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Abstract. We consider products of uniform random variables from the
Stiefel manifold of orthonormal k-frames in Rn, k ¬ n, and random
vectors from the n-dimensional ℓnp -ball Bn

p with certain p-radial distribu-
tions, p ∈ [1,∞). The distribution of this product geometrically corre-
sponds to the projection of the p-radial distribution on Bn

p onto a random
k-dimensional subspace. We derive large deviation principles (LDPs) on
the space of probability measures on Rk for sequences of such projections.
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1. INTRODUCTION

The study of high-dimensional convexity goes back to studying infinite-dimen-
sional normed spaces via their local structures, such as their unit balls, but has
since become of substantial interest in its own right. The concentration phenomena
exhibited by convex objects in high dimensions, analyzed in the language of prob-
ability, are of great use in applications such as compressed sensing, information
theory and approximation theory (see [3, 5, 7, 8, 18]). Analogues of many well
known limit results from probability have been found in high-dimensional con-
vexity, such as the central limit theorem (CLT) of Klartag [16, 17], and recently,
starting with the work of Gantert, Kim, and Ramanan [6], large deviations began to
be considered with increasing interest as well. For the sake of brevity, we refer the
reader to the classic literature on large deviations theory for more details on basic
definitions and results [4].

Especially the n-dimensional ℓnp -ball Bn
p := {x ∈ Rn : ∥x∥p ¬ 1}, for

p ∈ [1,∞) and ∥x∥p := (
∑n

i=1 |xi|
p)1/p, has been extensively considered in this

regard (see, e.g., [1, 12, 11, 13, 10]) due to both its relevance in geometry and func-
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tional analysis, and its accessibility via useful probabilistic representation results,
which will be outlined below. For an overview of classical and more recent results
about ℓnp -balls, we refer to the survey article [19].

The setting of the present work is a generalization of the one initiated by
Kabluchko and Prochno [10] and can be described as follows. For k ¬ n, the
Stiefel manifold Vn,k is the set of all orthonormal k-frames in Rn, i.e., the set of
all k-tuples of orthonormal vectors v1, . . . , vk in Rn. Arranging these vectors into
a k × n matrix V with rows vT1 , . . . , v

T
k , we have the identification

Vn,k = {V ∈ Rk×n : V V T = Ik},

where Ik denotes the k × k identity matrix. We equip Vn,k with the uniform dis-
tribution (i.e., the invariant Haar probability measure) µn,k, writing Vn,k for the
corresponding random variable. Recall that Vn,k is characterized by the follow-
ing invariance property: for any orthogonal matrices O ∈ Rk×k and O′ ∈ Rn×n,
OVn,kO

′ has the same distribution as Vn,k.
In particular, for random vectors X(n) taking values in Rn, we may regard

V ∈ Vn,k as a linear map V : Rn → Rk and study the distribution of the vectors
V X(n) ∈ Rk, which we denote by

µV X(n)(A) := P(V X(n) ∈ A)

for any Borel set A ⊆ Rk. In addition, we may also choose Vn,k ∈ Vn,k at random
according to the uniform distribution µn,k on Vn,k. In this case, the distribution of
Vn,kX

(n), which we denote by

(1.1) µVn,kX(n)(A) := P(Vn,kX(n) ∈ A),

is a random probability measure on Rk, that is, a random variable taking values in
the spaceM1(Rk) of probability measures on Rk, which we equip with the topol-
ogy of weak convergence. This can be geometrically interpreted as the projection
of the distribution of the random vectorX(n) onto a uniform random k-dimensional
subspace.

We are interested in large deviation principles (LDPs) for the random probabil-
ity measures µVn,kX(n) , where X(n) ∈ Bn

p with a distribution taken from the class
of p-radial distributions introduced by Barthe, Guédon, Mendelson and Naor [2].
Kabluchko and Prochno [10] gave very general LDPs for random matrices in the
orthogonal group and the Stiefel manifold, and showed an LDP for k-dimensional
projections of the special case of the uniform distribution on Bn

p as an application.
Based on [10], our work substantially extends the set of projected distributions for
which such an LDP is shown from the uniform distribution to the aforementioned
class of p-radial distributions. In particular, we will see that the large deviation be-
haviour observed by Kabluchko and Prochno [10] is universal for a large class of
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probability measures on Bn
p . Moreover, we shall describe geometrically motivated

distributions on Bn
p for which the LDP needs a suitable modification we also pro-

vide. We should also delineate the present work from the results shown by Kim
and Ramanan [15, Theorems 2.4 & 2.6], who have shown, among other results,
LDPs for uniform random projections of uniform random vectors in Bn

p onto k-
dimensional subspaces. By the same arguments as put forth in [10], we note that
while the settings are quite similar, the key difference is in the object of study,
which in [15] is the projection point itself, hence yielding an LDP on Rk, whereas
in both [10] and this work it is the projected distribution on Rk, thus the main result
yields an LDP on the spaceM1(Rk) of probability measures on Rk.

