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Abstract. We deal with the problem of existence and uniqueness of a so-
lution for one-dimensional reflected backward stochastic differential equa-
tions with two strictly separated barriers when the generator has logarithmic
growth |y| |ln |y|| + |z|

√
|ln |z|| in the state variables y and z. The termi-

nal value ξ and the obstacle processes (Lt)0¬t¬T and (Ut)0¬t¬T are Lp-
integrable for a suitable p > 2. The main idea is to use the concept of local
solution to construct a global one. As applications, we broaden the class of
functions for which mixed zero-sum stochastic differential games admit an
optimal strategy and the related double-obstacle partial differential equation
problem has a unique viscosity solution.
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1. INTRODUCTION

In this paper we are concerned with the problem of existence and uniqueness of a
solution for one-dimensional reflected backward stochastic differential equations
(BSDEs for short) driven by Brownian motion (Bt)t¬T with two continuous re-
flecting barriers L := (Lt)t¬T and U := (Ut)t¬T and whose coefficient and termi-
nal values are f and ξ respectively. This means that we want to show the existence
of a unique quadruple

(Y, Z,K+,K−)

of Ft-adapted processes such that
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(1.1)



Yt = ξ +
T∫
t

f(s, Ys, Zs) ds

+ (K+
T −K

+
t )− (K−T −K

−
t )−

T∫
t

Zs dBs, t ∈ [0, T ];

Lt ¬ Yt ¬ Ut, ∀t ∈ [0, T ];
T∫
0

(Ys − Ls) dK
+
s =

T∫
0

(Us − Ys) dK−s = 0.

In the framework of a Brownian filtration, the notion of BSDEs was first introduced
by Pardoux and Peng [18]. Then, in [11], El-Karoui et al. introduced BSDEs with a
lower obstacle L := (Lt)t¬T where the solution Y is assumed to be above L; sub-
sequently, Cvitanić and Karatzas [4] generalized these results to BSDEs with two
barriers (upper and lower). Due to their appearance in many finance problems such
as the model behind the Black and Scholes formula for the pricing and hedging of
options in mathematical finance, as well as their many applications in several other
problems: optimal switching, stochastic games, non-linear PDEs etc. (see [7, 11,
12, 17] and the references therein), many authors have attempted to improve the
result of [4] and establish the existence and uniqueness of a solution by focusing
on weakening the Lipschitz property of the coefficient or the square integrability
of the data (see [8] for the latter).

The main objective of this paper is to show the existence and uniqueness of a
solution for BSDEs with two reflecting barriers with a generator allowing logarith-
mic growth in the state variables y and z:

|f(t, ω, y, z)|
¬ |ηt|+ c0|y| |ln |y||+ c1|z|

√
|ln |z||, ∀(t, ω, y, z) ∈ [0, T ]× Ω× R× Rd,

with the terminal data ξ and the barriers being merely p-integrable (with p > 2).
For example, let C be a constant and f(y) = −Cy ln |y|, and consider the BSDE

(1.2)



Yt = ξ +
T∫
t

f(Ys) ds

+ (K+
T −K

+
t )− (K−T −K

−
t )−

T∫
t

Zs dBs, t ∈ [0, T ];

Lt ¬ Yt ¬ Ut, ∀t ∈ [0, T ];
T∫
0

(Ys − Ls) dK
+
s =

T∫
0

(Us − Ys) dK−s = 0.

The generator in (1.2) is not locally monotone or of sublinear growth in the y-
variable; moreover, it grows as a large power of y. The logarithmic nonlinearity
y ln |y|which appears in (1.2) is interesting in itself and to our knowledge it has not
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been covered yet; the same for f(z) = |z|
√
|ln |z||. As we can see, our assumption

covers both f(y) = −Cy ln |y| and f(z) = |z|
√
|ln |z||.

Moreover, we also impose another assumption on f (see (H.4) below) which is
local in y, z and also in ω; this enables us to cover certain BSDEs with stochastic
monotone generators.

There are two main reasons why we study this kind of problem. The first one
is zero-sum games, of Dynkin type or of mixed type, where we broaden the class
of data for which those games have a value. It is well known that double-barrier
reflected BSDEs are connected with mixed zero-sum games, which we describe
briefly.

Assume that we have a stochastic system whose dynamic (xt)t¬T satisfies

xt = x0 +
t∫
0

φ(s, xs, us, vs) ds+
t∫
0

σ(s, xs) dBs, t ∈ [0, T ], x0 ∈ Rd,

φ is the drift of the system and the stochastic processes (ut)t¬T and (vt)t¬T are
adapted and stand for, respectively, the intervention functions of two agentsA1 and
A2 on that system (the system could be for example a stock market and A1 and A2

are two traders). Moreover, the two agents can exit the system whenever they want,
meaning that they can stop controlling at stopping times τ and σ. However, their
actions are not free and their advantages are antagonistic, i.e., there is a payoff
J(u, τ ; v, σ) between them such that

J(u, τ ; v, σ)

= E(u,v)
[τ∧σ∫

0

h(s, x, us, vs) ds+ Lσ1{σ¬τ<T} + Uτ1{τ<σ} + ξ1{τ∧σ=T}

]
,

where h is the instantaneous reward of A2, L (resp. U ) is the reward if A2 decides
to stop at σ (resp. τ ) before the terminal time T , and ξ is the reward if he decides
to stay until T .

The first (resp. second) player chooses a pair (u, τ) (resp. (v, σ)) of continuous
control and stopping time, and looks for minimizing (resp. maximizing) this pay-
off, meaning we aim to find a pair of strategies (u∗, τ∗) and (v∗, σ∗) forA1 andA2

respectively such that J(u∗, τ∗; v, σ) ¬ J(u∗, τ∗; v∗, σ∗) ¬ J(u, τ ; v∗, σ∗). The
main idea is to characterize the value function as a solution of a specific reflected
BSDE with two barriers. This problem has already been studied, for example, in
[15] when σ−1, φ and h are bounded and in [13] when σ−1φ is bounded and h is
of linear growth with respect to the x-variable. We consider the case when both h
and φ are of linear growth in x.

The second reason for considering this problem is to weaken the hypotheses un-
der which the two-obstacle parabolic partial differential variational inequality has
a unique solution in the viscosity sense. We consider for example the Markovian
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of the BSDE (1.2), which is defined by the SDE-BSDE system

(1.3)



Xt,x
s = x+

s∫
t

b(u,Xt,x
u ) du+

s∫
t

σ(u,Xt,x
u ) dBu;

Y t,x
s = g(Xt,x

T )− C
T∫
s

Y t,x
u ln |Y t,x

u | du

+
T∫
s

dK+,t,x
u −

T∫
s

dK−,t,xu −
T∫
s

Zt,x
u dBu;

h(s,Xt,x
s ) ¬ Y t,x

s ¬ h′(s,Xt,x
s ), ∀s ∈ [t, T ];

T∫
t

(Y t,x
s − h(s,Xt,x

s )) dK+,t,x
s =

T∫
t

(h′(s,Xt,x
s )− Y t,x

s ) dK−,t,xs = 0.

The system of double-obstacle variational inequality associated with (1.3) is
given by

(1.4)
min

[
u(t, x)− h(t, x),max

{
−∂u

∂t (t, x)− Lu(t, x)
+ Cu(t, x) ln |u(t, x)|, u(t, x)− h′(t, x)

}]
= 0, (t, x) ∈ [0, T )× Rd;

u(T, x) = g(x), ∀x ∈ Rd,

where

L =
1

2

d∑
i,j=1

((σσ∗)(t, x))i,j
∂2

∂xi∂xj
+

d∑
i=1

(b(t, x))i
∂

∂xi
.

The logarithmic nonlinearity u ln |u| is interesting in its own right, since it is nei-
ther locally Lipschitz nor uniformly continuous.

This paper is organized as follows. In Section 2, we present the notations and
the assumptions used throughout the paper. Moreover, we give some preliminary
results that will be useful in this paper. In Section 3, we show the existence of
a local solution for the two-barrier reflected BSDE. Later we show the existence
and uniqueness of a solution for (1.1). In Section 4, we apply the results obtained
to prove that the value function of a mixed zero-sum stochastic differential game
problem can be characterized as the solution of a specific BSDE with two barriers.
In Section 5, we show that, provided the problem is formulated within a Markovian
framework, the solution of the reflected BSDE provides a probabilistic represen-
tation for the unique viscosity solution of the related obstacle parabolic partial
differential variational inequality.

2. NOTATIONS, ASSUMPTIONS AND PRELIMINARY RESULTS

2.1. Notations. Let (Ω,F , P ) be a fixed probability space on which is defined a
standard d-dimensional Brownian motion B = (Bt)0¬t¬T whose natural filtration
is (F0

t := σ{Bs, s ¬ t})0¬t¬T . Let F = (Ft)0¬t¬T be the completed filtration of
(F0

t )0¬t¬T with the P -null sets of F .
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Next for any p > 0,

• let Sp be the space of R-valued Ft-adapted and continuous processes (Yt)t∈[0,T ]

such that
∥Y ∥pSp = E

[
sup
t¬T
|Yt|p

]
< +∞;

• letM denote the set of P-measurable processes (Zt)t∈[0,T ] with values in Rd

such that
T∫
0

|Zs|2 ds < +∞ P -a.s.,

and letMp the subset ofM such that

∥Z∥pMp = E
[(T∫

0

|Zs|2 ds
)p/2]

< +∞;

• let A be the set of adapted continuous non-decreasing processes (Kt)t∈[0,T ]

such that K0 = 0 and KT < +∞ P -a.s. and Ap is the subset of A such that
E[Kp

T ] < +∞.

