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Abstract

We consider the Jacobi operator (T,D(T )) associated with an in-
determinate Hamburger moment problem, i.e., the operator in ℓ2 de-
fined as the closure of the Jacobi matrix acting on the subspace of
complex sequences with only finitely many non-zero terms. It is well-
known that it is symmmetric with deficiency indices (1, 1). For a
complex number z let pz, qz denote the square summable sequences
(pn(z)) and (qn(z)) corresponding to the orthonormal polynomials pn
and polynomials qn of the second kind. We determine whether linear
combinations of pu, pv, qu, qv for u, v ∈ C belong to D(T ) or to the
domain of the self-adjoint extensions of T in ℓ2. The results depend
on the four Nevanlinna functions of two variables associated with the
moment problem. We also show that D(T ) is the common range of
an explicitly constructed family of bounded operators on ℓ2.

Mathematics Subject Classification: Primary 47B25, 47B36, 44A60
Keywords. Jacobi matrices and operators, indeterminate moment prob-

lems.

1 Introduction

We shall consider the Jacobi matrix J associated with a moment sequence
s = (sn)n≥0 of the form

sn =

∫
xn dµ(x), n = 0, 1, . . . , (1)
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where µ is a positive measure on R with infinite support and moments of
every order. It is a tridiagonal matrix of the form

J =




b0 a0 0 . . .
a0 b1 a1 . . .
0 a1 b2 . . .
...

...
...

. . .


 , (2)

where an > 0, bn ∈ R, n ≥ 0 are given by the three term recurrence relation

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x), n ≥ 0, a−1 := 0.

Here (pn)n≥0 is the sequence of orthonormal polynomials associated with µ,
hence satisfying ∫

pn(x)pm(x) dµ(x) = δn,m,

and pn is a real polynomial of degree n with positive leading coefficient. In
this paper we follow the terminology of [17]. Basic results about the classical
moment problem can also be found in [1] and [16]. Recent results about
indeterminate moment problems can be found in [5], [6] [7], [8].

It is clear that the proportional measures λµ, λ > 0 lead to the same
Jacobi matrix J , and the well-known Theorem of Favard (see [17, Theorem
5.14]) states that any matrix of the form (2) with an > 0, bn ∈ R comes
from a unique moment sequence (sn) as above, normalized such that s0 = 1.
In the following we shall always assume that this normalization holds, and
consequently the solutions µ of (1) are probability measures and p0 = 1.

The Jacobi matrix acts as a symmetric operator in the Hilbert space ℓ2 of
square summable complex sequences. Its domain F consists of the complex
sequences (cn)n≥0 with only finitely many non-zero terms, and the action is
multiplication of the matrix J by c ∈ F considered as a column, i.e.,

(Jc)n := an−1cn−1 + bncn + ancn+1, n ≥ 0. (3)

Denoting (en)n≥0 the standard orthonormal basis of ℓ2, we have

F = span{en|n ≥ 0}.

Definition 1.1. The Jacobi operator associated with J is by definition the
closure (T,D(T )) of the symmetric operator (J,F).
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It is a classical fact that (T,D(T )) is a closed symmetric operator, and its
deficiency indices are either (0, 0) or (1, 1). These cases occur precisely if the
moment sequence (1) is determinate or indeterminate, i.e., there is exactly
one or several solutions µ satisfying (1).

By definition D(T ) consists of those c ∈ ℓ2 for which there exists a se-
quence (c(k)) ∈ F such that limk→∞ c(k) = c and (Jc(k)) is a convergent
sequence in ℓ2. For such c we have Tc = limk→∞ Jc(k), and this limit is
independent of the choice of approximating sequence (c(k)).

Clearly, D(T ) is closed under complex conjugation and

Tc = Tc, c ∈ D(T ).

The purpose of the present paper is to study the Jacobi operator (T,D(T ))
as well as its self-adjoint extensions (Tt, D(Tt)), t ∈ R

∗ := R ∪ {∞} in the
indeterminate case. We shall in particular give some families of sequences
c ∈ ℓ2 which belong to D(T ), see Theorem 1.2–Theorem 1.4.

Section 2 is devoted to the proof of Theorem 1.2 after a presentation of
the deficiency spaces of (T,D(T )). The self-adjoint extensions of (T,D(T ))
as well as their corresponding N-extremal solutions to (1), cf. (26), are
introduced in Section 3.

In Theorem 3.2, Theorem 3.4 and Theorem 3.7 we describe vectors be-
longing to D(Tt) \D(T ). Like the results in Theorem 1.2–Theorem 1.4, they
depend on the Nevanlinna functions of two variables defined in (6), (7), (8),
(9).

In Section 4 we construct for each z0 ∈ C a bounded operator Ξz0 in ℓ2

with range D(T ). The restriction of Ξz0 to (T − z0I)(D(T )) is a bijection
onto D(T ) equal to (T − z0I)−1, see Theorem 4.3. It is based on a study of
the function space E defined in (28), and known to be a de Branges space of
entire functions by [10, Theorem 23]. We prove in particular Theorem 4.2,
showing that E is stable under the formation of difference quotients.

Various technical results about the Nevanlinna functions are given in
Section 5.

After this summary of the content of the present paper, we recall that
the adjoint operator (T ∗, D(T ∗)) is the maximal operator associated with J ,
cf. [17, Proposition 6.5]. In fact, the matrix product of J and any column
vector c makes sense, cf. (3), and D(T ∗) consists of those c ∈ ℓ2 for which
the product Jc belongs to ℓ2. For c ∈ D(T ∗) we have T ∗c = Jc.