In the next section we briefly list the notation and background material we will
need to formulate our theorems, which are presented in Section 3. Section 4 will
then contain their respective proofs.

2. PRELIMINARIES

Let us first define the objects and distributions needed for the main results. We
write B(Rn) for the Borel σ-algebra, ⟨ · , · ⟩2 for the Euclidean scalar product, and
voln(·) for the Lebesgue measure on Rn. As already mentioned in the introduction,
for p ∈ [1,∞), n ∈ N, and x = (x1, . . . , xn) ∈ Rn we denote by ∥x∥p :=

(
∑n

i=1 |xi|
p)1/p the ℓnp -norm of x and by Bn

p := {x ∈ Rn : ∥x∥p ¬ 1} and
Sn−1p := {x ∈ Rn : ∥x∥p = 1} unit ℓnp -ball and unit ℓnp -sphere, respectively. These
definitions extend to p ∈ (0, 1), even if ∥ · ∥p is no longer a norm but a quasi-norm
in this case. We define the uniform distribution on Bn

p and the cone probability
measure on Sn−1p as

Un,p( · ) :=
voln( · )
voln(Bn

p )
and Cn,p( · ) :=

voln({rx : r ∈ [0, 1], x ∈ · })
voln(Bn

p )
.

Following [2], for a sequence (Wn)n∈N of Borel probability measures on [0,∞)
we define the sequence of distributions

(2.1) Pn,p,Wn := Wn({0})Cn,p +ΨnUn,p

on Bn
p , where Ψn(x) = ψ(∥x∥p), x ∈ Bn

p , is the p-radial density given by

ψn(s) =
1

pn/pΓ
(
n
p + 1

) 1

(1− sp)
n
p
+1

[ ∫
(0,∞)

w
n
p e
− 1

p
( sp

1−sp
)w

Wn(dw)
]

with 0 ¬ s ¬ 1. One can think of Wn as indicating how probability mass is
distributed p-radially within Bn

p . The motivation behind this class of distributions
is twofold. First, they encompass many relevant distributions on Bn

p . For instance,
choosing Wn ≡ δ0 to be the Dirac measure at 0, we have Pn,p,Wn ≡ Cn,p and
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for Wn ≡ Exp(1), we have Pn,p,Wn ≡ Un,p. For m ∈ N choosing Wn =
γ(m/p, 1/p), i.e., a gamma distribution with shape m/p and rate 1/p, it can be
shown that Pn,p,Wn corresponds to the projection of Cn+m,p onto its first n co-
ordinates. An analogous correspondence holds for Wn = γ(1 + m/p, 1/p) and
the projection of Un+m,p onto its first n coordinates [2]. The second reason we
consider the class of distributions Pn,p,Wn is a useful probabilistic representa-
tion result. For any p ∈ (0,∞) we say a real-valued random variable X has a
p-generalized Gaussian distribution, denoted as X ∼ Np, if its distribution has
Lebesgue density

fp(x) :=
1

2p1/pΓ
(
1 + 1

p

) e−|x|p/p, x ∈ R.

For X ∼ Np and r > 0 the rth absolute moment of X is given by

(2.2) E[|X|r] = pr/pΓ

(
1 + r

p

)
Γ

(
1

p

)−1
.

In particular, E[|X|r] < ∞ for all r > 0. Using this p-generalized Gaussian dis-
tribution, the following results from [2, Theorem 3] gives a way to represent a ran-
dom vector X(n) ∼ Pn,p,Wn in Bn

p as a vector with i.i.d. p-generalized Gaussian
coordinates, normalized by its norm and via Wn.