2.2. Assumptions. Suppose we are given four data:

• ξ is an R-valued and FT -measurable random variable.

• f : [0, T ] × Ω × R × Rd → R is a random function which is measurable
for any (y, z) ∈ R × Rd and the process (f(t, ω, y, z))0¬t¬T is progressively
measurable.

• L := (Lt)0¬t¬T and U := (Ut)0¬t¬T are continuous progressively measurable
R-valued processes.

We make the following assumptions on the data ξ, f , L and U :

(H.1) There exists a positive constant λ large enough such that

E[|ξ|eλT+1] < +∞.

(H.2) Lt < Ut for all t ∈ [0, T ] and LT ¬ ξ ¬ UT . In addition for p ∈ ]1, 2[ we
have

E
[
sup

0¬t¬T

(
(L+

t )
eλT+1

) p
p−1

]
< +∞, E

[
sup

0¬t¬T

(
(U−t )e

λT+1
) p

p−1

]
< +∞,

where L+ = L ∨ 0 and U− = (−U) ∨ 0.

(H.3) (i) f is continuous in (y, z) for almost all (t, ω).
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(ii) There exist positive constants c0, λ (large enough) and c1 and a process
(ηt)t¬T such that

|f(t, ω, y, z)| ¬ |ηt|+ c0|y| |ln |y||+ c1|z|
√
|ln(|z|)|,

∀(t, ω, y, z) ∈ [0, T ]× Ω× R× Rd,

and

E
[T∫
0

|ηs|e
λT+1 ds

]
< +∞.

(H.4) There exist v ∈ Lq′(Ω × [0, T ];R+) (for some q′ > 0), a real valued se-
quence (AN )N>1 and constants M ∈ R+ and r > 0 such that

(i) 1 < AN ¬ N r, ∀N > 1;

(ii) limN→∞AN = +∞;

(iii) for all N ∈ N and y, y′, z, z′ such that |y|, |y′|, |z|, |z′| ¬ N , we have

(y − y′)
(
f(t, ω, y, z)− f(t, ω, y′, z′)

)
1{vt(ω)¬N}

¬M
(
|y − y′|2 lnAN + |y − y′| |z − z′|

√
lnAN +

lnAN

AN

)
.

2.3. Preliminary results. Now let us define the notions of local and global solu-
tions of the reflected BSDE associated with the quadruple (ξ, f, L, U) which we
consider in this paper. We start with a global solution.

DEFINITION 2.1. We say that {(Yt, Zt,K
+
t ,K

−
t ); 0 ¬ t ¬ T} is a solution of

the reflected BSDE associated with two continuous barriers L and U , a terminal
condition ξ and a generator f if

(2.1)



Y ∈ SeλT+1, Z ∈M, K± ∈ A;

Yt = ξ +
T∫
t

f(s, Ys, Zs) ds

+ (K+
T −K

+
t )− (K−T −K

−
t )−

T∫
t

Zs dBs, t ∈ [0, T ];

Lt ¬ Yt ¬ Ut, ∀t ∈ [0, T ];
T∫
0

(Ys − Ls) dK
+
s =

T∫
0

(Us − Ys) dK−s = 0.

Since in many applications, especially in stochastic games or mathematical fi-
nance, we do not need strong integrability conditions on Z and K±, we do not
require them in Definition 2.1.

Now we define a local solution. In the following, p ∈ ]1, 2[.
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DEFINITION 2.2. Let τ and γ be stopping times such that τ ¬ γ P -a.s. We
say that (Yt, Zt,K

+
t ,K

−
t )0¬t¬T is a local solution on [τ, γ] of the reflected BSDE

associated with two continuous barriers L and U , a terminal condition ξ and a
generator f if

(2.2)

Y ∈ SeλT+1, Z ∈M2, K± ∈ Ap;

Yt = Yγ +
γ∫
t

f(s, Ys, Zs) ds

+ (K+
γ −K+

t )− (K−γ −K−t )−
γ∫
t

Zs dBs, ∀t ∈ [τ, γ];

YT = ξ;

Lt ¬ Yt ¬ Ut, ∀t ∈ [τ, γ],
γ∫
τ

(Ys − Ls) dK
+
s =

γ∫
τ

(Us − Ys) dK−s = 0.

We first begin with an estimation of f which can be easily proved.

LEMMA 2.1. If (H.3) holds, then for any α ∈ ]1, 2[,

(2.3) E
[T∫
0

|f(s, Ys, Zs)|2/α ds
]
¬ CE

[T∫
0

|ηs|2 ds + sup
s¬T
|Ys|4/α +

T∫
0

|Zs|2 ds
]
,

where C is a positive constant that depends on c0 and T .

Proof. From assumption (H.3) we can see that there exists ε > 0 such that

|f(s, Ys, Zs)| ¬ |ηs|+ c0|Ys|2 +
c1√
2ε
|Zs|1+ε.

Then there exists a constant C > 0 (that changes from line to line) such that

|f(s, Ys, Zs)|2/α ¬ C(|ηs|2/α + |Ys|4/α + |Zs|2(1+ε)/α).

Next, we choose 0 < ε < 1 and we put α = 1 + ε. Then

|f(s, Ys, Zs)|2/α ¬ C(|ηs|2/α + |Ys|4/α + |Zs|2).

Hence, (2.3) follows. ■

We now introduce the comparison result established in [9, Theorem 4.1], which
also holds in our setting.

PROPOSITION 2.1. Let (ξ, f, L) and (ξ′, f ′, L′) satisfy all the assumptions
(H.1)–(H.4). Suppose in addition that:

(i) ξ ¬ ξ′ P -a.s.

(ii) f(t, y, z) ¬ f ′(t, y, z) dP × dt a.e., ∀(t, y, z) ∈ [0, T ]× R× Rd.

(iii) Lt ¬ L′t for all t ∈ [0, T ] P -a.s.
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Let (Y,Z,K+) be the solution of the reflected BSDE with one lower barrier asso-
ciated with (ξ, f, L), i.e.

Yt = ξ +
T∫
t

f(s, Ys, Zs) ds+K+
T −K

+
t −

T∫
t

Zs dBs, t ∈ [0, T ];

Lt ¬ Yt, ∀t ∈ [0, T ];
T∫
0

(Ys − Ls) dK
+
s = 0,

and (Y ′, Z ′,K ′+) the solution of the reflected BSDE with one lower barrier asso-
ciated with (ξ′, f ′, L′). Then

Yt ¬ Y ′t , 0 ¬ t ¬ T, P -a.s.

REMARK 2.1. The comparison result also holds for reflected BSDEs with one
upper barrier U , that is, if (ξ, f, U) and (ξ′, f ′, U ′) satisfy (H.1)–(H.4), and more-
over ξ ¬ ξ′, f(t, y, z) ¬ f ′(t, y, z) and U ¬ U ′, then P -a.s., Yt ¬ Y ′t for
0 ¬ t ¬ T , where (Y,Z,K−) is the solution of the one upper barrier reflected
BSDEs associated with (ξ, f, U), i.e.

Yt = ξ +
T∫
t

f(s, Ys, Zs) ds−K−T +K−t −
T∫
t

Zs dBs, t ∈ [0, T ];

Ut  Yt, ∀t ∈ [0, T ];
T∫
0

(Us − Ys) dK−s = 0,

and (Y ′, Z ′,K ′−) is the solution of the one upper barrier reflected BSDEs associ-
ated with (ξ′, f ′, U ′).

If L = −∞, then K+ = 0 and the comparison theorem holds in the case of
BSDE without a barrier.

3. EXISTENCE AND UNIQUENESS OF A SOLUTION

In this section we are going to show the existence and uniqueness of a solution for
(2.1), but first we show that it has a local solution in the sense of Definition 2.2;
then we show that this solution is in fact global when the barriers are completely
separated. The main difficulty in this section is to show that the solution of the
one-barrier reflected BSDE studied in [9] can be obtained using the penalization
method and the comparison theorem, since the authors of [9] used the localization
technique to get that result. Actually, we have the following theorem.
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THEOREM 3.1. For each n  0, let (ynt , z
n
t )t¬T be the unique solution (exist-

ing due to [2, Theorem 2.1]) of the BSDE

(3.1) ynt = ξ +
T∫
t

(
f(s, yns , z

n
s ) + n(Ls − yns )+

)
ds −

T∫
t

zns dBs, t ∈ [0, T ].

Then the processes (yns , z
n
s ,
∫ s

0
n(Lr − ynr )

+dr)s¬T converge to (ys, zs, ks)s¬T
solving the following reflected BSDE with one barrier:

(3.2)



(a) E
[
sup

0¬s¬T
|ys|e

λT+1 +
T∫
0

|zs|2 ds+ kpT

]
< +∞;

(b) yt = ξ +
T∫
t

f(s, ys, zs) ds+ kT − kt −
T∫
t

zs dBs, t ∈ [0, T ];

(c) Lt ¬ yt, ∀t ∈ [0, T ];

(d)
T∫
0

(ys − Ls) dks = 0.

Proof. Part (a) of (3.2) is a direct consequence of [9, Proposition 3.1]; that is,
there exists a positive constant C(λ, p, c0, c1, T ) such that for all p ∈ ]1, 2[,

(3.3) E
[
sup

t∈[0,T ]
|yt|e

λt+1 +
T∫
0

|zs|2 ds+ kpT

]
¬ C(λ, p, c0, c1, T )E

[
1 + |ξ|eλT+1 +

T∫
0

|ηs|e
λs+1 ds+ sup

0¬t¬T

(
(L+

t )
eλt

) p
p−1

]
.

Next, we define

knt = n
t∫
0

(Ls − yns )+ ds, t ∈ [0, T ].

