {∥M∥∞, 1}.
For X ∈ Rn×p we define the clustered design matrix by X̃M = XUM ∈ Rn×k.

To perform the debiased SLOPE, we begin by recovering the support and clus-
ters of a true vector β with SLOPE. Then, using the SLOPE pattern M obtained,
we replace the design matrix with its clustered version X̃M = XUM . Then we
perform the Ordinary Least Squares regression for the model Y = X̃Mb + ε,
where b consists only of distinct absolute values of β̂SLOPE.

Analogously we proceed with the debiased LASSO. However, in this method
we use the LASSO pattern matrix defined in the following way:

For LASSO we have the LASSO pattern that is a vector of signs [22]. For S ∈
{−1, 0, 1}p, ∥S∥1 denotes the number of non-zero coordinates. If ∥S∥1 = k ­ 1,
then we define the corresponding pattern matrix US ∈ Rp×k by

US = diag(S)supp(S),

i.e. the submatrix of diag(S) obtained by keeping the columns corresponding to
the indices in supp(S). Then we define the reduced matrix X̃S by

X̃S = XUS .

Equivalently, we have X̃S = (SiXi)i∈supp(S). The notion of pattern matrix also
appears in [4]. In our example ε ∈ N(0, σ2In) and σ = 30.
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We compare the Mean Square Error and the signal denoising of the classi-
cal OLS estimation, LASSO with the tuning parameter λcv minimizing the cross-
validated error, a debiased version of LASSO with λ = 5λcv and a debiased version
of SLOPE with the tuning vector Λ chosen with respect to the sequence proposed
below Theorem 4.2 (λi = 0.1(p+ 1− i)n2/3).

(a) (b)

(c) (d)

Figure 2. Comparison of signal denoising by OLS (a), LASSO (b), debiased LASSO (c) and debiased
SLOPE (d) on the coordinates [120, 125] of the regression model Y = Xβ + ε. The black lines
correspond to the true values of Xβ. The red lines correspond to the estimators Y = Xβ̂.

Figure 3. Signal denoising by debiased SLOPE on all coordinates of the regression model Y =
Xβ + ε. The (almost overlapping) black line and the red line correspond respectively to the true
values of Xβ and to Y = Xβ̂SLOPE.

We also compare debiased SLOPE with debiased LASSO based on a single
trial, as shown in Figure 4 and Table 1. The horizontal lines correspond to the
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(a) (b)

Figure 4. Pattern recovery by debiased LASSO (left) and by debiased SLOPE (right) in the same
setting as above.

true values of β. As one may observe, in the presented setting LASSO does not
recover the true support, while debiased SLOPE perfectly recovers support, sign
and clusters.

Table 1. Comparison of MSE between different regression methods.

OLS LASSO-CV LASSO-LS SLOPE-LS

MSE(β, ·) 613.6797 426.3705 171.7957 20.74967

6. APPENDIX

Proof of Lemma 2.1. Since the matrix (X ′X)−1 is non-negative definite, it fol-
lows that the function g : CΛ → [0,∞) defined by

g(π) := (X ′Y − π)′(X ′X)−1(X ′Y − π)

is convex in π. Therefore, at the point π∗ = (π∗1, . . . , π
∗
p)
′ where g attains its

global minimum over CΛ, the gradient∇g satisfies

[∇g(π∗) ]′(π − π∗) ­ 0 for all π ∈ CΛ.

This implies (π − π∗)′β∗ ¬ 0 for all π ∈ CΛ, because

∇g(π∗) = −2(X ′X)−1(X ′Y − π∗) = −2β∗.

In the proof of parts (a)–(c) we use the fact that π∗ maximizes π′β∗ over π ∈ CΛ.
To prove (a) suppose that sign(β∗i ) · sign(π∗i ) < 0 for some i and define

π = (π∗1, . . . , π
∗
i−1,−π∗i , π∗i+1, . . . , π

∗
p)
′.

Then (π∗)′β∗ < π′β∗, which is impossible since π ∈ CΛ.
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To prove (b), consider a permutation τ of (1, . . . , n) such that the sequences
(|π∗τ(1)|, . . . , |π

∗
τ(p)|) and (|β∗1 |, . . . , |β∗p |) are similarly sorted. Define

π = (s1 · π∗τ(1), s2 · π
∗
τ(2), . . . , sp · π

∗
τ(p)),

where si = sign(β∗i ) for i = 1, . . . , p. If (|π∗τ(1)|, . . . , |π
∗
τ(p)|) ̸= (|π∗1|, . . . , |π∗p|),

then by the Hardy–Littlewood–Pólya rearrangement inequality,

π′β∗ =
p∑

i=1

|π∗τ(i)| |β
∗
i | >

p∑
i=1

|π∗i | |β∗i | ­ (π∗)′β∗,

which is impossible since π ∈ CΛ.
Finally, to prove (c), suppose that

∑k−1
i=1 |π

∗
τ(i)| <

∑k−1
i=1 λi and |π∗τ(k)| > 0.

In this case there is a sufficiently small δ > 0 such that

π = (π∗1, . . . , π
∗
i−2, π

∗
i−1 + δsi−1, π

∗
i − δsi, π

∗
i+1, . . . , π

∗
p)
′ ∈ CΛ.

If |β∗τ(k−1)| > |β
∗
τ(k)| then

π′β∗ = (π∗)′β∗ + δ(|β∗τ(k−1)| − |β
∗
τ(k)|) > (π∗)′β∗,

which is impossible. ■

Proof of Lemma 2.2. First we note that for all π ∈ CΛ,

r(β∗,π) = 1
2∥Y −Xβ∗∥22 + π′β∗

= 1
2∥Y −Xβ∗∥22 + (π∗)′β∗ + (π − π∗)′β∗

= r(β∗,π∗) + (π − π∗)′β∗ ¬ r(β∗,π∗),

where the inequality follows from the fact that (π − π∗)′β∗ ¬ 0 for all π ∈ CΛ;
see the proof of Lemma 2.1. Therefore, maxπ∈CΛ

r(β∗,π) = r(β∗,π∗). More-
over, from the definition of β∗ it can be seen that r(β∗,π∗) = minβ∈M r(β,π∗).
These two facts imply that

min
β∈M

max
π∈CΛ

r(β,π) ¬ max
π∈CΛ

r(β∗,π) = r(β∗,π∗)

= min
β∈M

r(β,π∗) ¬ max
π∈CΛ

min
β∈M

r(β,π).

Since
max
π∈CΛ

min
β∈M

r(β,π) ¬ min
β∈M

max
π∈CΛ

r(β,π)

(by the max-min inequality), we have equality throughout. This completes the
proof. ■



Pattern recovery by SLOPE in the orthogonal design 301

Poof of Lemma 3.1. Observe that

1

n
∥Y −Xb∥22 =

1

n
Y ′Y − 2

n
Y ′Xb+ b′b,

∥β̂OLS − b∥22 =
1

n2
Y ′XX ′Y − 2

n
Y ′Xb+ b′b.

Therefore the two optimization problems differ by 1
2n(Y

′Y − 1
nY
′XX ′Y ), which

does not depend on b, which implies their equivalence. ■
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