PROPOSITION 2.1. Let n ∈ N and p ∈ (0,∞). Let Z(n) = (Z1, . . . , Zn) be
a random vector, where Z1, . . . , Zn are i.i.d. with Zi ∼ Np, and Wn a random
variable with distribution Wn on [0,∞), independent of Z(n). Then the random
vector

Z(n)

(∥Z(n)∥pp +Wn)1/p

has distribution Pn,p,Wn as in (2.1).

The final result presented in this section is one of the main results from [10],
namely Theorem D therein. It provides an LDP for random projections of product
measures, which we will use in conjunction with the representation from Propo-
sition 2.1 to prove our theorems. In what follows we shall write D(X) for the
distribution of a random variable X . Moreover, let

Rk×∞
2 := {A = (Aij)

k,∞
i,j=1 : (Aij)j∈N ∈ ℓ2, i = 1, . . . , k}

be the set of all matrices A ∈ Rk×∞ with square-summable rows. For A ∈ Rk×∞

we denote by ∥AAT ∥op the operator norm of the matrix AAT ∈ Rk×k, where the
condition A ∈ Rk×∞

2 guarantees that AAT is well-defined.

PROPOSITION 2.2. Fix k ∈ N. For each n ∈ N let Z(n) = (Z1, . . . , Zn) be
an n-dimensional random vector, where Z1, Z2, . . . are i.i.d. non-Gaussian ran-
dom variables with symmetric distribution and finite moments of all orders. Let
σ2 := E[Z2

1 ] > 0 be the variance of Z1. Then the sequence of random probability
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measures µVn,kZ(n) , n ­ k, as in (1.1) satisfies an LDP onM1(Rk) with speed n
and good rate function I :M1(Rk)→ [0,∞] given by

I(ν) = −1
2 log det(Ik −AA

T )

if ν admits a representation of the form

ν = D
( ∞∑
j=1

A•,jZj + σ(Ik −AAT )1/2Nk

)
for some matrix A ∈ Rk×∞

2 with columns A•,1, A•,2, . . . such that ∥AAT ∥op < 1,
where Nk is a k-dimensional standard Gaussian random vector independent of
Z1, Z2, . . . . If ν does not admit a representation of this form, then I(ν) =∞.

Note that the specific distribution of the Zi has a rather subtle influence on the
rate function of the LDP via the matrix A used in the representation of a given
measure ν ∈M1(Rk). As a side remark, note that in [10, Theorem D], the case of
σ2 = 0 actually has to be excluded. We have amended the result accordingly.

3. MAIN RESULTS

We are now in a position to present the first of our main results for the projections
of p-radial distributions Pn,p,Wn on ℓnp -balls. In what follows we shall write D= for
equality in distribution.

THEOREM 3.1. Fix p ∈ (0,∞), p ̸= 2, and k ∈ N. Moreover, let (Wn)n∈N
be a sequence of Borel probability measures on [0,∞) and (Wn)n∈N a sequence
of random variables with Wn ∼ Wn, such that Wn/n → α ∈ [0,∞) in proba-
bility. Finally, let X(n), Y (n) be random vectors in Bn

p with Y (n) ∼ Pn,p,Wn and
X(n) D= n1/p Y (n). Then the sequence of random probability measures µVn,kX(n) ,
n ­ k, as in (1.1) satisfies an LDP onM1(Rk) with speed n and good rate func-
tion I :M1(Rk)→ [0,∞] given by

I(ν) = −1
2 log det(Ik −AA

T )

if ν admits a representation of the form

ν = D
((

1

1 + α

)1/p ∞∑
j=1

A•,jZj + σp,α(Ik −AAT )1/2Nk

)
for some matrix A ∈ Rk×∞

2 with columns A•,1, A•,2, . . . such that ∥AAT ∥op < 1,
where Z1, Z2, . . . are i.i.d. with Zi ∼ Np,

σ2p,α :=

(
p

1 + α

)2/pΓ(3/p)

Γ(1/p)
,

and Nk is an independent k-dimensional standard Gaussian random vector. If ν
does not admit a representation of this form, then I(ν) =∞.
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As discussed earlier, choosing Wn ≡ δ0 gives Pn,p,Wn = Cn,p, and Wn ≡
Exp(1) yields Pn,p,Wn = Un,p; in both cases for Wn ∼Wn we have Wn/n→ 0
in probability and we recover [10, Theorem C]. Hence, we can see that Cn,p and
Un,p share the same LDP behaviour in high dimensions, which is in line with
similar observations made for other functionals (see, e.g., [1, 12, 14]). Moreover,
the result even implies a certain universality of the rate function, since despite the
expected sensitivity of LDPs to the underlying distributions, the rate function is the
same for all sequences (Wn)n∈N that share the same limiting behaviour.