Hence, from (3.3) we infer that for p ∈ ]1, 2[,

(3.4) E
[
sup

0¬s¬T
|yns |e

λT+1 +
T∫
0

|zns |2 ds+ (knT )
p
]
< +∞, ∀n  0.

Note that if we define fn(t, y, z) = f(t, x, y) + n(Lt − y)+, then fn(t, y, z) ¬
fn+1(t, y, z). Using the comparison theorem of [9], it follows that ynt ¬ yn+1

t ,
0 ¬ t ¬ T , a.s. Thus, ynt has a limit ȳt. Therefore, by dominated convergence we
have

(3.5) E
[T∫
0

(ȳ − ynt )e
λT+1 dt

]
→ 0 as n→∞.

The rest of the proof will be divided into two steps.
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STEP 1. We will show that for p ∈
]

eλT+1

eλT+1−1 , 2
[
,

(3.6) E
[
sup

0¬s¬T
(
(
Ls − yns

)+
)

p
p−1

]
→ 0 as n→∞.

For any n  0 and t ¬ T , we have

(3.7) ynt = ξ +
T∫
t

f(s, yns , z
n
s ) ds+ knt −

T∫
t

zns dBs.

Putting gns = f(s, yns , z
n
s ) and writing (3.7) in the forward form we get

knt = yn0 − ynt −
t∫
0

gns ds+
t∫
0

zns dBs.

Since from Lemma 2.1 and (3.4), for any n  0,

E
[
sup

0¬t¬T
|ynt |e

λT+1 +
T∫
0

|gns |2/α ds+
T∫
0

|zns |2 ds
]
< +∞,

there exist processes (gt)0¬t¬T and (zt)0¬t¬T which are the weak limits of (sub-
sequences of) (gnt )0¬t¬T and (znt )0¬t¬T respectively. Hence, for any stopping time
τ̄ ¬ T the following weak convergences hold:

τ̄∫
0

zns dBs →
τ̄∫
0

zs dBs and
τ̄∫
0

gns ds→
τ̄∫
0

gs ds.

It follows that

knτ̄ → kτ̄ = ȳ0 − ȳτ̄ −
τ̄∫
0

gs ds+
τ̄∫
0

zs dBs.

Now for any stopping times σ̄ ¬ τ̄ ¬ T we have knσ̄ ¬ knτ̄ , so kσ̄ ¬ kτ̄ . Hence,
(kt)0¬t¬T is an increasing process. Additionally, E[(kT )p] ¬ lim inf→∞ E[(knT )p]
< +∞. Hence, thanks to the monotonic limit of Peng [19, Lemma 2.2], the pro-
cesses (ȳt)0¬t¬T and (kt)0¬t¬T are RCLL.

Next, due to the fact that E[(knT )p] < +∞ for any n  0, we deduce, taking
the limit n→∞, that

E
[T∫
0

(Ls − ȳs)+ ds
]
= 0.

Therefore, P -a.s. ȳt  Lt for any t < T . But ξ  LT , so ȳ  L. Hence,
(Lt − ynt )+ ↓ 0 for 0 ¬ t ¬ T a.s., and from Dini’s theorem the convergence is
uniform in t. Since (Lt − ynt )+ ¬ |Lt|+ |ȳ0t |, the result follows.

STEP 2. We will show that (yn, zn, kn) converges to (y, z, k) solving (3.2).
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Let 0 ¬ T ′ ¬ T and put ∆t := |ynt − ymt |2 + A−1N and Φ(s) = |yns |+ |yms |+
|zns |+ |zms |+ vs. Then by Itô’s formula, for C > 0 and 1 < β < min (3− α, 2),

(3.8) eCt∆
β/2
t + C

T ′∫
t

eCs∆β/2
s ds = eCT ′∆

β/2
T ′

+ β
T ′∫
t

eCs∆β/2−1
s (yns − yms )

(
f(s, yns , z

n
s )− f(s, yms , zms )

)
1Φ(s)>N ds

+ β
T ′∫
t

eCs∆β/2−1
s (yns − yms )

(
f(s, yns , z

n
s )− f(s, yms , zms )

)
1Φ(s)¬N ds

− β

2

T ′∫
t

eCs∆β/2−1
s |zns − zms |2 ds− β

T ′∫
t

eCs∆β/2−1
s (yns − yms )(zns − zms ) dBs

− ββ − 2

2

T ′∫
t

eCs∆β/2−2
s

(
(yns − yms )(zns − zms )

)2
ds

+ β
T ′∫
t

eCs∆β/2−1
s (yns − yms )(dkns − dkms ).

First let us deal with

B := β
T ′∫
t

eCs∆β/2−1
s (yns − yms )(dkns − dkms ).

We have

B = β
T ′∫
t

eCs(|ynt − ymt |2 +A−1N )β/2−1(yns − yms ) dkns

+ β
T ′∫
t

eCs(|ymt − ynt |2 +A−1N )β/2−1(yms − yns ) dkms .

Since dkns = 1{yns¬Ls} dk
n
s and dkms = 1{yms ¬Ls} dk

m
s and the function x 7→

βeCs(|x− y|2 +A−1N )β/2−1(x− y) is non-decreasing, it follows that

B ¬ β
T ′∫
t

eCs(|Ls − yms |2 +A−1N )β/2−1(Ls − yms ) dkns

+ β
T ′∫
t

eCs(|Ls − yns |2 +A−1N )β/2−1(Ls − yns ) dkms

¬ βeCT ′ sup
0¬s¬T

(
(|Ls − yms |2 +A−1N )β/2−1(Ls − yms )+

) T ′∫
t

dkns

+ βeCT ′ sup
0¬s¬T

(
(|Ls − yns |2 +A−1N )β/2−1(Ls − yns )+

) T ′∫
t

dkms .
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Therefore,

B ¬ 2βeCT ′ sup
0¬s¬T

(
(|Ls − yms |2 +A−1N )β/2−1(Ls − yms )+

)
knT

+ 2βeCT ′ sup
0¬s¬T

(
(|Ls − yns |2 +A−1N )β/2−1(Ls − yns )+

)
kmT ,

which is due to the fact that the processes (knt )t¬T and (kmt )t¬T are both increas-
ing. Now, since β/2− 1 < 0 and since for all t ∈ [0, T ],

A−1N ¬ |Lt − ymt |2 +A−1N and A−1N ¬ |Lt − ynt |2 +A−1N ,

we get

(|Lt − ynt |2 +A−1N )β/2−1 ¬ A1−β/2
N ,

(|Lt − ymt |2 +A−1N )β/2−1 ¬ A1−β/2
N .

It follows that

B ¬ 2A
1−β/2
N βeCT ′ sup

0¬s¬T
(Ls − yms )+knT(3.9)

+ 2A
1−β/2
N βeCT ′ sup

0¬s¬T
(Ls − yns )+kmT .

Next we put

J1 := β
T ′∫
t

eCs∆β/2−1
s (yns − yms )

(
f(s, yns , z

n
s )− f(s, yms , zms )

)
1Φ(s)>N ds,

J2 := β
T ′∫
t

eCs∆β/2−1
s (yns − yms )

(
f(s, yns , z

n
s )− f(s, yms , zms )

)
1Φ(s)¬N ds.

Let κ = 3− α− β. Since β−1
2 + κ

2 + α
2 = 1, we use Hölder’s inequality to obtain

J1 ¬ βeCT ′ 1

Nκ

[T ′∫
t

∆s ds
](β−1)/2

×
[T ′∫

t

Φ(s)2 ds
]κ/2

(3.10)

×
[T ′∫

t

|f(s, yns , zns )− f(s, yms , zms )|2/α ds
]α/2

.

For J2 we use assumption (H.4) to obtain

(3.11) J2 ¬ βM
T ′∫
t

eCs∆β/2−1
s

×
[
|yns − yms |2 lnAN +

lnAN

AN
+ |yns − yms | |zns − zms |

√
lnAN

]
1{Φ(s)¬N} ds

¬ βM
T ′∫
t

eCs∆β/2−1
s

[
∆s lnAN + |yns − yms | |zns − zms |

√
lnAN

]
1{Φ(s)¬N} ds.
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We combine (3.8) with (3.9)–(3.11) to get

(3.12) eCt∆
β/2
t + C

T ′∫
t

eCs∆β/2
s ds ¬ eCT ′∆

β/2
T ′

+ βeCT ′ 1

Nκ

[T ′∫
t

∆s ds
](β−1)/2

×
[T ′∫

t

Φ(s)2 ds
]κ/2

×
[T ′∫

t

|f(s, yns , zns )− f(s, yms , zms )|2/α ds
]α/2

+ βM
T ′∫
t

eCs∆β/2−1
s (∆s lnAN + |yns − yms | |zns − zms |

√
lnAN )1{Φ(s)¬N} ds

− β

2

T ′∫
t

eCs∆β/2−1
s |zns − zms |2 ds− β

T ′∫
t

eCs∆β/2−1
s (yns − yms )(zns − zms ) dBs

− ββ − 2

2

T ′∫
t

eCs∆β/2−2
s

(
(yns − yms )(zns − zms )

)2
ds

+ 2A
1−β/2
N βeCT ′ sup

0¬s¬T
(Ls − yms )+knT

+ 2A
1−β/2
N βeCT ′ sup

0¬s¬T
(Ls − yns )+kmT .

But

βM
T ′∫
t

eCs∆β/2−1
s (∆s lnAN + |yns − yms | |zns − zms |

√
lnAN )1{Φ(s)¬N} ds

−β
2

T ′∫
t

eCs∆β/2−1
s |zns −zms |2 ds−β

β − 2

2

T ′∫
t

eCs∆β/2−2
s ((yns −yms )(zns −zms ))2 ds

¬ β
(T ′∫

t

MeCs∆β/2
s lnAN ds+

T ′∫
t

eCs∆β/2−1
s

(
M |yns − yms | |zns − zms |

√
lnAN

− 1

2
|zns − zms |2 +

2− β
2
|yns − yms |−2|yns − yms |2|zns − zms |2

)
ds

)
.