In the determinate case with a unique solution µ of (1), the Jacobi opera-
tor is self-adjoint and (pn) is an orthonormal basis of L2(µ). The self-adjoint
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operator of multiplication Mµ in L2(µ) given by

D(Mµ) = {f ∈ L2(µ) | xf(x) ∈ L2(µ)}, Mµf(x) = xf(x)

is unitarily equivalent with (T,D(T )) via the unitary operator U : ℓ2 → L2(µ)
given by U(en) = pn, n ≥ 0. We shall not study the determinate case in this
paper, but concentrate on the indeterminate case, where it is known that the
set of solutions µ to (1) is an infinite convex set V . The polynomials of the
second kind (qn) are given as

qn(z) =

∫
pn(z) − pn(x)

z − x
dµ(x), z ∈ C,

where µ ∈ V is arbitrary.
We define and recall

pz := (pn(z)), qz := (qn(z)) ∈ ℓ2, z ∈ C, (4)

where we have followed the terminology of [17]. It is known that ||pz|| and
||qz|| are positive continuous functions on C. It is therefore possible for c ∈ ℓ2

to define entire functions Fc, Gc as

Fc(z) =
∞∑

n=0

cnpn(z), Gc(z) =
∞∑

n=0

cnqn(z), z ∈ C. (5)

We also have the following four entire functions of two complex variables,
called the Nevanlinna functions of the indeterminate moment problem:

A(u, v) = (u− v)
∞∑

k=0

qk(u)qk(v) (6)

B(u, v) = −1 + (u− v)
∞∑

k=0

pk(u)qk(v) (7)

C(u, v) = 1 + (u− v)

∞∑

k=0

qk(u)pk(v) (8)

D(u, v) = (u− v)

∞∑

k=0

pk(u)pk(v), (9)

see Section 7.1 in [17]. The two-variable functions were introduced in [11]
in a slightly different form, which was subsequently used in [3],[14]. An
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approximation to the two-variable functions was already considered in [1, p.
123]. If the functions of [11] are marked with a ∗, we have

A∗(u, v) = −A(u, v), B∗(u, v) = −C(u, v),

C∗(u, v) = −B(u, v), D∗(u, v) = −D(u, v).

In the following we need several formulas about these functions, see Theo-
rem 5.1 and Corollary 5.2 in the Appendix, but at this point we just recall
that

A(u, v)D(u, v)− B(u, v)C(u, v) = 1, u, v ∈ C. (10)

We define entire functions of one variable by setting the second variable to
0, i.e.,

A(u) = A(u, 0), B(u) = B(u, 0), C(u) = C(u, 0), D(u) = D(u, 0), (11)

and by specialization of (10) we get

A(u)D(u) −B(u)C(u) = 1, u ∈ C. (12)

By Section 6.5 in [17] we have

pz, qz ∈ D(T ∗), T ∗
pz = zpz, T

∗
qz = e0 + zqz , z ∈ C. (13)

Our first main result is the following:

Theorem 1.2. For all z ∈ C we have pz, qz /∈ D(T ).
Let u, v ∈ C be given.

(i) There exists α ∈ C such that pu+αpv ∈ D(T ) if and only if D(u, v) = 0.
In the affirmative case α is uniquely determined as α = B(u, v).

(ii) There exists β ∈ C such that qu+βqv ∈ D(T ) if and only if A(u, v) = 0.
In the affirmative case β is uniquely determined as β = −C(u, v).

(iii) There exists γ ∈ C such that pu+γqv ∈ D(T ) if and only if B(u, v) = 0.
In the affirmative case γ is uniquely determined as γ = −D(u, v). In
particular pu + γqu /∈ D(T ) for all u, γ ∈ C.

The proof will be given in Section 2.
We shall next give results about the zero-sets of the entire functions

A, . . . , D of two variables.
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Theorem 1.3. Let F (u, v) denote any of the four functions A,B,C,D on
C2. For v ∈ C define

Z(F )v := {u ∈ C | F (u, v) = 0}. (14)

Then Z(F )v is countably infinite. If v ∈ R then Z(F )v ⊂ R, and if v is in
either the upper or lower half-plane, then Z(F )v belongs to the same half-
plane.

As a follow up on the two previous theorems we have the following:

Theorem 1.4. Let v ∈ R be given and consider the set of real zeros Z(F )v
from Theorem 1.3.

(i) Let u ∈ Z(D)v be such that u < v and such that ]u, v[∩Z(D)v = ∅.
Then B(u, v) > 0, where pu + B(u, v)pv ∈ D(T ) according to Theo-
rem 1.2.

(ii) Let u ∈ Z(A)v be such that u < v and such that ]u, v[∩Z(A)v = ∅. Then
C(u, v) < 0, where qu − C(u, v)qv ∈ D(T ) according to Theorem 1.2.

The proofs of Theorem 1.3 and Theorem 1.4 will be given in Section 5.

2 Preliminaires and proof of Theorem 1.2

Fix z0 ∈ C in the open upper half-plane and consider the deficiency spaces

∆+(z0) = ker(T ∗ − z0I) = Cpz0

∆−(z0) = ker(T ∗ − z0I) = Cpz0 ,

cf. (13).
We know from [2, section 80] that

D(T ∗) = D(T ) ⊕ ∆+(z0) ⊕ ∆−(z0), (15)

and the sum is direct as indicated by the ⊕ signs.

Proposition 2.1. For any λ ∈ C we have the decomposition from (15)

pλ = sλ + s+λ pz0 + s−λ pz0 , (16)
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where sλ ∈ D(T ) and

s+λ =
D(λ, z0)

2iIm (z0)||pz0||
2
, s−λ = −

D(λ, z0)

2iIm (z0)||pz0||
2
. (17)

Similarly, we have the decomposition

qλ = rλ + r+λ pz0 + r−λ pz0 , (18)

where rλ ∈ D(T ) and

r+λ =
C(λ, z0)

2iIm (z0)||pz0||
2
, r−λ = −

C(λ, z0)

2iIm (z0)||pz0||
2
. (19)

Proof. Applying the operator T ∗ − z0I to the Equation (16) gives

(T ∗ − z0I)pλ = (T − z0I)sλ + s+λ (z0 − z0)pz0 ,

which is the splitting of the left-hand side according to the orthogonal de-
composition

ℓ2 = (T − z0I)(D(T )) ⊕ ∆+(z0). (20)

Therefore, s+λ (z0 − z0)pz0 is the orthogonal projection of (T ∗ − z0I)pλ onto
∆+(z0), and hence

2iIm (z0)s
+
λ pz0 = 〈(T ∗ − z0I)pλ, pz0〉

pz0

||pz0||
2
,

which gives the first formula in (17). The second formula is obtained similarly
by applying the operator (T ∗−z0I) to the Equation (16). Notice that ||pz0|| =
||pz0||.

Applying the operator T ∗ − z0I to the Equation (18) gives

(T ∗ − z0I)qλ = (T − z0I)rλ + r+λ (z0 − z0)pz0,

which is the splitting of the left-hand side according to the orthogonal de-
composition (20). Therefore, r+λ (z0 − z0)pz0 is the orthogonal projection of
(T ∗ − z0I)qλ onto ∆+(z0), and hence

2iIm (z0)r
+
λ pz0 = 〈(T ∗ − z0I)qλ, pz0〉

pz0

||pz0||
2
,

which gives the first formula in (19) because T ∗(qλ) = λqλ + e0 by (13). The
second formula is obtained similarly by applying the operator (T ∗ − z0I) to
the Equation (18).
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Corollary 2.2. For all λ ∈ C we have pλ, qλ /∈ D(T ).