Note that as in [10, Theorem C] (cf. also the non-Gaussianity assumption in
Proposition 2.2 above), the case p = 2 has to be excluded in Theorem 3.1 since in
this case, the matrix A ∈ Rk×∞

2 in the representation of ν is not uniquely deter-
mined (and hence the rate function I is not well-defined). For further discussion,
we refer to [10, the annotations following Theorems C and D, and Section 6].

Given the setting of Theorem 3.1, if we consider the case Wn/n→∞ in prob-
ability (formally corresponding to the choice α =∞), by the representation result
in Proposition 2.1 one can see that this corresponds to each component of X(n)

converging to 0 in probability, that is, we arrive at a trivial limit. To avoid this, we
may choose a different scaling as in the following theorem.

THEOREM 3.2. Fix p ∈ (0,∞), p ̸= 2, and k ∈ N. Moreover, let (Wn)n∈N be
a sequence of Borel probability measures on [0,∞) and (Wn)n∈N a sequence of
random variables with Wn ∼Wn and Wn/n

κ → β ∈ (0,∞) in probability for
some κ > 1, and assume that the sequence of random variables (Wn/n

κ)−2/p is
uniformly integrable. Finally, let X(n), Y (n) be random vectors in Bn

p with Y (n) ∼
Pn,p,Wn and X(n) D= nκ/p Y (n). Then the sequence of random probability mea-
sures µVn,kX(n) , n ­ k, as in (1.1) satisfies an LDP onM1(Rk) with speed n and
good rate function I :M1(Rk)→ [0,∞] given by

I(ν) = −1
2 log det(Ik −AA

T )

if ν admits a representation of the form

ν = D
((

1

β

)1/p ∞∑
j=1

A•,jZj + σp,β(Ik −AAT )1/2Nk

)

for some matrix A ∈ Rk×∞
2 with columns A•,1, A•,2, . . . such that ∥AAT ∥op < 1,

where Z1, Z2, . . . are i.i.d. p-generalized Gaussian random variables,

σ2p,β :=

(
p

β

)2/pΓ(3/p)

Γ(1/p)
,

and Nk is an independent k-dimensional standard Gaussian random vector. If ν
does not admit a representation of this form, then I(ν) =∞.
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Theorem 3.2 includes an additional integrability condition for Wn, due to the
fact that Wn is no longer of the same order as the p-norm of Z(n). Why this is
needed specifically can be seen in its proof. Note that a helpful sufficient condition
for the uniform integrability of (Wn/n

κ)−2/p is given by

(3.1) sup
n∈N

E
[(

nκ

Wn

)4/p]
¬ C

for some absolute constant C > 0. In particular, it can be applied to verify the
uniform integrability for certain gamma distributions.

LEMMA 3.1. Fix p ∈ (0,∞). Suppose for each n ∈ N that Wn follows a
gamma distribution with shape an and rate b > 0, where (an)n∈N is a positive
sequence and b ∈ (0,∞). Assume that an ­ m and an/nκ ­ C for all n ∈ N for
some m > 4/p, κ ∈ (0,∞) and C ∈ (0,∞). Then

sup
n∈N

E
[(

nκ

Wn

)4/p]
¬Mp,m

(
b

C

)4/p

<∞,

where M−1p,m =
∏Ap

i=0

(
1− 4

p(m+i)

)
and Ap = ⌈4/p⌉ is the smallest integer greater

than or equal to 4/p.

The proof of this lemma is postponed to the end of this paper. As a concrete
and geometrically motivated example we consider the distribution on Bn

p arising as
the projection to the first n coordinates of the cone probability measure Cn+mn,p

on Bn+mn
p , where mn is a positive sequence satisfying mn ­ m and mn/n

κ ­ C
for all n ∈ N for some m > 4, κ ∈ (0,∞) and C ∈ (0,∞). As discussed above,
this case corresponds to Pn,p,Wn with Wn = γ(mn/p, 1/p) and fits the assump-
tions of Lemma 3.1. The same holds for the projection of the uniform distribution
Un+mn,p corresponding to Pn,p,Wn with Wn = γ(1 +mn/p, 1/p). In particular,
Theorem 3.2 applies to these situations.