We now apply [1, Lemma 4.6] to obtain

(3.13)

βM
T ′∫
t

eCs∆β/2−1
s (∆s lnAN + |yns − yms | |zns − zms |

√
lnAN )1{Φ(s)¬N} ds

−β
2

T ′∫
t

eCs∆β/2−1
s |zns −zms |2 ds−β

β − 2

2

T ′∫
t

eCs∆β/2−2
s

(
(yns −yms )(zns −zms )

)2
ds

¬ β
(T ′∫

t

MeCs∆
β/2
s lnAN ds+

T ′∫
t

eCs∆
β/2−1
s

(
M2 lnAN

β−1
|yn

s − ym
s |2 − β−1

4
|zns − zms |2

)
ds

)
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¬ βM2 lnAN

T ′∫
t

eCs∆β/2
s

(
1+

1

β−1

)
ds−β(β−1)

4

T ′∫
t

eCs∆β/2−1
s |zns −zms |2 ds

¬ 2M2β

β − 1
lnAN

T ′∫
t

eCs∆β/2
s ds− β(β − 1)

4

T ′∫
t

eCs∆β/2−1
s |zns − zms |2 ds

since β ¬ 2.
Choosing C = CN = 2M2β

β−1 lnAN , we then have

(3.14) eCN t∆
β/2
t +

β(β − 1)

4

T ′∫
t

eCNs∆β/2−1
s |zns − zms |2 ds

¬ eCNT ′∆
β/2
T ′ − β

T ′∫
t

eCNs∆β/2−1
s (yns − yms )(zns − zms ) dBs

+ βeCNT ′ 1

Nκ

[T ′∫
t

∆s ds
](β−1)/2

×
[T ′∫

t

Φ(s)2 ds
]κ/2

×
[T ′∫

t

|f(s, yns , zns )− f(s, yms , zms )|2/α ds
]α/2

+ 2A
1−β/2
N βeCNT ′ sup

0¬s¬T
(Ls − yms )+knT

+ 2A
1−β/2
N βeCNT ′ sup

0¬s¬T
(Ls − yns )+kmT .

Therefore, we take the expectation on both sides of (3.14) and we use Burkholder’s
inequality to find that there exists a universal constant ℓ > 0 (which may change
hereafter) such that

E
[

sup
(T ′−δ′)+¬t¬T ′

|ynt − ymt |β
]
+ E

[ T ′∫
(T ′−δ′)+

|zns − zms |2

(|yns − yms |2 + νR)1−β/2
ds

]
¬ ℓeCN δ′E[|ynT ′ − ymT ′ |β +A

−β/2
N ]

+ ℓ
eCN δ′

Nκ
E
{[T∫

0

∆s ds
](β−1)/2

×
[T∫
0

Φ(s)2 ds
]κ/2

×
[T∫
0

|f(s, yns , zns )− f(s, yms , zms )|2/α ds
]α/2}

+ ℓA
1−β/2
N eCN δ′E

[
sup

0¬s¬T
(Ls − yms )+knT

]
+ ℓA

1−β/2
N eCN δ′E

[
sup

0¬s¬T
(Ls − yns )+kmT

]
,
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where νR = sup{A−1N : N  R}. Thus, by Hölder’s inequality, (3.4), Lemma 2.1,
(H.4)(i) and the fact that CN = 2M2β

β−1 lnAN we get, for p ∈
]

eλT+1

eλT+1−1 , 2
[
,

E
[

sup
(T ′−δ′)+¬t¬T ′

|ynt − ymt |β
]
+ E

[ T ′∫
(T ′−δ′)+

|zns − zms |2

(|yns − yms |2 + νR)1−β/2
ds

]

¬ ℓ
(
eCN δ′E[|ynT ′ − ymT ′ |β] +

A
2M2δ′β

β−1

N

A
β/2
N

+
A

2M2δ′β
β−1

N

A
κ/r
N

)
+ ℓA

1−β/2
N eCN δ′E

[
sup

0¬s¬T
((Ls − yms )+)

p
p−1

] p−1
p

+ ℓA
1−β/2
N eCN δ′E

[
sup

0¬s¬T
((Ls − yns )+)

p
p−1

] p−1
p
.

Hence for δ′ < (β − 1)min
(

1
4M2 ,

κ
2rM2β

)
we derive

lim
N→+∞

A
2M2δ′β

β−1

N

A
β/2
N

= 0 and lim
N→+∞

A
2M2δ′β

β−1

N

A
κ/r
N

= 0.

It then follows from (3.6) that, for any ε > 0,

(3.15) lim sup
n,m→∞

E
[

sup
(T ′−δ′)+¬t¬T ′

|ynt − ymt |β
]

¬ ε+ ℓeCN δ′ lim sup
n,m→∞

E[|ynT ′ − ymT ′ |β].

Taking successively T ′ = T , T ′ = (T − δ′)+, T ′ = (T − 2δ′)+, . . . in (3.15) we
get

(3.16) lim
n,m→∞

E
[
sup

0¬t¬T
|ynt − ymt |β

]
= 0.

Therefore, there exists a P-measurable process y such that

E
[
sup

0¬t¬T
|ynt − yt|

]
→ 0 as n→∞.

Next, we prove that

(3.17) lim
n,m→∞

E
[T∫
0

|zns − zms
∣∣∣2 ds] = 0.

It follows from Itô’s formula that
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(3.18) |yn0 − ym0 |2 +
T∫
0

|zns − zms |2 ds

= 2
T∫
0

(yns − yms )
(
f(s, yns , z

n
s )− f(s, yms , zms )

)
ds

+ 2
T∫
0

(yns − yms )(dkns − dkms )− 2
T∫
0

(yns − yms )(zns − zms ) dBs.

First we argue that the third term of the right side in (3.18) is a martingale. We
can deduce from Burkholder–Davis–Gundy’s inequality and (3.4) that there exists
a constant c > 0 such that

(3.19) E
[
sup

0¬t¬T

∣∣∣ t∫
0

(yns − yms )(zns − zms ) dBs

∣∣∣]
¬ cE

[
sup

0¬s¬T
|yns − yms |2

]
+ cE

[T∫
0

|zns − zms |2 ds
]
< +∞.

Now we deal with the term
∫ T

0
(yns − yms )(dkns − dkms ). Actually, since dkns =

1{yns¬Ls} dk
n
s and dkms = 1{yms ¬Ls} dk

m
s we obtain

(3.20)
T∫
0

(yns − yms )(dkns − dkms ) =
T∫
0

(yns − yms ) dkns +
T∫
0

(yms − yns ) dkms

¬
T∫
0

(Ls − yms ) dkns +
T∫
0

(Ls − yns ) dkms

¬
T∫
0

(Ls − yms )+ dkns +
T∫
0

(Ls − yns )+ dkms .

Combining (3.18)–(3.20) we find that there exists a constant c such that

(3.21) E
[T∫
0

|zns −zms |2 ds
]
¬ cE

[T∫
0

|yns −yms | |f(s, yns , zns )−f(s, yms , zms )| ds
]

+cE
[T∫
0

(Ls−yms )+ dkns +
T∫
0

(Ls−yns )+ dkms
]
.

Next by Hölder’s inequality we have

(3.22) E
[T∫
0

|yns − yms | |f(s, yns , zns )− f(s, yms , zms )| ds
]

¬ E
[(T∫

0

|yns − yms |
2

2−α ds
) 2−α

2
(T∫

0

|f(s, yns , zns )− f(s, yms , zms )|
2
α ds

)α
2
]

¬
(
E
[T∫
0

|yns − yms |
2

2−α ds
]) 2−α

2
(
E
[T∫
0

|f(s, yns , zns )− f(s, yms , zms )|
2
α ds

])α
2
.
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We plug the last inequality into (3.21) to get

(3.23) E
[T∫
0

|zns − zms |2 ds
]

¬ c
(
E
[T∫
0

|yns − yms |
2

2−α ds
]) 2−α

2 ×
(
E
[T∫
0

|f(s, yns , zns )− f(s, yms , zms )|
2
α ds

])α
2

+ cE
[
sup

0¬s¬T
|(Ls − yms )+|

p
p−1

]
E[(kn)p]

+ cE
[
sup

0¬s¬T
|(Ls − yns )+|

p
p−1

]
E[(km)p].

Then, from Lemma 2.1 and (3.4)–(3.6) (for λ large enough and 1<α< 2− 2
eλT+1 ),

(3.24) E
[T∫
0

|zns − zms |2 ds
]
→ 0 as (n,m)→∞.

Consequently, from (3.1),

E
[
sup

0¬t¬T
|knt − kmt |

]
→ 0 as (n,m)→∞.

Therefore, there exists a pair (z, k) of progressively measurable processes such
that

E
[T∫
0

|zns − zs|2 ds+ sup
0¬t¬T

|knt − kt|
]
→ 0 as n→∞.

It remains to show that
T∫
0

(ys − Ls) dks = 0.

Clearly, (kt)0¬t¬T is increasing. Moreover, (yn, kn) tends to (y, k) uniformly in
t in probability. Then

T∫
0

(yns − Ls) dk
n
s →

T∫
0

(ys − Ls) dks

in probability as n → ∞. Therefore, since
∫ T

0
(yns − Ls) dk

n
s ¬ 0, n ∈ N, we

have
∫ T

0
(ys − Ls) dks ¬ 0. On the other hand,

∫ T

0
(ys − Ls) dks  0. Thus,

T∫
0

(ys − Ls) dks = 0 a.s.