Proof. For λ = z0 we get from (16) and (17)

sz0 = 0, s+z0 = 1, s−z0 = 0,

showing that pz0 /∈ D(T ). The case λ = z0 follows because D(T ) is closed
under complex conjugation. Since z0 in the upper half-plane is arbitrary, the
assertion about pλ follows for λ ∈ C \ R.

For λ ∈ R we note that s−λ = s+λ 6= 0 because z 7→ D(λ, z) has only real
zeros, cf. [4, Theorem 3] or Theorem 1.3.

For λ = z0 we get from (19) that

r−z0 =
−1

2iIm (z0)||pz0||
2
6= 0,

showing that qz0 /∈ D(T ) and hence also qz0 /∈ D(T ). Since z0 in the upper
half-plane is arbitrary, the assertion about qλ follows for λ ∈ C \ R.

For λ ∈ R we note that r−λ = r+λ , and by (57) we have

C(λ, z0) = D(z0)[A(λ) − ρC(λ)] 6= 0, ρ := B(z0)/D(z0).

because D has only real zeros. Furthermore, Im ρ > 0 because B/D is a Pick
function, cf. Proposition 5.8, so also the second factor is non-zero.

Remark 2.3. Concerning Corollary 2.2, it is clear that pλ /∈ D(T ) for λ /∈ R

because otherwise pλ would be an eigenvector for T with eigenvalue λ, and
as T is symmetric, the eigenvalues are real.

A small modification yields also that qλ /∈ D(T ) for λ /∈ R. In fact,
otherwise by symmetry of T

〈Tqλ, qλ〉 = 〈qλ, Tqλ〉. (21)

The left-hand side of (21) equals 〈λqλ+e0, qλ〉 = λ||qλ||
2 because 〈e0, qλ〉 = 0.

Similarly, the right-hand side of (21) equals λ||qλ||
2, and finally λ must

be real. We show later that (T,D(T )) has no eigenvalues at all, cf. (37).

Proof of Theorem 1.2.
Corollary 2.2 proves the first assertion, and from this assertion it is clear

that there exists at most one number α satisfying pu + αpv ∈ D(T ), and
similarly with β, γ.
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Let us now prove assertion (i) of the theorem.
By (16) we get

pu + αpv = (su + αsv) + (s+u + αs+v )pz0 + (s−u + αs−v )pz0 ,

so pu + αpv ∈ D(T ) if and only if

s+u + αs+v = s−u + αs−v = 0,

which by (17) is equivalent to

D(u, z0) + αD(v, z0) = D(u, z0) + αD(v, z0) = 0. (22)

The determinant of this linear system is

D := D(u, z0)D(v, z0) −D(u, z0)D(v, z0)

and using Lemma 5.7 with

x =

(
B(u)
D(u)

)
, y =

(
B(z0)
D(z0)

)
, z = y, w =

(
B(v)
D(v)

)
,

we get from Corollary 5.2 and (58)

D =

∣∣∣∣
B(u) B(v)
D(u) D(v)

∣∣∣∣
∣∣∣∣
B(z0) B(z0)
D(z0) D(z0)

∣∣∣∣ = D(u, v)D(z0, z0).

However, D(z0, z0) = −2Im (z0)||pz0||
2 6= 0 so D = 0 iff D(u, v) = 0. There-

fore, if α is a solution to (22) we have D(u, v) = 0. Suppose next that
D(u, v) = 0. To see that (22) has a solution α, we notice that D(v, z0) and
D(v, z0) cannot both be zero. In fact, defining ρ := B(z0)/D(z0) we have
Im (ρ) > 0 because B/D is a Pick function, cf. Proposition 5.8, and by (58)
D(v, z0) = 0 iff B(v) = ρD(v) while D(v, z0) = 0 iff B(v) = ρD(v), so both
equations cannot hold. Here we use that B(v) = D(v) = 0 is impossible
because of (12).

If D(v, z0) 6= 0, then α := −D(u, z0)/D(v, z0) satisfies (22) because D =
0. Similarly α := −D(u, z0)/D(v, z0) satisfies (22) if D(v, z0) 6= 0.

Furthermore, in the case D(v, z0) 6= 0 we get using (54) and D(u, v) = 0
that

D(u, z0) = D(u, v)C(v, z0) − B(u, v)D(v, z0) = −B(u, v)D(v, z0),
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so finally α = B(u, v). The case D(v, z0) 6= 0 is similar.

Proof of (ii):
By (18) we get

qu + βqv = (ru + βrv) + (r+u + βr+v )pz0 + (r−u + βr−v )pz0 ,

so qu + βqv ∈ D(T ) if and only if

r+u + βr+v = r−u + βr−v = 0,

which by (19) is equivalent to

C(u, z0) + βC(v, z0) = C(u, z0) + βC(v, z0) = 0. (23)

The determinant of this linear system is

D1 := C(u, z0)C(v, z0) − C(u, z0)C(v, z0)

and using Lemma 5.7 with

x =

(
A(u)
C(u)

)
, y =

(
B(z0)
D(z0)

)
, z = y, w =

(
A(v)
C(v)

)

we get from Corollary 5.2 combined with (55), (57), (58)

D1 =

∣∣∣∣
A(u) A(v)
C(u) C(v)

∣∣∣∣
∣∣∣∣
B(z0) B(z0)
D(z0) D(z0)

∣∣∣∣ = A(u, v)D(z0, z0).

As in case (i) we see that D1 = 0 iff A(u, v) = 0. Therefore, if β is a solution
to (23), we have A(u, v) = 0. Suppose next that A(u, v) = 0. To see that
(23) has a solution β, we notice as in (i) that C(v, z0) and C(v, z0) cannot
both be zero. For this we use that A/C is a Pick function by Proposition 5.8.

If C(v, z0) 6= 0, then β := −C(u, z0)/C(v, z0) satisfies (23). Similarly
β := −C(u, z0)/C(v, z0) satisfies (23) if C(v, z0) 6= 0.