4. PROOFS

In this section we prove Theorems 3.1 and 3.2. The proofs will follow in the foot-
steps of the proof of [10, Theorem C], adapting and generalizing the arguments
where necessary. We start off by formulating some probabilistic representations of
the target quantities and show some auxiliary results.

Assume the set-up of Theorem 3.1 and for a fixed Stiefel matrix V ∈ Vn,k

denote by V•,j , j = 1, . . . , n, its columns. Then, by (1.1) and the representation
results from Proposition 2.1 it follows that for any Borel set F ∈ B(Rk),

µV X(n)(F ) = P(V X(n) ∈ F )

= P
(

n∑
j=1

n1/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j ∈ F

)
,

(4.1)

where Z(n) = (Z1, . . . , Zn) with Zj ∼ Np i.i.d. and Wn ∼ Wn independent
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of Z(n). Moreover, let

(4.2) µ̃V X(n)(F ) := P
((

1

1 + α

)1/p n∑
j=1

ZjV•,j ∈ F
)
,

again with i.i.d. Zj ∼ Np. We shall see that we can confine our analysis to µ̃V X(n)

instead of µV X(n) , since they are arbitrarily close to each other in n ∈ N with
respect to the Lévy–Prokhorov metric. On the spaceM1(Rk) of probability mea-
sures on Rk, the Lévy–Prokhorov metric ρLP is defined by

ρLP(µ, ν) := inf {ε > 0: µ(F ) ¬ ν(Fε) + ε and ν(F ) ¬ µ(Fε) + ε

for all F ∈ B(Rk)},

where Fε denotes the ε-neighbourhood of F ∈ B(Rk), defined as

Fε := {x ∈ Rk : ∥a− x∥2 < ε for some a ∈ F}, ε > 0.

We shall now prove that for the Lévy–Prokhorov metric ρLP onM1(Rk), the dis-
tance ρLP(µV , µ̃V ) converges to 0 uniformly over all V ∈ Vn,k as n→∞.

LEMMA 4.1. Fix p ∈ (0,∞) and k ∈ N. For any n ∈ N let X(n) be as in
Theorem 3.1. Then

lim
n→∞

sup
V ∈Vn,k

ρLP(µV X(n) , µ̃V X(n)) = 0.

Proof. Let F ∈ B(Rk) and ε > 0. Then

(4.3) µ̃V X(n)(F ) = P
((

1

1 + α

)1/p n∑
j=1

ZjV•,j ∈ F
)

¬ P
(

n∑
j=1

n1/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j ∈ Fε

)
+ P

(∥∥∥∥( 1

1 + α

)1/p n∑
j=1

ZjV•,j −
n∑

j=1

n1/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j

∥∥∥∥
2

­ ε
)

= µV X(n)(Fε)

+ P
(∥∥∥∥( 1

1 + α

)1/p n∑
j=1

ZjV•,j −
n∑

j=1

n1/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j

∥∥∥∥
2

­ ε
)
.

Let us prove that the second summand on the right-hand side converges to 0 as
n→∞. By Markov’s inequality,
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P
(∥∥∥∥( 1

1 + α

)1/p n∑
j=1

ZjV•,j −
n∑

j=1

n1/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j

∥∥∥∥
2

­ ε
)

¬ ε−1E
∥∥∥∥( 1

1 + α

)1/p n∑
j=1

ZjV•,j −
n∑

j=1

n1/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j

∥∥∥∥
2

,

and by the Cauchy–Schwarz inequality,

(4.4) E
∥∥∥∥( 1

1 + α

)1/p n∑
j=1

ZjV•,j −
n∑

j=1

n1/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j

∥∥∥∥
2

= E
(∥∥∥∥ n∑

j=1

ZjV•,j

∥∥∥∥
2

·
∣∣∣∣( 1

1 + α

)1/p

− n1/p

(∥Z(n)∥pp +Wn)1/p

∣∣∣∣)

¬
√
E
∥∥∥ n∑
j=1

ZjV•,j

∥∥∥2
2
·

√
E
∣∣∣∣( 1

1 + α

)1/p

− n1/p

(∥Z(n)∥pp +Wn)1/p

∣∣∣∣2.
As Z1, . . . , Zn are i.i.d. with mean zero and the rows V1,•, . . . , Vk,• of the Stiefel
matrix V are orthonormal vectors, the first factor on the right-hand side of (4.4)
satisfies

(4.5) E
∥∥∥ n∑
j=1

ZjV•,j

∥∥∥2
2
= E

[ n∑
i,j=1

ZiZj⟨V•,i, V•,j⟩2
]

= E[Z2
1 ]

n∑
j=1

∥V•,j∥22 = E[Z2
1 ]

k∑
i=1

∥Vi,•∥22 = kE[Z2
1 ].

