MATHEMATICAL STATISTICS

Vol. 42, Fasc. 2 (2022), pp. 303–317 Published online 1.12.2022 doi:10.37190/0208-4147.00084

LARGE DEVIATIONS FOR UNIFORM PROJECTIONS OF *p*-RADIAL DISTRIBUTIONS ON ℓ_p^n -BALLS

BY

TOM KAUFMANN (BOCHUM), HOLGER SAMBALE (BOCHUM), AND CHRISTOPH THÄLE (BOCHUM)

Abstract. We consider products of uniform random variables from the Stiefel manifold of orthonormal k-frames in \mathbb{R}^n , $k \leq n$, and random vectors from the *n*-dimensional ℓ_p^n -ball \mathbb{B}_p^n with certain *p*-radial distributions, $p \in [1, \infty)$. The distribution of this product geometrically corresponds to the projection of the *p*-radial distribution on \mathbb{B}_p^n onto a random k-dimensional subspace. We derive large deviation principles (LDPs) on the space of probability measures on \mathbb{R}^k for sequences of such projections.

2020 Mathematics Subject Classification: Primary 52A23; Secondary 60F10.

Key words and phrases: large deviation principle, ℓ_p^n -ball, random projection, Stiefel manifold.

THE FULL TEXT IS AVAILABLE HERE