Hence, (y, z, k) solves the reflected BSDE associated with (ξ, f, L). ■

We now focus on the uniqueness of a solution for BSDE (2.1):
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PROPOSITION 3.1. Assume that (H.1)–(H.4) are satisfied. Then the reflected
BSDE associated with (ξ, f, L, U) has at most one solution.

Proof. Suppose that (Y,Z,K+,K−) and (Y ′, Z ′,K ′+,K ′−) are two solutions
of (2.1), and for N ∈ N⋆ set ∆t := |Yt − Y ′t |2 +A−1N .

Following the same argument as in Step 2 of the proof of Theorem 3.1, one can
prove that for every R ∈ N and every ε > 0 there exists N0 such that for every
N > N0,

(3.25) E
[

sup
(T ′−δ′)+¬t¬T ′

|Yt − Y ′t |β
]
+ E

[ T ′∫
(T ′−δ′)+

|Zs − Z ′s|2

(|Y ′s − Y ′s |2 + νR)1−β/2
ds

]
¬ ℓeCN δ′E[|YT ′ − Y ′T ′ |β] + ε,

where νR = sup{A−1N : N  R} and ℓ is a universal constant. Taking successively
T ′ = T , T ′ = (T − δ′)+, T ′ = (T − 2δ′)+, . . . in (3.25), we obtain

Y = Y ′, Z = Z ′, K+ −K− = K ′+ −K ′−.

Finally, let us show that K+ = K ′+ and K− = K ′−. For any t ¬ T ,

t∫
0

(Ys − Ls) dKs =
t∫
0

(Ys − Ls) dK
′
s,

where K = K+ −K− and K ′ = K ′+ −K ′−. But

t∫
0

(Ys−Ls) dKs = −
t∫
0

(Us−Ls) dK
−
s ,

t∫
0

(Ys−Ls) dK
′
s = −

t∫
0

(Us−Ls) dK
′−
s .

Then
t∫
0

(Us − Ls) dK
−
s =

t∫
0

(Us − Ls) dK
′−
s , ∀t ¬ T.

Since K−0 = K ′−0 = 0 and Lt < Ut for all t ¬ T it follows that K− = K ′−, and
we also find that K+ = K ′+, which completes the proof. ■

Having overcome the main difficulty of this section (Theorem 3.1), we can now
address the existence of a local solution for (2.1):

THEOREM 3.2. There exists a unique continuous process Y = (Yt)t∈[0,T ] such
that:

(i) E
[
sups¬T |Ys|e

λT+1
]
< +∞ and L ¬ Y ¬ U and YT = ξ.

(ii) For any stopping time τ there exists another stopping time λτ  τ , P -a.s.,
and a triplet (Zτ ,Kτ,+,Kτ,−) ∈ M2 × Ap × Ap (Kτ,±

τ = 0) such that
P -a.s.
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(3.26)



Yt = Yλτ +
λτ∫
t

f(s, Ys, Z
τ
s ) ds+ (Kτ,+

λτ
−Kτ,+

t )− (Kτ,−
λτ
−Kτ,−

t )

−
λτ∫
t

Zτ
s dBs, t ∈ [τ, λτ ];

λτ∫
τ

(Ys − Ls) dK
τ,+
s =

λτ∫
τ

(Us − Ys) dKτ,−
s = 0.

(iii) If ντ and πτ are stopping times such that

ντ = inf {s  τ : Ys = Us} ∧ T and πτ = inf {s  τ : Ys = Ls} ∧ T,

then P -a.s., ντ ∨ πτ ¬ λτ .

Proof. Having proved Theorem 3.1, the remaining steps to prove Theorem 3.2
are actually the same as in [8]. Thus, to avoid repetition, we only give a sketch of
the proof and for more details we refer the reader to [8, pp. 914–924].

First, we analyze the following increasing penalization scheme: for any n  0,

(3.27)



Y n ∈ SeλT+1, Zn ∈M2, Kn,− ∈ Ap;

Y n
t = ξ +

T∫
t

(f(s, Y n
s , Z

n
s ) + n(Ls − Y n

s )+) ds

− (Kn,−
T −Kn,−

t )−
T∫
t

Zn
s dBs, t ∈ [0, T ];

Y n
t ¬ Ut, ∀t ∈ [0, T ],

T∫
0

(Us − Y n
s ) dKn,−

s = 0.

First, (Y n, Zn,Kn,−) exists due to Theorem 3.1 and the fact that (Y,Z,K) is a
solution of the reflected BSDE with a lower obstacle associated with (ξ, f, L) iff
(−Y,−Z,K) is a solution of the reflected BSDE with an upper obstacle associated
with (−ξ,−f(t,−Y,−Z),−L).

Next, since the sequence fn(t, y, z) = f(t, y, z) + n(Lt − y)+ is increasing,
from Remark 2.1 we know that Y n ¬ Y n+1 ¬ U for any n  0. Then (Y n

t )n0
converges to a lower semicontinuous optional process Y = (Yt)0¬t¬T that satisfies
Yt ¬ Ut for all t ¬ T P -a.s., and E

[
supt¬T |Yt|e

λT+1
]
< +∞.

Next, we put

θnτ = inf {s  τ : Y n
s = Us} ∧ T, θτ = lim

n→∞
θnτ , gns = f(s, Y n

s , Z
n
s ),

and we show that Y is RCLL on [τ, θτ ]. Indeed, since Kn,− does not in-
crease before θτ , (Y n

t , Z
n
t ) satisfy (3.27) with Kn,−

T = Kn,−
t = 0 on [τ, θτ ].

Then, as a consequence of Lemma 2.1 and (3.4), there exist subsequences of
((gns 1[τ,θτ ](s))s¬T )n0 and ((Zn

s 1[τ,θτ ](s))s¬T )n0, which we still index by n,
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and processes (gs1[τ,θτ ](s))s¬T and (Zs1[τ,θτ ](s))s¬T such that for any stopping
time γ̄ satisfying τ ¬ γ̄ ¬ θτ the following weak convergences hold:

γ̄∫
τ

Zn
s dBs ⇀

γ̄∫
τ

Zs dBs and
γ̄∫
τ

gns ds ⇀
γ̄∫
τ

gsds, as n→∞.

It follows that

Kn,+
γ̄ → K+

γ̄ and Yt = Yτ −
t∫
τ

gsds−K+
t +

t∫
τ

Zs dBs,

so that E[(K+
θτ
)p] ¬ lim infn→+∞ E[(Kn,+

θτ
)p] < +∞. Since Y n ¬ Y n+1, we

can deduce from a result of S. Peng [19, Lemma 2.2] that Y is RCLL on [τ, θτ ].
Next, we can show as in [8] that we have the following proposition which can be
considered as a step of the proof.

PROPOSITION 3.2. Assume that (H.1)–(H.4) are satisfied. Then the following
holds true:

(i) P -a.s., Yθτ1{θτ<T} = Uθτ1{θτ<T} and P -a.s., Lt ¬ Yt for all t ¬ T .

(ii) There exist adapted processes (K̄τ,+
t )0¬t¬T and (Z̄τ

t )0¬t¬T such that
(Yt, Z̄

τ
t , K̄

τ,+
t , 0)0¬t¬T is a local solution of the reflected BSDE (2.1) on

[τ, θτ ], which means that it satisfies

(3.28)



Z̄τ ∈M2, K̄τ,+ ∈ Ap;

Yt = Yθτ +
θτ∫
t

f(s, Ys, Z̄
τ
s ) ds+ (K̄τ,+

θτ
− K̄τ,+

t )

−
θτ∫
t

Z̄s dBs, ∀t ∈ [τ, θτ ];

YT = ξ;

Lt ¬ Yt ¬ Ut, ∀t ∈ [τ, θτ ],
θτ∫
τ

(Ys − Ls) dK̄
τ,+
s = 0.

(iii) If vτ = inf {s  τ : Ys = Us} ∧ T , then vτ ¬ θτ .

Now by analyzing the decreasing penalization scheme, that is, for any m  0,

(3.29)



E
[
sup0¬s¬T |Ỹ m

s |e
λT+1 +

T∫
0

|Z̃m
s |2 ds+ (Km,+

T )p
]
< +∞;

Ỹ m
t = ξ +

T∫
t

(f(s, Ỹ m
s , Z̃m

s )−m(Ỹ m
s − Us)

+) ds

+ (Km,+
T −Km,+

t )−
T∫
t

Z̃m
s dBs, t ∈ [0, T ];

Ỹ m
t  Lt, ∀t ∈ [0, T ],

T∫
0

(Ỹ m
s − Ls) dK

m,+
s = 0

((Ỹ m, Z̃m,Km,+) exists due to Theorem 3.1) we can also prove
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PROPOSITION 3.3. The following hold:

(i) P -a.s., Ỹδτ1{δτ<T} = Lδτ1{δτ<T} and P -a.s., Ỹt ¬ Ut for all t ¬ T .

(ii) There exists a pair of adapted processes (Z̃τ
t , K̃

τ,−
t )t¬T such that the quad-

ruple (Ỹt, Z̃
τ
t , 0, K̃

τ,−
t )t¬T satisfies

(3.30)



Z̃τ ∈M2, K̃τ,− ∈ Ap;

Ỹt = Ỹδτ +
δτ∫
t

f(s, Ỹs, Z̃
τ
s ) ds− (K̃τ,−

δτ
− K̃τ,−

t )

−
δτ∫
t

Z̃τ
s dBs, ∀t ∈ [τ, δτ ];

ỸT = ξ;

Lt ¬ Ỹt ¬ Ut, ∀t ∈ [τ, δτ ],
δτ∫
τ

(Us − Ỹs) dK̃τ,−
s = 0.