Furthermore, in the case C(v, z0) 6= 0 we get using (53) and A(u, v) = 0
that

C(u, z0) = C(u, v)C(v, z0) − A(u, v)D(v, z0) = C(u, v)C(v, z0),

so finally β = −C(u, v). The case C(v, z0) 6= 0 is similar.
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Proof of (iii): By (16) and (18) we get

pu + γqv = (su + γrv) + (s+u + γr+v )pz0 + (s−u + γr−v )pz0,

so pu + γqv ∈ D(T ) if and only if

s+u + γr+v = s−u + γr−v = 0,

which by (17) and (19) is equivalent to

D(u, z0) + γC(v, z0) = D(u, z0) + γC(v, z0) = 0. (24)

The determinant of this linear system is

D2 := D(u, z0)C(v, z0) −D(u, z0)C(v, z0)

and using Lemma 5.7 with

x =

(
B(u)
D(u)

)
, y =

(
B(z0)
D(z0)

)
, z = y, w =

(
A(v)
C(v)

)

we get from Corollary 5.2 combined with (56), (57), (58)

D2 =

∣∣∣∣
B(u) A(v)
D(u) C(v)

∣∣∣∣
∣∣∣∣
B(z0) B(z0)
D(z0) D(z0)

∣∣∣∣ = B(u, v)D(z0, z0).

As in case (i) we see that D2 = 0 iff B(u, v) = 0. Therefore, if γ is a solution
to (24), we have B(u, v) = 0. Suppose next that B(u, v) = 0. We see like in
(ii) that if C(v, z0) 6= 0, then γ := −D(u, z0)/C(v, z0) satisfies (24), and if
C(v, z0) 6= 0, then γ := −D(u, z0)/C(v, z0) satisfies (24).

We finally see that in both cases γ = −D(u, v) because of (54). �

Remark 2.4. The case (ii) can be deduced from case (i) by using the obser-
vation that the polynomials (qn+1(x)/q1(x))n≥0 are the orthonormal polyno-
mials associated with the truncated Jacobi matrix J (1) obtained from J by
removing the first row and column. See [1, p. 28]. We have

J (1)(Sc) = S(Jc) − a0〈c, e0〉, c ∈ F ,

where S is the bounded shift operator in ℓ2 given by (Sc)n := cn+1, n ≥ 0.
If we let (T (1), D(T (1))) denote the Jacobi operator associated with J (1),

one can prove that

v ∈ D(T (1)) ⇐⇒ v = Su, u ∈ D(T )

and
T (1)(Su) = S(Tu) − a0〈u, e0〉, u ∈ D(T ).
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3 Self-adjoint extensions of the Jacobi oper-

ator

As before (sn) is an indeterminate moment sequence with s0 = 1. The
corresponding Jacobi operator (T,D(T )) has deficiency indices (1, 1) and
the self-adjoint extensions in ℓ2 can be parametrized as the operators Tt, t ∈
R∗ = R ∪ {∞} with domain

D(Tt) = D(T ) ⊕ C(q0 + tp0) for t ∈ R, D(T∞) = D(T ) ⊕ Cp0 (25)

and defined by the restriction of T ∗ to the domain, cf. [17, Theorem 6.23].
We recall that p0, q0 are defined in (4).

The purpose of this section is to give some results about the domains
D(Tt) of the self-adjoint operators Tt, t ∈ R∗.

For t ∈ R∗ we define the solutions to the moment problem

µt(·) := 〈Et(·)e0, e0〉, (26)

where Et(·) is the spectral measure of the self-adjoint operator Tt.
The measures µt, t ∈ R∗ are precisely those measures µ ∈ V for which

the polynomials C[x] are dense in L2(µ) according to a famous theorem of
M. Riesz, cf. [15], and they are called N-extremal in [1] and von Neumann
solutions in [16]. They form a closed subset of ext(V ), the set of extreme
points of the convex set V . However, ext(V ) is known to be a dense subset
of V . They are characterized by the formula

∫
dµt(x)

x− z
= −

A(z) + tC(z)

B(z) + tD(z)
, z ∈ C \ R, t ∈ R

∗, (27)

where A, . . . , D are the entire functions given in (11), cf. [17, Theorem 7.6].
Recall that (12) holds.

We summarize some of the properties of µt, which can be found in [1] and
[17].

Proposition 3.1. (i) The solution µt is a discrete measure with support
equal to the countable zero set Λt of the entire function B(z) + tD(z),
with the convention that Λ∞ is the zero set of D. In particular Λt ⊂ R

for t ∈ R
∗.
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(ii) The support of two different N-extremal solutions are disjoint, and each
point x0 ∈ R belongs to the support of a unique N-extremal measure µt,
where t ∈ R∗ is given as t = −B(x0)/D(x0) if D(x0) 6= 0 and t = ∞ if
D(x0) = 0.

Let us consider the vector space

E := {Fc(z) =

∞∑

n=0

cnpn(z) | c ∈ ℓ2} (28)

of entire functions, cf. (5). It is a Hilbert space under the norm

||Fc||
2 =

∞∑

n=0

|cn|
2 =

∫
|Fc(x)|2 dµ(x),

where µ ∈ V can be arbitrary. It is a reproducing kernel Hilbert space of
functions with the reproducing kernel

K(u, v) :=
∞∑

n=0

pn(u)pn(v), u, v ∈ C,

in the sense that
∫

K(u, x)Fc(x) dµ(x) = Fc(u), µ ∈ V, u ∈ C.

Note that (pn) is an orthonormal basis of E , and the mapping c 7→ Fc is a
unitary operator of the Hilbert space ℓ2 onto E .

For each N-extremal measure µt the mapping c 7→ Fc|supp(µt) is a unitary
operator of ℓ2 onto L2(µt). The inverse mapping is given by

f 7→
(
〈f, pn〉L2(µt)

)
n≥0

, f ∈ L2(µt),

and

f(x) =
∞∑

n=0

〈f, pn〉L2(µt)pn(x), x ∈ supp(µt). (29)

The series in (29) converges to f in L2(µt) and converges also locally uni-
formly for x ∈ C, but f is apriori only defined on supp(µt), so the equality
holds pointwise for x ∈ supp(µt). The series represents a holomorphic exten-
sion of f to all of C.
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The self-adjoint operator Tt from (25) is unitarily equivalent with the
multiplication operator Mµt

on L2(µt) given by

Mµt
f(x) = xf(x), f ∈ L2(µt), x ∈ supp(µt).