To address the second factor in (4.4), let us first argue that

(4.6) ξn :=

((
1

1 + α

)1/p

− n1/p

(∥Z(n)∥pp +Wn)1/p

)2

→ 0

in probability as n → ∞. Indeed, by the continuous mapping theorem, it suffices
to show that

∥Z(n)∥pp
n

+
Wn

n
→ 1 + α

in probability. This follows from the fact that as Z1, . . . , Zn are i.i.d. p-generalized
Gaussian random variables, we have E|Zi|p = 1, and moreover that by assumption,
Wn/n → α in probability. In fact, we even have ξn → 0 in L1. To see this, it
suffices to show that (ξn)n is uniformly integrable, which in combination with (4.6)
yields convergence in L1. Clearly, (ξn)n is uniformly integrable if the sequence(

n

∥Z(n)∥pp +Wn

)2/p

¬
(

n

∥Z∥pp

)2/p
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is uniformly integrable, where we have used the fact that Wn ­ 0. This in turn
follows from the fact that ∥Z(n)∥pp ∼ γ(n/p, 1/p) together with Lemma 3.1 for
Wn = γ(n/p, 1/p), κ = 1 and C = 1/p. Indeed, observing that n/p

n = 1/p and
assuming without loss of generality that n > 4, so that we may choose m := 5/p,
we obtain

E
(

n

∥Z(n)∥pp

)4/p

¬Mp,m

for all n > 4. Hence, ξn → 0 in L1, and as a consequence, the second factor in
(4.4) converges to 0. This implies that the second summand in (4.3) converges to 0
uniformly in n ∈ N. Altogether, we have proven that for any ε > 0,

µ̃V X(n)(F ) ¬ µV X(n)(Fε) + ε

for n sufficiently large. In the same way, we may also prove that

µV X(n)(F ) ¬ µ̃V X(n)(Fε) + ε

for n sufficiently large, which finishes the proof. ■

Finally, let us replace V ∈ Vn,k by random variables Vn,k, i.e. the Stiefel matrix
is chosen at random according to the uniform distribution µn,k on Vn,k. Based on
Lemma 4.1, we may prove that a weak LDP for the modified sequence µ̃Vn,kX(n)

implies a weak LDP (in the sense of [4, Definition, p. 7]) for µVn,kX(n) , both re-
spectively defined as in (4.1) and (4.2) with respect to Vn,k.

LEMMA 4.2. Assume the set-up of Theorem 3.1 and recall the notation (4.1)
and (4.2). If the sequence µ̃Vn,kX(n) satisfies a weak LDP onM1(Rk) at speed n
and with rate function I , then the sequence µVn,kX(n) satisfies the same weak LDP.

Proof. It suffices to check the weak LDP on a basis of the topology ofM1(Rk),
e. g., the balls

Br(ν) := {µ ∈M1(Rk) : ρLP(µ, ν) < r}

for any r∈(0,∞). By Lemma 4.1, forn sufficiently large ρLP(µ̃Vn,kX(n) , µVn,kX(n))

< r/2 uniformly over all realizations of Vn,k ∈ Vn,k. Therefore, by the triangle
inequality for ρLP,

1

n
logP(µ̃Vn,kX(n) ∈ Br/2(ν)) ¬

1

n
logP(µVn,kX(n) ∈ Br(ν))

¬ 1

n
logP(µ̃Vn,kX(n) ∈ B3r/2(ν)),

and hence
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lim sup
n→∞

1

n
logP(µ̃Vn,kX(n) ∈ Br/2(ν)) ¬ lim inf

n→∞

1

n
logP(µVn,kX(n) ∈ Br(ν))

¬ lim sup
n→∞

1

n
logP(µVn,kX(n) ∈Br(ν))¬ lim inf

n→∞

1

n
logP(µ̃Vn,kX(n) ∈B3r/2(ν)).

