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 198 PROBLEMS AND SOLUTIONS [February

 Combined solution. Since the spectral radius of T is

 lim IlTnlllln = 1,
 n - oo

 we may define a positive Hermitian operator A by
 00

 A2 = c -2n(T*)nTn = I ? 2TT + C-2 T
 n=O

 This A is invertible since I < A. Define a norm equivalent to 1 by

 llxilc= IlAxIl.
 By the definition of A,

 jITxj12 = C2IIx1I2 c211XI12 < C2IIXII2

 so for any y in H we have

 IIATAI-yI12 = IITA-'yII2 _< c2 1yI2 = 11y112
 and the result follows.

 If we replace T by rT where r > 0, the result may be stated in a formally more

 general way: if r is the spectral radius of T and c > r, then

 IIATA-1II < c
 for some invertible A. In other words,

 inf{ IA TA - 111: A is invertible) = spectral radius(T).

 In this form it was proved by G. -C. Rota, On models for linear operators, Comm.

 Pure Appl. Math., 13(1960), 469-472. Related questions and generalizations are

 considered by B. Sz.-Nagy, Completely continuous operators with uniformly
 bounded iterates, Publ. Math. Inst. Hung. Acad. Sci., 4 (1959), 89-92; F. Gilfeather,
 Norm conditions on resolvents .., Proc. Amer. Math. Soc., 68(1978), 44-48; and P.
 Halmos, A Hilbert Space Problem Book, Cor. 4 to Problem 153.

 The infimum in the last formula is attained for spaces of dimension at most one,
 but need not be attained in any higher dimension. In fact, the matrix operator

 T=( {1)1
 0O 1J

 is already a counterexample in dimension 2. Here (T - 1)2 = 0, SO T has spectral
 radius 1. Also,

 Tn_({1 n)
 0O 1'

 so if the 2-vector v satisfies

 A-lv = )

 then

 ATnA -v = A n
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 1987] PROBLEMS AND SOLUTIONS 199

 and

 l(ATA 1)vI = A(1) X .
 But

 JI(ATA -,) n, -< I I ATA -liin

 so the infimum of IIATA-ll1 is not attained. (The editor thanks H. Lotz, M. J.
 Pelling, and especially H. Porta for helpful comments and analysis.)

 Solutions were received from K. N. Boyadzhiev (Bulgaria), F. Gilfeather, B. Sz.-Nagy (Hungary), Pei
 Yuan Wu (Taiwan), and the proposer.

 q-Analogues of a Gamma Function Identity

 6497 [1985, 362]. Proposed by Richard Askey, University of Wisconsin.

 Let O < q < 1, Rea> O and Reb > 0. Show that

 oo(tqb; q) (-qa?/t; q). dqt rq(a)Jrq(b) (1)
 Jo (-t; q)O,(-q/t; q)00 t rq(a + b)

 and

 o( tqb; q).(-qa+l/t; q). dt -logq rq(a)rq(b)
 JO (-t; q)00(-q/t; q)00 t 1 - q rq(a + b)

 where
 00

 (x; q)0 HI (1 xqn),
 n=O

 rq(x) (q; q).(l - q)l-x/(qx; q),
 and

 -00 00
 jf(t)dqt = (1 - q) E f(q )qf.

 00

 These extend the gamma function identity

 o00 dt r(a)r(b)

 t(1 + t)b(l + t-l)a r(a + b)

 to q-gamma functions (for properties see R. Askey, Ramanujan's extensions of the
 gamma and beta functions, this MONTHLY, 87 (1980) 346-359).
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