Theorem 3.2. Let µt be an N-extremal measure and let λ ∈ C \ suppµt.
Then

wµt
(λ)pλ + qλ ∈ D(Tt), (30)

where

wµt
(λ) :=

∫
1

x− λ
dµt(x) = −

C(λ, x)

D(λ, x)
, x ∈ suppµt. (31)

In particular, the ratio C(λ, x)/D(λ, x) does not depend on x ∈ supp µt.

Proof. Since λ /∈ supp µt the functions (x−λ)−1 and x(x−λ)−1 are bounded
on supp µt and in particular they belong to L2(µt). Thus (x−λ)−1 ∈ D(Mµt

)
and we find ∫

pn(x)

x− λ
dµt(x) = wµt

(λ)pn(λ) + qn(λ),

where wµt
(λ) is given by the first equality of (31). Moreover, by (29)

(x− λ)−1 =

∞∑

n=0

[wµt
(λ)pn(λ) + qn(λ)]pn(x), x ∈ supp µt. (32)

In view of the unitary equivalence of Tt and Mµt
we get (30). Multiplying

(32) sidewise by x− λ gives

1 = wµt
(λ)(x− λ)

∞∑

n=0

pn(λ)pn(x) + (x− λ)

∞∑

n=0

qn(λ)pn(x), x ∈ supp(µt).

By (8) and (9) we therefore get

wµt
(λ)D(λ, x) + C(λ, x) = 0, x ∈ supp µt.

Assume D(λ, x) = 0. Then C(λ, x) = 0, but this gives a contradiction to
(10). Hence D(λ, x) 6= 0 and

wµt
(λ) = −

C(λ, x)

D(λ, x)
, x ∈ supp µt,

which gives the second part of (31).
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Remark 3.3. Using the formulas (57) and (58) in the last expression in (31),
we get formula (27) with t = −B(x)/D(x) independent of x ∈ supp(µt) if
D(x) 6= 0, and t = ∞ if D(x) = 0.

Note also that wµt
(λ)pλ + qλ /∈ D(T ) by Theorem 1.2 (iii) because

B(λ, λ) = −1.

We know from Theorem 1.2 that pλ, qλ /∈ D(T ) for every λ ∈ C. We shall
now clarify when pλ, qλ belong to the domain of the self-adjoint extension Tt

associated with the N-extremal measure µt.

Theorem 3.4. For λ ∈ C and t ∈ R∗ we have

pλ ∈ D(Tt) ⇐⇒ D(λ, x) = 0 ∀x ∈ supp(µt) ⇐⇒ λ ∈ supp(µt). (33)

qλ ∈ D(Tt) ⇐⇒ C(λ, x) = 0 ∀x ∈ supp(µt). (34)

Proof. We define the entire functions gλ, hλ ∈ L2(µt) by

gλ(x) :=
∞∑

k=0

pk(λ)pk(x), hλ(x) :=
∞∑

k=0

qk(λ)pk(x), x ∈ C.

If pλ ∈ D(Tt) then (Tt − λI)pλ = 0 by (13), because Tt is a restriction
of T ∗. Furthermore, by the unitary equivalence between Tt and the multi-
plication operator Mµt

on L2(µt) we have xgλ(x) ∈ L2(µt) and D(λ, x) =
(λ− x)gλ(x) = 0 in L2(µt). By discreteness of µt we get D(λ, x) = 0 for all
x ∈ supp(µt). The last equivalence of (33) follows from Remark 5.10. On
the other hand, it is easy to see that the last two equivalent conditions of
(33) imply pλ ∈ D(Tt), because the zero-function x 7→ (λ − x)gλ(x) as well
as λgλ(x) are in L2(µt), hence also xgλ(x) ∈ L2(µt). Therefore gλ ∈ D(Mµt

)
and finally pλ ∈ D(Tt).

If qλ ∈ D(Tt) then (Tt − λI)qλ = e0 by (13), because Tt is a restriction
of T ∗. This shows that (x − λ)hλ(x) = 1 in L2(µt) and hence C(λ, x) = 0
for all x ∈ supp(µt). On the other hand, if C(λ, x) = 0 for x ∈ supp(µt), we
conclude that xhλ(x) ∈ L2(µt), hence qλ ∈ D(Tt). This establishes (34).

We know from Proposition 3.1 that supp(µt) is the the zero set of the
entire function B(z) + tD(z) understood as D(z) if t = ∞. Using this we
get the following Corollary about pλ. We get a similar result about qλ from
(57).
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Corollary 3.5. For t ∈ R and t = ∞ we have

pλ ∈ D(Tt) ⇐⇒ B(λ) + tD(λ) = 0,

qλ ∈ D(Tt) ⇐⇒ A(λ) + tC(λ) = 0.

pλ ∈ D(T∞) ⇐⇒ D(λ) = 0,

qλ ∈ D(T∞) ⇐⇒ C(λ) = 0.

In particular pλ and qλ only belong to D(Tt) if λ ∈ R, and for λ ∈ R they
belong to a unique D(Tt). Furthermore, they never belong to the same domain
D(Tt).

Remark 3.6. Since D(T ) ⊂ D(Tt) for all t ∈ R∗, it is clear that Corollary 3.5
implies that pλ, qλ /∈ D(T ) as stated in Corollary 2.2.

We also have a kind of converse to Theorem 3.2.

Theorem 3.7. Assume that λ, τ ∈ C are such that τpλ + qλ ∈ D(Tt) for
some t ∈ R∗. Then λ /∈ supp(µt) and τ = wµt

(λ) given by (31).

Proof. Assume that λ ∈ supp(µt). By Theorem 3.4 we know that pλ ∈ D(Tt)
and hence qλ ∈ D(Tt), contradicting Corollary 3.5.

Having established λ /∈ supp(µt), we get by Theorem 3.2 that (τ −
wµt

(λ))pλ ∈ D(Tt), but since pλ /∈ D(Tt), we get τ − wµt
(λ) = 0.

Theorem 3.8. Let t ∈ R
∗ and λ ∈ C \ supp(µt) be given. Then there exists

a unique pair (s, c) ∈ D(T ) × C depending on t, λ such that

wµt
(λ)pλ + qλ =

{
s + c(q0 + tp0), t ∈ R

s + cp0, t = ∞.

We have

c =

{
−1/(B(λ) + tD(λ)), t ∈ R

−1/D(λ), t = ∞,

and s is given by inserting the value of c.