Thus, by monotonicity in r, taking the infimum over r ∈ (0,∞), the LDP for
µ̃Vn,kX(n) yields

−I(ν) ¬ inf
r∈(0,∞)

lim inf
n→∞

1

n
logP(µVn,kX(n) ∈Br(ν))

¬ inf
r∈(0,∞)

lim sup
n→∞

1

n
logP(µVn,kX(n) ∈Br(ν)) ¬ −I(ν).

The claim now follows from [4, Theorem 4.1.11]. ■

On a compact space, weak and full LDPs coincide. Here, compactness is pro-
vided by the following lemma.

LEMMA 4.3. There is a constant C ∈ (0,∞) such that for all n ­ k and all
V ∈ Vn,k,

µV X(n) ∈MC :=
{
µ ∈M1(Rk) :

∫
Rk

∥x∥2 µ(dx) ¬ C
}
,

where the set MC is compact for any choice of C ∈ (0,∞).

Proof. The compactness of the set MC in the weak topology onM1(Rk) has
been shown in [10, proof of Lemma 5.3], so it remains to prove the first assertion.
To this end, recalling the representation of the distribution µV X(n) given in (4.1),
it suffices to prove that

lim sup
n→∞

sup
V ∈Vn,k

E
∥∥∥∥ n∑
j=1

n1/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j

∥∥∥∥
2

<∞

for i.i.d. Zj ∼ Np and Wn ∼Wn as in Theorem 3.1. By the triangle inequality it
then follows that

E
∥∥∥∥ n∑
j=1

n1/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j

∥∥∥∥
2

¬ E
∥∥∥∥( 1

1 + α

)1/p n∑
j=1

ZjV•,j −
n∑

j=1

n1/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j

∥∥∥∥
2

+ E
∥∥∥∥( 1

1 + α

)1/p n∑
j=1

ZjV•,j

∥∥∥∥
2

.

The first summand on the right hand side converges to 0 uniformly in n ∈ N, as was
shown after (4.4). Moreover, by Hölder’s inequality and (4.5), the second summand
is uniformly bounded by

√
kE[Z2

1 ]/(1 + α)1/p, and thus the claim follows. ■
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Combining the accumulated auxiliary results, we now have the sufficient tools
to prove Theorem 3.1.

Proof of Theorem 3.1. We apply Proposition 2.2 to the symmetric non-Gaus-
sian random variables Zj/(1 + α)1/p, Zj ∼ Np, which, by (2.2), have finite mo-
ments of all orders and, in particular, variance

σ2p,α =

(
p

1 + α

)2/pΓ(3/p)

Γ(1/p)
.

Hence, the sequence µ̃Vn,kX(n) satisfies an LDP onM1(Rk) with speed n and rate
function I as stated in Theorem 3.1. Therefore, by Lemma 4.2, µVn,kX(n) satisfies
the same weak LDP, which extends to a full LDP by the compactness arguments
given in Lemma 4.3, thus finishing the proof. ■

The proof of Theorem 3.2 works in a very similar way to that of Theorem 3.1,
hence we will only point out the steps where it differs from the previous proof.
Given the different scaling of X(n), it follows that for a Stiefel matrix V ∈ Vn,k,
we have

µV X(n)(F ) := P(V X(n) ∈ F )

= P
(

n∑
j=1

nκ/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j ∈ F

)(4.7)

for any F ∈ B(Rk), and we set

(4.8) µ̃V X(n)(F ) := P
((

1

β

)1/p n∑
j=1

ZjV•,j ∈ F
)
,

using the same notation as in Theorem 3.1 and its proof. The only argument that
needs to be adapted is the proof of Lemma 4.1, which will be replaced by the
following lemma.

LEMMA 4.4. For p ∈ (0,∞) and k ∈ N. For any n ∈ N let X(n) be as in
Theorem 3.2. Then

lim
n→∞

sup
V ∈Vn,k

ρLP(µV X(n) , µ̃V X(n)) = 0.