(iii) Put µτ = inf {s  τ : Ỹs = Ls} ∧ T . Then µτ ¬ δτ .

Here Ỹ = limm→∞ Ỹ
m and δτ = limm→∞ δ

m
τ with δmτ = inf {s  τ : Ỹ m

s = Ls}
∧ T for all m  0.

Next using the comparison result and the technique in [8, p. 923], we can prove
that P -a.s., Yt = Ỹt for any t ¬ T . Finally, we proceed once again as in [8, p. 924]
to finish the proof.

Next we can proceed as in [14, Theorem 3.7] to show that the local solution is
actually a global one:

THEOREM 3.3. Under (H.1)–(H.4), the reflected BSDE (2.1) associated with
(ξ, f, L, U) has a unique solution that is the quadruple (Y,Z,K+,K−).

4. MIXED ZERO-SUM STOCHASTIC DIFFERENTIAL GAME PROBLEM

Now we deal with an application of the double-barrier reflected BSDEs to solving
stochastic mixed games problems. First, let us briefly describe the setting of the
problem. Write Ω = C([0, T ],Rd) for the space of continuous functions from [0, T ]
to Rd.

Put ∥ω∥t = sups¬t |ωs| and consider a mapping σ : [0, T ] × Ω → Rd ⊗ Rd

satisfying the following assumptions

(A1) (i) σ is P-measurable and invertible.

(ii) There exists a constantC > 0 such that for all (t, ω, ω′) ∈ [0, T ]×Ω×Ω,

|σ(t, ω)− σ(t, ω′)| ¬ C∥ω − ω′∥t,
|σ(t, ω)| ¬ C(1 + ∥ω∥t), |σ−1(t, ω)| ¬ C.
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Let x0 ∈ Rd and x = (xt)t¬T be the solution of the following standard functional
differential equation:

(4.1) xt = x0 +
t∫
0

σ(s, x) dBs, t ¬ T.

The assumptions on σ imply that (4.1) has a unique solution x (see [20, p. 375]).
Moreover,

(4.2) E[(∥x∥T )n] < +∞, ∀n ∈ [1,+∞[ ([16, p. 306]).

Let now Ū (resp. V ) be a compact metric space and U (resp. V) the space of all
P-measurable processes with values in Ū (resp. V ), and let φ : [0, T ]×Rd×Ū×V
→ Rd and h : [0, T ]× Rd × Ū × V → Rd be such that:

(A2) (i) For each (u, v) ∈ Ū × V , the function (t, x) 7→ φ(t, x, u, v) is pre-
dictable.

(ii) For each (t, x) ∈ [0, T ]×Rd, φ(t, x, ·, ·) and h(t, x, ·, ·) are continuous
on Ū × V .

(iii) There exists a real constant K > 0 such that

(4.3) |h(t, x, u, v)|+ |φ(t, x, u, v)|
¬ K(1 + ∥x∥t), ∀(t, x, u, v) ∈ [0, T ]× Rd × Ū × V.

Under this assumption, for any (u, v) ∈ U × V , we define a probability on (Ω,F)
by

dP (u,v)

dP

= exp

{T∫
0

σ−1(s, x)φ(s, x, us, vs) dBs −
1

2

T∫
0

|σ−1(s, x)φ(s, x, us, vs)|2 ds
}
.

We now consider the payoff

(4.4) J(u, τ ; v, σ)

= E(u,v)
[τ∧σ∫

0

h(s, x, us, vs) ds+ Lσ1{σ¬τ<T} + Uτ1{τ<σ} + ξ1{τ∧σ=T}

]
,

where L, U and ξ are those of the previous sections. The problem we are interested
in is to find a saddle point for the payoff functional J(u, τ ; v, σ), that is, we are
looking for two intervention strategies (u∗, τ∗) and (v∗, σ∗) that satisfy

(4.5) J(u∗, τ∗; v, σ) ¬ J(u∗, τ∗; v∗, σ∗) ¬ J(u, τ ; v∗, σ∗).
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Now we define the Hamiltonian associated with this mixed stochastic game prob-
lem by

H(t, x, z, u, v) := zσ−1(t, x)φ(t, x, u, v) + h(t, x, u, v),

(t, x, z, u, v) ∈ [0, T ]× Rd × Rd × Ū × V.

Under Isaacs’s condition, and by Beneš’ theorem [3], there exists a couple ofP⊗B-
measurable functions u∗ ≡ u∗(t, x, z) and v∗ ≡ v∗(t, x, z) with values in Ū and V
respectively such that for all (t, x, u, v) ∈ [0, T ]× Rd × Ū × V ,

H∗(t, x, z) = H(t, x, z, u∗(t, x, z), v∗(t, x, z))

= inf
u∈Ū

sup
v∈V

H(t, x, z, u, v) = sup
v∈V

inf
u∈Ū

H(t, x, z, u, v).

THEOREM 4.1. Under assumptions (A1) and (A2), there exists a quadruple of
adapted processes (Y ∗, Z∗,K∗,+,K∗,−) that is the unique solution of the finite
horizon reflected BSDE associated with (ξ,H∗, L, U). Define stopping times by

σ∗ = inf {t  0 : Y ∗t = Lt} ∧ T and τ∗ = inf {t  0 : Y ∗t = Ut} ∧ T.

Then Y ∗0 = J(u∗, τ∗; v∗, σ∗) and (u∗, τ∗; v∗, σ∗) is a saddle point for the mixed
stochastic game problem.

Proof. Since H∗ satisfy (H.3) and (H.4) (see [9]), the quadruple (Y ∗, Z∗,
K∗,+,K∗,−) exists and is unique. The rest of the proof is classical and left to
the reader.

5. CONNECTION WITH DOUBLE OBSTACLE VARIATIONAL INEQUALITIES

Let b : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd×d be two globally Lipschitz
functions and consider the following SDE:

dXt = b(t,Xt) dt+ σ(t,Xt) dBt, t ¬ T.

We denote by (Xt,x
s )st the unique solution of this SDE starting from x at time

s = t.
Now suppose we are given four functions

f : [0, T ]× Rd × R× Rd → R, g : Rd → R, h, h′ : [0, T ]× Rd → R

such that the following holds:

(H′.1) f satisfies assumptions (H.3) and (H.4), and there exists p > 1 such that
for every (t, x) ∈ [0, T ]× Rd,

E
[T∫
0

|f(s,Xt,x
s , 0, 0)|p ds

]
< +∞.
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(H′.2) For all (t, x) ∈ [0, T ] × Rd, h(t, x) < h′(t, x) and h(T, x) ¬ g(x) ¬
h′(T, x), and there exists a constant C > 0 such that

|h′(t, x)|+ |h(t, x)|+ |g(x)| ¬ C(1 + ∥x∥t).

5.1. Connection with one-obstacle variational inequalities. Let us denote by
(Y t,x

s , Zt,x
s ,Kt,x

s )s∈[t,T ] the solution of the following reflected BSDE:

(5.1)



Y t,x
s = g(Xt,x

T ) +
T∫
s

f(r,Xt,x
r , Y t,x

r , Zt,x
r ) dr +Kt,x

T −K
t,x
s

−
T∫
s

Zt,x
r dBr;

Y t,x
s  h(s,Xt,x

s ), ∀s ∈ [t, T ],
T∫
t

(Y t,x
r − h(r,Xt,x

r )) dKt,x
r = 0.

Moreover, on [0, t] we set Y t,x
s = Y t,x

t , Zt,x
s = Kt,x

s = 0.
We will show that Y t,x

t is deterministic for every (t, x) and we define

(5.2) u(t, x) = Y t,x
t .

First we will prove that u is continuous and is a viscosity solution of the following
obstacle problem: for all (t, x) ∈ [0, T ]× Rd,

(5.3)

min

[
u(t, x)− h(t, x),−∂u

∂t
(t, x)−Lu(t, x)− f(t, x, u(t, x), σ(t, x)∇u(t, x))

]
= 0,

with u(T, x) = g(x) for x ∈ Rd and

L =
1

2

d∑
i,j=1

((σσ∗)(t, x))i,j
∂2

∂xi∂xj
+

d∑
i=1

(b(t, x))i
∂

∂xi
.

Then we will prove that it is the unique continuous viscosity solution that belongs
to some class of functions.

5.1.1. Continuity

THEOREM 5.1. For every (t, x) ∈ [0, T ] × Rd, the function u(t, x) = Y t,x
t is

continuous and of polynomial growth.

Proof. Let (tn, xn)→ (t, x). Since |Y t,x
t − Y

tn,xn
tn | is deterministic, we have

|Y t,x
t − Y

tn,xn
tn | = E(|Y t,x

t − Y
tn,xn
tn |)

¬ E(|Y t,x
t − Y

t,x
tn |) + E(|Y t,x

tn − Y
tn,xn
tn |).

Then from (3.3) and Lemma 2.1 we get limn→∞ E[|Y t,x
t − Y

t,x
tn |] = 0.
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Now we shall show that limn→∞ E[|Y t,x
tn − Y

tn,xn
tn |] = 0, for which we use the

fact that
E[|Y t,x

tn − Y
tn,xn
tn |] ¬ E

[
sup

0¬s¬T
|Y t,x

s − Y tn,xn
s |

]
.