Proof. Recall that λ ∈ C \ supp(µt) if and only if B(λ) + tD(λ) 6= 0 when
t ∈ R, and that λ ∈ C \ supp(µ∞) if and only if D(λ) 6= 0. The existence
and uniqueness of (s, c) follow from Theorem 3.2 and formula (25).

In case t ∈ R we have

wµt
(λ)pλ + qλ − c(q0 + tp0) ∈ D(T ),
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and fixing z0 in the open upper half-plane we have by Proposition 2.1

wµt
(λ)s+λ + r+λ − c(r+0 + ts+0 ) = wµt

(λ)s−λ + r−λ − c(r−0 + ts−0 ) = 0,

or equivalently by (17) and (19)

wµt
(λ)D(λ, z0) + C(λ, z0) − c(C(0, z0) + tD(0, z0)) = 0, (35)

and
wµt

(λ)D(λ, z0) + C(λ, z0) − c(C(0, z0) + tD(0, z0)) = 0. (36)

From (36) and (31) we get for x ∈ supp(µt)

c = −
wµt

(λ)D(λ, z0) + C(λ, z0)

B(z0) + tD(z0)

=
C(λ, x)D(λ, z0) −D(λ, x)C(λ, z0)

(B(z0) + tD(z0))D(λ, x)

= −
D(z0, λ)C(λ, x) − B(z0, λ)D(λ, x)

(B(z0) + tD(z0))D(λ, x)

= −
D(z0, x)

(B(z0) + tD(z0))D(λ, x)
= −

1

B(λ) + tD(λ)
.

Here we have first used (54) and next used (58) twice. Finally we recall that
t = −B(x)/D(x) for x ∈ supp(µt), cf. Proposition 3.1.

Note that (35) leads to the same expression for c.
The case t = ∞ is treated in the same way.

4 Parametrizations of the domain of the Ja-

cobi operator

The Jacobi operator (T,D(T )) in the indeterminate case is regular in the
sense of [13, p. 20], i.e., for any z ∈ C there exists d(z) > 0 such that

||(T − zI)c|| ≥ d(z)||c||, c ∈ D(T ). (37)

For z ∈ C \ R this is true with d(z) = |Im (z)|, and for z ∈ R let t0 ∈ R∗ be
such that z ∈ supp(µt0). For t ∈ R∗ \ {t0} the distance

dt(z) := min{|z − x| | x ∈ supp(µt)} > 0,
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can be used in (37), since we have

||(T − zI)c||2 =

∫
|(x− z)Fc(x)|2 dµt(x) ≥ dt(z)2||c||2,

where Fc is given in (5).
We have the orthogonal decomposition in closed subspaces

ℓ2 = (T − zI)(D(T )) ⊕ Cpz, z ∈ C. (38)

The operator (T,D(T )) has no eigenvalues, has empty continuous spec-
trum, and the spectrum σ(T ) = C is equal to the residual spectrum, cf. [18,
p.209].

For z0 ∈ C we have the orthogonal expansion

pn(z) − pn(z0)

z − z0
=

n−1∑

k=0

an,k(z0)pk(z), z ∈ C (39)

of the polynomial (pn(z) − pn(z0)/(z − z0) of degree n− 1, and it is easy to
see that

an,k(z0) =

∫
pn(x) − pn(z0)

x− z0
pk(x) dµ(x) = qn(z0)pk(z0) − pn(z0)qk(z0), (40)

where µ ∈ V is an arbitrary solution to (1), cf. [1, p. 18].

Lemma 4.1. The coefficients an,k(z0) from (40) satisfy

|an,k(z0)|
2 ≤

(
|pn(z0)|

2 + |qn(z0)|
2
) (

|pk(z0)|
2 + |qk(z0)|

2
)
. (41)

Therefore

∞∑

n=k+1

|an,k(z0)|
2 ≤ (||pz0||

2 + ||qz0||
2)(|pk(z0)|

2 + |qk(z0)|
2). (42)

Furthermore,

∞∑

n=0

∣∣∣∣
pn(z) − pn(z0)

z − z0

∣∣∣∣
2

≤ ||pz||
2
(
||pz0||

2 + ||qz0||
2
)2

. (43)

In particular, for z → z0
∞∑

n=0

|p′n(z0)|
2 ≤ ||pz0||

2
(
||pz0||

2 + ||qz0||
2
)2

.
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Proof. Formula (41) is a consequence of the Cauchy-Schwarz inequality.
From (39) and (41) we get

∣∣∣∣
pn(z) − pn(z0)

z − z0

∣∣∣∣
2

≤
n−1∑

k=0

|an,k(z0)|
2
n−1∑

k=0

|pk(z)|2

≤ ||pz||
2
n−1∑

k=0

(
|pn(z0)|

2 + |qn(z0)|
2
) (

|pk(z0)|
2 + |qk(z0)|

2
)
,

and finally

∞∑

n=0

∣∣∣∣
pn(z) − pn(z0)

z − z0

∣∣∣∣
2

≤ ||pz||
2

∞∑

k=0

[
(
|pk(z0)|

2 + |qk(z0)|
2
) ∞∑

n=k+1

(
|pn(z0)|

2 + |qn(z0)|
2
)
]

≤ ||pz||
2
(
||pz0||

2 + pz0 ||
2
)2

,

which yields (43).

We shall now show that the Hilbert space E = {Fc(z)} defined in (28) is
stable under difference quotients:

Theorem 4.2. For c ∈ ℓ2 and z0 ∈ C there exists ξ(c, z0) ∈ ℓ2 such that

Fc(z) − Fc(z0)

z − z0
= Fξ(c,z0)(z) ∈ E , (44)

and the coordinates of ξ(c, z0) are defined by

ξk(c, z0) =

∞∑

n=k+1

cnan,k(z0), k ≥ 0. (45)

Furthermore,
||ξ(c, z0)|| ≤ ||c||

(
||pz0||

2 + ||qz0||
2
)
. (46)

Proof. The series in (45) is absolutely convergent being the product of two
ℓ2 sequences. Furthermore, by the Cauchy-Schwarz inequality and (41) we
get

|ξk(c, z0)|
2 ≤ ||c||2(||pz0||

2 + ||qz0||
2)
(
|pk(z0)|

2 + |qk(z0)|
2
)
,
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and therefore (ξk(c, z0)) ∈ ℓ2 and (46) holds.
We next find

Fc(z) − Fc(z0)

z − z0
=

∞∑

n=0

cn
pn(z) − pn(z0)

z − z0
, z 6= z0.