Proof. Let F ∈ B(Rk), V ∈ Vn,k fixed, and ε > 0. Then, by an analogous
expansion to (4.3), we have

(4.9) µ̃V X(n)(F ) ¬ µV X(n)(Fε)

+ P
(∥∥∥∥( 1

β

)1/p n∑
j=1

ZjV•,j −
n∑

j=1

nκ/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j

∥∥∥∥
2

­ ε
)
.
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Again, we need to show that the second summand on the right hand side converges
to 0 as n→∞. By Markov’s inequality,

P
(∥∥∥∥( 1

β

)1/p n∑
j=1

ZjV•,j −
n∑

j=1

nκ/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j

∥∥∥∥
2

­ ε
)

¬ ε−1E
∥∥∥∥( 1

β

)1/p n∑
j=1

ZjV•,j −
n∑

j=1

nκ/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j

∥∥∥∥
2

,

and a further application of the Cauchy–Schwarz inequality as in (4.4) yields

(4.10) E
∥∥∥∥( 1

β

)1/p n∑
j=1

ZjV•,j −
n∑

j=1

nκ/p
Zj

(∥Z(n)∥pp +Wn)1/p
V•,j

∥∥∥∥
2

¬
√

E
∥∥∥ n∑
j=1

ZjV•,j

∥∥∥2
2
·

√
E
∣∣∣∣( 1

β

)1/p

− nκ/p

(∥Z(n)∥pp +Wn)1/p

∣∣∣∣2,
with the first factor simplifying to kE[Z2

1 ] as in (4.5). To address the second factor,
it remains to show that

(4.11) ξn :=

((
1

β

)1/p

− nκ/p

(∥Z(n)∥pp +Wn)1/p

)2

→ 0

in probability as n→∞. We again do so by showing that

∥Z(n)∥pp
nκ

+
Wn

nκ
→ β

in probability due to the continuous mapping theorem. Since κ > 1, by the same
arguments as in the proof of Theorem 3.1 it follows that ∥Z(n)∥pp/nκ → 0 and
the behaviour of Wn dominates. By assumption, Wn/n

κ → β in probability. In
fact, we even have ξn → 0 in L1. Indeed, since the sequence of random variables
(Wn/n

κ)−2/p is uniformly integrable by assumption, it follows that the sequence
of random variables ξn is uniformly integrable as well, which in combination with
(4.11) yields convergence in L1. As a consequence, the second factor on the right
hand side of (4.10) converges to 0. This implies that the second summand on the
right hand side of (4.9) converges to 0 uniformly in n ∈ N. Altogether, we have
proven that for any ε > 0,

µ̃V X(n)(F ) ¬ µV X(n)(Fε) + ε

for n sufficiently large, and we can prove analogously that

µV X(n)(F ) ¬ µ̃V X(n)(Fε) + ε

for n sufficiently large, thus finishing the proof. ■
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Since the rest of the proof of Theorem 3.1 does not depend on the specific
choice of α or the scaling of the X(n), the remainder of the proof of Theorem
3.2 can proceed in the very same way. It remains only to present the proof of
Lemma 3.1.

Proof of Lemma 3.1. We start by observing that

E
[(

nκ

Wn

)4/p]
= n4κ/p

ban

Γ(an)

∞∫
0

xan−1−4/pe−bx dx = n4κ/p
b4/p

Γ(an)
Γ

(
an −

4

p

)
.

Applying first Ap times the defining property of the gamma function and using
then the inequality of [9, (12)] for quotients of gamma functions (applied with
x = an + Ap + 1− 4/p and y = 4/p, where we recall that Ap = ⌈4/p⌉) one can
see that

Γ
(
an − 4

p

)
Γ(an)

=

(Ap∏
i=0

an + i

an − 4
p + i

)
Γ
(
an − 4

p +Ap + 1
)

Γ(an +Ap + 1)

=

(
1∏Ap

i=0

(
1− 4

p(an+i)

)) 1
Γ(an+Ap+1)

Γ(an− 4
p
+Ap+1)

¬
(

1∏Ap

i=0

(
1− 4

p(m+i)

)) 1

(an +Ap − 4
p)

4/p

¬
(

1∏Ap

i=0

(
1− 4

p(m+i)

)) 1

a
4/p
n

=Mp,m
1

a
4/p
n

,

where we have also used an ­ m > 4/p for all n ∈ N. By our assumption that
an/n

κ ­ C it follows that

E
[(

nκ

Wn

)4/p]
¬Mp,m

n4κ/pb4/p

a
4/p
n

=Mp,mb
4/p

(
nκ

an

)4/p

¬Mp,m

(
b

C

)4/p

for all n ∈ N. This completes the proof. ■
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