We proceed as in Step 2 of the proof of Theorem 3.1. For β ∈ ]1,min(3− α, 2)[,
we have

E
[

sup
(T ′−δ′)+¬s¬T ′

|Y t,x
s − Y tn,xn

s |β
]

+ E
[ T ′∫
(T ′−δ′)+

|Zt,x
s − Ztn,xn

s |2

(|Y t,x
s − Y tn,xn

s |2 + νR)1−β/2

]
ds

¬ ℓeCN δ′E[|g(Xt,x
T ′ )− g(X

tn,xn

T ′ )|β] + ℓ

(
A

2M2δ′β
β−1

N

A
β/2
N

+
A

2M2δ′β
β−1

N

A
κ/r
N

)
+ ℓeCN δ′β[2N2 + ν1]

β−1
2

× E
[T ′∫

t

|f(u,Xt,x
u , Y t,x

u , Zt,x
u )− f(u,Xtn,xn

u , Y t,x
u , Zt,x

u )| du
]

+ ℓeCN δ′
(
E
[
sup

0¬s¬T
|
(
|h(s,Xt,x

s )− h(s,Xtn,xn
s )|2 +A−1N

)β/2−1

× (h(s,Xt,x
s )− h(s,Xtn,xn

s ))|
p

p−1

]) p−1
p
.

Since f , g and h are continuous in x, for δ′ < (β − 1)min
(

1
4M2 ,

κ
2rM2β

)
we pass

to the limit as n → ∞ and then as N → ∞, and by taking successively T ′ = T ,
T ′ = (T − δ′)+, T ′ = (T − 2δ′)+, . . . , for every β ∈ ]1,min(3− α, 2)[ we get

lim
n→∞

E
[
sup

0¬s¬T
|Y t,x

s − Y tn,xn
s |β

]
= 0.

Finally, since β > 1, the result follows by using Hölder’s inequality. The polyno-
mial growth of u follows from (3.3). ■

5.1.2. Existence of the solution

THEOREM 5.2. Assume that (H′.1) and (H′.2) are satisfied. Then the function
u : (t, x) 7→ u(t, x) = Y t,x

t is a viscosity solution of the obstacle problem (5.3).

Proof. Consider the following reflected BSDE:

(5.4) Y t,x,n
s = g(Xt,x

T ) +
T∫
s

fn(r,X
t,x
r , Y t,x,n

r , Zt,x,n
r ) dr −

T∫
s

Zt,x,n
r dBr,

where

fn(r,X
t,x
r , Y t,x,n

r , Zt,x,n
r ) = f(r,Xt,x

r , Y t,x,n
r , Zt,x,n

r ) + n(Y t,x,n
r − h(r,Xt,x

r ))−.
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Then, from [2], un(t, x) = Y t,x,n
t is a viscosity solution of

(5.5)
∂un
∂t

(t, x) + Lun(t, x) + fn(t, x, un(t, x), σ(t, x)∇un(t, x)) = 0.

From the comparison theorem we know that un is increasing, and we can argue as
in [11] to show that un converges to u solving (5.3). ■

5.2. Connection with double-obstacle variational inequalities. Let (Y t,x
s , Zt,x

s ,
K+,t,x

s ,K−,t,xs )t¬s¬T be a solution of the following reflected BSDE:

(5.6)



Y t,x
s = g(Xt,x

T ) +
T∫
s

f(u,Xt,x
u , Y t,x

u , Zt,x
u ) du

+
T∫
s

dK+,t,x
u −

T∫
s

dK−,t,xu −
T∫
s

Zt,x
u dBu;

h(s,Xt,x
s ) ¬ Y t,x

s ¬ h′(s,Xt,x
s ), ∀s ∈ [t, T ];

T∫
t

(Y t,x
u − h(u,Xt,x

u )) dK+,t,x
u =

T∫
t

(h′(u,Xt,x
u )− Y t,x

u ) dK−,t,xu = 0.

The objective of this section is to show that u(t, x) = Y t,x
t is continuous and it is

a viscosity solution of the obstacle problem

(5.7)



min

[
u(t, x)− h(t, x),max

{
−∂u
∂t

(t, x)− Lu(t, x)

−f(t, x, u(t, x), σ(t, x)∇u(t, x)), u(t, x)− h′(t, x)
}]

= 0,

(t, x) ∈ [0, T )× Rd;

u(T, x) = g(x), ∀x ∈ Rd.

5.3. The continuity of the viscosity solution

PROPOSITION 5.1. For every (t, x) ∈ [0, T ]×Rd, the function u(t, x) = Y t,x
t

is continuous.

Proof. For any n  0 let (Y t,x,n
s )s¬T (resp. (Y t,x,n

s )s¬T ) be the first com-
ponent of the unique solution of the BDSE with one reflecting lower (resp. upper)
barrier associated with (g(Xt,x

T ), f(s,Xt,x
s , y, z)−n(h′(s,Xt,x

s )−y)−, h(s,Xt,x
s ))

(resp. (g(Xt,x
T ), f(s,Xt,x

s , y, z) + n(h(s,Xt,x
s )− y)+, h′(s,Xt,x

s ))). As shown in
the previous subsection, for any n  0 there exist deterministic functions un(t, x)
= Y t,x,n

t and ūn(t, x) = Y
t,x,n
t that are viscosity solutions of

(5.8)

min

[
u(t, x)−h(t, x),−∂u

∂t
(t, x)−Lu(t, x)−f(t, x, u(t, x), σ(t, x)∇u(t, x))

+ n(h′(t, x)− u(t, x))−
]
= 0, (t, x) ∈ [0, T )× Rd; u(T, x) = g(x),
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and

(5.9)

max

[
u(t, x)−h′(t, x),−∂u

∂t
(t, x)−Lu(t, x)−f(t, x, u(t, x), σ(t, x)∇u(t, x))

− n(h(t, x)− u(t, x))+
]
= 0, (t, x) ∈ [0, T )× Rd; u(T, x) = g(x),

respectively. Now thanks to the results of the previous sections, the sequence
(Y t,x,n)n0 converges increasingly to Y t,x and the sequence (Y

t,x,n
)n0 con-

verges decreasingly to the same Y t,x, meaning that un(t, x) ↘ u(t, x) and
ūn(t, x) ↗ u(t, x). Since un and ūn are both continuous, u is both lower and
upper semicontinuous, and hence continuous.

5.4. Existence of the solution

THEOREM 5.3. Assume that (H′.1) and (H′.2) are satisfied. Then the function
u : (t, x) 7→ u(t, x) = Y t,x

t is a viscosity solution of the obstacle problem (5.7).

Proof. First note that since un, ūn and u are continuous, Dini’s lemma shows
that they converge uniformly to u on compact subsets of [0, T ]× Rd.

Let us now show that u is a viscosity subsolution of (5.7). Let ϕ ∈
C1,2((0, T )×Rd), and (tn, xn) be a sequence of local maximum points of un − ϕ
that converges to (t, x). For n large enough we have un(tn, xn) > h(tn, xn), and
since un is a viscosity solution of (5.8) we have

−∂ϕ
∂t

(tn, xn)− Lϕ(tn, xn)− f(tn, xn, un(tn, xn), σ(tn, xn)∇ϕ(tn, xn))

+ n(h′(tn, xn)− un(tn, xn))− ¬ 0.

Then

−∂ϕ
∂t

(tn, xn)− Lϕ(tn, xn)− f(tn, xn, un(tn, xn), σ(tn, xn)∇ϕ(tn, xn)) ¬ 0.

Now due to the continuity of the functions and the uniform convergence of un we
obtain

−∂ϕ
∂t

(t, x)− Lϕ(t, x)− f(t, x, u(t, x), σ(t, x)∇ϕ(t, x)) ¬ 0.

Since u(T, x) = g(x) and h(t, x) ¬ u(t, x) ¬ h′(t, x), u is a viscosity subsolu-
tion of (5.7). In the same way, with reverse inequalities, we show that u is also a
viscosity supersolution of (5.7).
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5.5. Uniqueness of the viscosity solution. Before addressing the question of
uniqueness of the viscosity solution of (5.7), we recall the following proposition.

PROPOSITION 5.2. w is a viscosity solution of

(5.10)


min

[
w(t, x)− h(t, x),−∂w

∂t (t, x)− Lw(t, x)
−f(t, x, w(t, x), σ(t, x)∇w(t, x))

]
= 0, (t, x) ∈ [0, T [×Rd;

w(T, x) = g(x), x ∈ Rd,

iff w(t, x) := etw(t, x), for t ∈ [0, T ] and x ∈ Rd, is a viscosity solution of

(5.11)
min

[
w(t, x)− eth(t, x),−∂w

∂t (t, x) + w(t, x)− Lw(t, x)
−etf(t, x, e−tw(t, x), σ(t, x)∇(e−tw(t, x)))

]
= 0, (t, x) ∈ [0, T [×Rd;

w(T, x) = eT g(x), x ∈ Rd.

We now have the following theorem.

THEOREM 5.4. Under (H′.1) and (H′.2), equation (5.7) has at most one solu-
tion.

Proof. It is enough to show that if v and u are a viscosity supersolution and a
viscosity subsolution of (5.7) respectively, then

u(t, x) ¬ v(t, x), ∀(t, x) ∈ [0, T ]× Rd.

First, note that v  h and u ¬ h′, and set v̄ := v ∧ h′ and ū := u ∨ h. Then ū
(resp. v̄) is a viscosity subsolution (resp. supersolution) of (5.7). It follows that ū
(resp. v̄) is a viscosity subsolution (resp. supersolution) of (5.3).

Now we show that v̄ and ū satisfy ū ¬ v̄. Indeed, suppose for some R > 0
there exists (t, x) ∈ [0, T ]×BR (BR := {x ∈ Rd : |x| < R}) such that

(5.12) max
t,x

(u′(t, x)− v′(t, x)) = u′(t, x)− v′(t, x) = η > 0,

where v′(t, x) := etv̄(t, x) and u′(t, x) := etū(t, x) for t ∈ [0, T ] and x ∈ Rd.
Take θ, λ and β ∈ (0, 1] small enough. Then, for a small ϵ > 0, define

(5.13)

Φϵ(t, x, y) = (1−λ)u′(t, x)−v′(t, y)− 1

2ϵ
|x−y|4−θ(|x−x|4+|y−x|4)−β(t−t)2.