Inserting the expression (39) on the right-hand side, we get for z 6= z0

Fc(z) − Fc(z0)

z − z0
=

∞∑

n=1

cn

n−1∑

k=0

an,k(z0)pk(z)

=

∞∑

k=0

pk(z)

∞∑

n=k+1

cnan,k(z0)

=

∞∑

k=0

ξk(c, z0)pk(z),

where the rearrangement is possible due to absolute convergence:
∣∣∣∣
Fc(z) − Fc(z0)

z − z0

∣∣∣∣

≤
∞∑

n=1

|cn|
n−1∑

k=0

|an,k(z0)| |pk(z)|

=
∞∑

k=0

|pk(z)|
∞∑

n=k+1

|cn| |an,k(z0)|

≤ ||c||
∞∑

k=0

|pk(z)|

[
∞∑

n=k+1

|an,k(z0)|
2

]1/2

≤ ||c||
∞∑

k=0

|pk(z)|
[(
||pz0||

2 + ||qz0||
2
) (

|pk(z0)|
2 + |qk(z0)|

2
)]1/2

≤ ||c||
(
||pz0||

2 + ||qz0||
2
)1/2

||pz||

(
∞∑

k=0

(
|pk(z0)|

2 + |qk(z0)|
2
)
)1/2

= ||c|| ||pz||
(
||pz0||

2 + ||qz0||
2
)
,

where we have used (42).
It is now clear that the entire functions z 7→ (Fc(z) − Fc(z0))/(z − z0),

with value F ′
c(z0) for z = z0, and Fξ(c,z0)(z) agree.
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Theorem 4.3. Let Ξz0 denote the bounded operator in ℓ2 defined by

Ξz0(c) := ξ(c, z0), z0 ∈ C, c ∈ ℓ2, (47)

where ξ(c, z0) is defined in Theorem 4.2. We have Ξz0(ℓ
2) = D(T ) and

ker(Ξz0) = Ce0 for each z0 ∈ C.
Furthermore, for z0 ∈ C

(T − z0I)Ξz0(c) + Fc(z0)e0 = c, c ∈ ℓ2. (48)

The restriction of Ξz0 to (T − z0I)(D(T )) is a bijection onto D(T ) equal to
(T − z0I)−1.

Proof. Let U : ℓ2 → E denote the unitary mapping given by U(c) = Fc.
Then

U(Jc)(z) = z

∞∑

k=0

ckpk(z), c ∈ F , z ∈ C,

i.e., U is the intertwining operator between J and the densely defined oper-
ator of multiplication with z on C[z] ⊂ E . Therefore

U(Tc)(z) = zFc(z), c ∈ D(T ), z ∈ C. (49)

For c ∈ ℓ2 and z0 ∈ C we have

c− Fc(z0)e0 ⊥ pz0 ,

so by (38) c − Fc(z0)e0 belongs to (T − z0I)(D(T )). Therefore, there exists
a unique vector v ∈ D(T ) such that

c− Fc(z0)e0 = (T − z0I)(v), (50)

and applying U to (50) we get by (49)

Fc(z) − Fc(z0) = (z − z0)Fv(z), z ∈ C.

Now (44) shows that Fv(z) = Fξ(c,z0)(z) for z 6= z0, hence for all z, and finally
v = ξ(c, z0), showing that Ξz0(c) ∈ D(T ). Inserting v = ξ(c, z0) in (50) yields
(48).

For v ∈ D(T ) we define c = (T − z0I)(v). Then Fc(z0) = 0 as c ⊥ pz0 by
(38), and then (48) gives (T − z0I)Ξz0(c) = c. By injectivity of T − z0I we
get v = Ξz0(c) = (T − z0I)−1(c).

It is easy to see that ξ(e0, z0) = 0, hence Ce0 ⊆ ker(Ξz0), and from (48)
the converse inclusion follows.
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Remark 4.4. The operator Ξz0 defined in (47) is seen to satisfy

Ξz0(en) =
n−1∑

k=0

an,k(z0)ek, n ≥ 1,

and it follows easily that Ξz0(F) = F .
Moreover, since (Ce0)

⊥ = {c ∈ ℓ2 | c0 = 0}, we have the following
parametrizations of D(T )

D(T ) = {Ξz0(c) | c ∈ ℓ2, c0 = 0}, z0 ∈ C.

5 Appendix

We need the following result about the Nevanlinna functions defined in the
Introduction.

Theorem 5.1. For u, v, w ∈ C we have

A(u, v) = C(u, w)A(w, v)− A(u, w)B(w, v) (51)

B(u, v) = D(u, w)A(w, v)− B(u, w)B(w, v) (52)

C(u, v) = C(u, w)C(w, v)− A(u, w)D(w, v) (53)

D(u, v) = D(u, w)C(w, v)− B(u, w)D(w, v). (54)

From the obvious relations

A(u, v) = −A(v, u), B(u, v) = −C(v, u), D(u, v) = −D(v, u)

and putting w = 0 in the formulas of Theorem 5.1, we get the following
formulas in terms of the one variable functions (11):

Corollary 5.2. For u, v ∈ C we have

A(u, v) =

∣∣∣∣
A(u) A(v)
C(u) C(v)

∣∣∣∣ (55)

B(u, v) =

∣∣∣∣
B(u) A(v)
D(u) C(v)

∣∣∣∣ (56)

C(u, v) =

∣∣∣∣
A(u) B(v)
C(u) D(v)

∣∣∣∣ (57)

D(u, v) =

∣∣∣∣
B(u) B(v)
D(u) D(v)

∣∣∣∣ . (58)
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We have not been able to find the formulas of Theorem 5.1 in the litera-
ture, so we indicate a proof. The formulas of Corollary 5.2 expressing the two
variable functions in terms of the one variable functions were, as far as we
know, first given in [11] and included in [17, exercise 7.8 (3)]. (Unfortunately
there is a misprint in the exercise: B and C are interchanged.)

We begin by introducing polynomial approximations to the Nevanlinna
functions.