Since u′ and v′ are bounded for R large enough, there exists a (tϵ, xϵ, yϵ) ∈
[0, T ]×BR ×BR such that

Φϵ(tϵ, xϵ, yϵ) = max
(t,x,y)

Φϵ(t, x, y).
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On the other hand, from 2Φϵ(tϵ, xϵ, yϵ)  Φϵ(tϵ, xϵ, xϵ) + Φϵ(tϵ, yϵ, yϵ), we have

1

ϵ
|xϵ − yϵ|4 ¬ (1− λ)(u′(tϵ, xϵ)− u′(tϵ, yϵ)) + (v′(tϵ, xϵ)− v′(tϵ, yϵ)),

and consequently 1
ϵ |xϵ−yϵ|

4 is bounded, and |xϵ−yϵ| → 0 as ϵ→ 0. Since u′ and
v′ are uniformly continuous on [0, T ]×BR, we have 1

2ϵ |xϵ − yϵ|
4 → 0 as ϵ→ 0.

Since

(1− λ)u′(t, x)− v′(t, x) ¬ Φϵ(tϵ, xϵ, yϵ) ¬ (1− λ)u′(tϵ, xϵ)− v′(tϵ, yϵ),

it follows by letting λ → 0 and using the continuity of u′ and v′ that, up to a
subsequence,

(5.14) (tϵ, xϵ, yϵ)→ (t, x, x).

Next let us show that tϵ < T. Indeed, if tϵ = T then

Φϵ(t, x, x) ¬ Φϵ(T, xϵ, yϵ)

and

(1− λ)u′(t, x)− v′(t, x) ¬ (1− λ)eT g(xϵ)− eT g(yϵ)− β(T − tϵ)2,

since u′(T, xϵ) = eT g(xϵ), v′(T, yϵ) = eT g(yϵ) and g is uniformly continuous
on BR. Then as λ→ 0 we have

η ¬ −β(T − t)2 < 0,

which is a contradiction and so tϵ ∈ [0, T ).
Now we claim that

(5.15) u′(tϵ, xϵ)− etϵh(tϵ, xϵ) > 0.

If not, there exists a subsequence such that u′(tϵ, xϵ) − etϵh(tϵ, xϵ) ¬ 0. Then
as λ → 0 we have u′(t, x) − eth(t, x) ¬ 0, but from the assumption u′(t, x) −
v′(t, x) > 0 we deduce that 0  u′(t, x)−eth(t, x) > v′(t, x)−h(t, x). Therefore
we have v′(t, x)− eth(t, x) < 0, which leads to a contradiction with (5.11). Next
set

ψϵ(t, x, y) =
1

2ϵ
|x− y|4 + θ(|x− x|4 + |y − x|4) + β(t− t)2.

Then we have

(5.16)


Dtψϵ(t, x, y) = 2β(t− t),
Dxψϵ(t, x, y) =

2
ϵ (x− y)|x− y|

2 + 4θ(x− x)|x− x|2,
Dyψϵ(t, x, y) = −2

ϵ (x− y)|x− y|
2 + 4θ(y − x)|y − x|2,

B(t, x, y) = D2
x,yψϵ(t, x, y) =

1
ϵ

( a1(x,y) −a1(x,y)
−a1(x,y) a1(x,y)

)
+
( a2(x) 0

0 a2(y)

)
,
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with a1(x, y) = 2|x− y|2I +4(x− y)(x− y)∗ and a2(x) = 4θ|x− x|2I +8xx∗.
Taking into account (5.15) and then applying the result by Crandall et al. [5, The-
orem 8.3]) to the function

(1− λ)u′(t, x)− v′(t, y)− ψϵ(t, x, y)

at the point (tϵ, xϵ, yϵ), for any ϵ1 > 0 we can find c, c1 ∈ R and X,Y ∈ S(d)
such that

(5.17)

(
c, 2ϵ (xϵ − yϵ)|xϵ − yϵ|

2 + 4θ(xϵ − x)|xϵ − x|2, X
)
∈ J2,+((1− λ)u′(tϵ, xϵ)),(

−c1, 2ϵ (xϵ − yϵ)|xϵ − yϵ|
2 − 4θ(yϵ − x)|yϵ − x|2, Y

)
∈ J2,−(v′(tϵ, yϵ)),

c+ c1 = Dtψϵ(tϵ, xϵ, yϵ) = 2β(tϵ − t),
−
(
1
ϵ1
+ ∥B(tϵ, xϵ, yϵ)∥

)
I ¬

(
X 0
0 −Y

)
¬ B(tϵ, xϵ, yϵ) + ϵ1B(tϵ, xϵ, yϵ)

2.

Taking now into account (5.15) and the definition of viscosity solution, we get

−c− 1
2 Tr[σ

∗(tϵ, xϵ)Xσ(tϵ, xϵ)]

−
〈
2
ϵ (xϵ − yϵ)|xϵ − yϵ|

2 + 4θ(xϵ − x)|xϵ − x|2, b(tϵ, xϵ)
〉
+ (1− λ)u′(tϵ, xϵ)

− (1− λ)etϵf(tϵ, xϵ, e−tu′(tϵ, xϵ), σ(tϵ, xϵ)∇(e−tϵu′(tϵ, xϵ))) ¬ 0

and

c1 − 1
2 Tr[σ

∗(tϵ, yϵ)Y σ(tϵ, yϵ)]

−
〈
2
ϵ (xϵ − yϵ)|xϵ − yϵ|

2 − 4θ(yϵ − x)|yϵ − x|2, b(tϵ, yϵ)
〉
+ v′(tϵ, yϵ)

− etϵf(tϵ, yϵ, e−tv′(tϵ, yϵ), σ(tϵ, yϵ)∇(e−tϵv′(tϵ, yϵ)))  0,

which implies that

(5.18) (1− λ)u′(tϵ, xϵ)− v′(tϵ, yϵ)− c− c1
¬ 1

2 Tr[σ
∗(tϵ, xϵ)Xσ(tϵ, xϵ)− σ∗(tϵ, yϵ)Y σ(tϵ, yϵ)]

+ ⟨2ϵ (xϵ − yϵ)|xϵ − yϵ|
2, b(tϵ, xϵ)− b(tϵ, yϵ)⟩

+ ⟨4θ(xϵ − x)|xϵ − x|2, b(tϵ, xϵ)⟩+ ⟨4θ(yϵ − x)|yϵ − x|2, b(tϵ, yϵ)⟩
+ (1− λ)etϵf(tϵ, xϵ, e−tu′(tϵ, xϵ), σ(tϵ, xϵ)∇(e−tϵu′(tϵ, xϵ))
− etϵf(tϵ, yϵ, e−tv′(tϵ, yϵ), σ(tϵ, yϵ)∇(e−tϵv′(tϵ, yϵ)).

But from (5.16) there exist constants C and C1 such that

∥a1(xϵ, yϵ)∥ ¬ C|xϵ − yϵ|2 and ∥a2(xϵ)∥ ∨ ∥a2(yϵ)∥ ¬ C1θ.
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As

B = B(tϵ, xϵ, yϵ) =
1

ϵ

(
a1(xϵ, yϵ) −a1(xϵ, yϵ)
−a1(xϵ, yϵ) a1(xϵ, yϵ)

)
+

(
a2(xϵ) 0

0 a2(yϵ)

)
we have

B ¬ C

ϵ
|xϵ − yϵ|2

(
I −I
−I I

)
+ C1θ

(
I 0
0 I

)
.

It follows that

B + ϵ1B
2 ¬ C

(
1

ϵ
|xϵ − yϵ|2 +

ϵ1
ϵ2
|xϵ − yϵ|4

)(
I −I
−I I

)
+ C1θ

(
I 0
0 I

)
where C and C1 may change from line to line. Choosing now ϵ1 = ϵ yields the
relation

(5.19) B + ϵ1B
2 ¬ C

ϵ
(|xϵ − yϵ|2 + |xϵ − yϵ|4)

(
I −I
−I I

)
+ C1θ

(
I 0
0 I

)
.

Now, from the Lipschitz continuity of σ, (5.17) and (5.19) we get

1

2
Tr[σ∗(tϵ, xϵ)Xσ(tϵ, xϵ)− σ∗(tϵ, yϵ)Y σ(tϵ, yϵ)]

¬ C

ϵ
(|xϵ − yϵ|4 + |xϵ − yϵ|6) + C1θ.

Next by plugging into (5.18) we obtain

(1− λ)u′(tϵ, xϵ)− v′(tϵ, yϵ)− 2β(tϵ − t)
¬ (1− λ)etϵf(tϵ, xϵ, e−tu′(tϵ, xϵ), σ(tϵ, xϵ)∇(e−tϵu′(tϵ, xϵ))
− etϵf(tϵ, yϵ, e−tv′(tϵ, yϵ), σ(tϵ, yϵ)∇(e−tϵv′(tϵ, yϵ))

+
C

ϵ
(|xϵ − yϵ|4 + |xϵ − yϵ|6) + C1θ.

By letting ϵ → 0, λ → 0, θ → 0 and taking into account the continuity of f , we
obtain η < 0, which is a contradiction.

Now we have u ¬ u ∨ h ¬ v ∧ h′ ¬ v, which means that if u and ǔ are two
solutions of (5.7) then u ¬ ǔ and ǔ ¬ u. Hence, obviously, u = ǔ.
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