Proposition 5.3. [17, Proposition 5.24] For u, v ∈ C and n ≥ 0 we have

An(u, v) := (u− v)

n∑

k=0

qk(u)qk(v) = an

∣∣∣∣
qn+1(u) qn+1(v)
qn(u) qn(v)

∣∣∣∣

Bn(u, v) := −1 + (u− v)
n∑

k=0

pk(u)qk(v) = an

∣∣∣∣
pn+1(u) qn+1(v)
pn(u) qn(v)

∣∣∣∣

Cn(u, v) := 1 + (u− v)
n∑

k=0

qk(u)pk(v) = an

∣∣∣∣
qn+1(u) pn+1(v)
qn(u) pn(v)

∣∣∣∣

Dn(u, v) := (u− v)

n∑

k=0

pk(u)pk(v) = an

∣∣∣∣
pn+1(u) pn+1(v)
pn(u) pn(v)

∣∣∣∣ .

It is important to notice that

∣∣∣∣
An(u, v) Bn(u, v)
Cn(u, v) Dn(u, v)

∣∣∣∣ = 1 for (u, v) ∈ C
2,

cf. [17, Equation(5.57)].
For later use we introduce the transfer matrix with determinant 1

hn(u, v) =

(
Cn(u, v) An(u, v)
−Dn(u, v) −Bn(u, v)

)
, u, v ∈ C, n ≥ 0. (59)

The name transfer matrix is motivated by

Proposition 5.4. For u, v ∈ C, n ≥ 0 we have

(
pn(u) qn(u)
pn+1(u) qn+1(u)

)
hn(u, v) =

(
pn(v) qn(v)
pn+1(v) qn+1(v)

)
(60)
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Proof. The four formulas of Proposition 5.3 can be expressed as the matrix
equation

hn(u, v) = an

(
qn+1(u) −qn(u)
−pn+1(u) pn(u)

)(
pn(v) qn(v)
pn+1(v) qn+1(v)

)
.

However, by [17, Equation (5.52)]

(
qn+1(u) −qn(u)
−pn+1(u) pn(u)

)−1

= an

(
pn(u) qn(u)
pn+1(u) qn+1(u)

)
,

and (60) follows.

By the uniqueness of a matrix hn(u, v) satisfying (60) we get:

Corollary 5.5. For u, v, w ∈ C, n ≥ 0 we have

hn(u, w)hn(w, v) = hn(u, v),

hn(u, v) = hn(v, u)−1.

Proof of Theorem 5.1. Letting n tend to infinity in (59) we obtain the
entire matrix function

h(u, v) =

(
C(u, v) A(u, v)
−D(u, v) −B(u, v)

)
, u, v ∈ C,

with determinant 1 satisfying h(u, w)h(w, v) = h(u, v), which is equivalent
to the formulas (51),(52),(53) and (54) of the theorem. �

Remark 5.6. The Möbius transformation M(u, v) : C∗ → C∗ defined by

M(u, v)(z) :=
C(u, v)z + A(u, v)

−D(u, v)z −B(u, v)
, z ∈ C

∗,

maps the Weyl circle Kv onto the Weyl circle Ku, where Ku = R
∗ if u ∈ R.

For u ∈ C \ R the Weyl circle is defined in [17, Section 7.3].

The following Lemma unifies some calculations:
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Lemma 5.7. For vectors x, y, z, w ∈ C2 we have the following determinant
equation ∣∣∣∣

|x y| |x z|
|w y| |w z|

∣∣∣∣ = |x w||y z|,

where

|x y| =

∣∣∣∣
x1 y1
x2 y2

∣∣∣∣ etc.

Proof. First method: Direct computation.
Second method: Define

M(x, y, z, w) = |x y||z w| + |x z||w y| + |x w||y z|,

where it should be noticed that y, z, w appear in its cyclic permutations.
Clearly M is a 4-linear form on C2, and it is alternating, i.e., is zero, if
any two arguments agree. An alternating 4-linear form on a vector space of
dimension ≤ 3 is identically zero, hence M ≡ 0.

In various proofs we need that certain functions are Pick function, i.e.,
holomorphic functions in the cut plane C\R with certain properties, see [12].

Proposition 5.8. The meromorphic functions B/D and A/C are Pick func-
tions, i.e., they map the upper (resp. lower) open half-plane into itself.

Proof. The result about B/D is in [3, Proposition 1.3]. The result about
A/C can be deduced from the previous result by considering the indeter-
minate moment problem corresponding to the truncated Jacobi matrix J (1)

considered in Remark 2.4. There are simple relations between the Nevan-
linna functions Ã, . . . , D̃ of the truncated problem and those of the original
moment problem, see [14]:

A(z) = a−2
0 D̃(z), C(z) = −b0a

−2
0 D̃(z) − B̃(z), z ∈ C.

Therefore −C/A = b0+a20(B̃/D̃), which shows that −C/A is a Pick function,
and so is A/C.

By a famous Theorem of M. Riesz each of the functions Fc defined in (5)
are of minimal exponential type meaning that for each ε > 0 there exists a
constant Cε > 0 such that

|Fc(z)| ≤ Cεe
ε|z|, z ∈ C.
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This follows from the Cauchy-Schwarz inequality because the norm ||pz|| sat-
isfies the same inequality by [1, Theorem 2.4.3]. Using that the polynomials
qn+1/q1 are the orthonormal polynomials for the indeterminate truncated Ja-
cobi matrix J (1), cf. Remark 2.4, we also get that the functions Gc from (5)
are of minimal exponential type.

We next recall an important property of these functions in case they are
not polynomials.

Proposition 5.9. For each c ∈ ℓ2\F the functions Fc, Gc are transcendental
and have a countably infinite set of zeros.

In particular, for each v ∈ C the functions of the variable u, A(u, v), B(u, v),
C(u, v), D(u, v) have a countably infinite set of zeros.

Proof. An entire transcendental function f of minimal exponential type has
a countably infinite set of zeros. In fact, the order ρ of f is either strictly
less than 1 or equal to 1, and in the latter case the type of f is zero. In the
first case the result follows from the Hadamard factorization Theorem, cf.
[9, p.22]. In the second case the result follows from a Theorem of Lindelöf,
see [9, Theorem 2.20.3].

For v ∈ C and F being one of the functions A, . . . , D, we see that u 7→
F (u, v) is an entire transcendental function of minimal exponential type.

Proof of Theorem 1.3: Case 1: Let us first consider the case of D with
Z(D)v = {u ∈ C | D(u, v) = 0} for given v ∈ C, cf. (14).

If v ∈ R then Z(D)v ⊂ R by [4, Theorem 3], and furthermore Z(D)v
equals the support of the unique N-extremal measure which contains v in
the support.

If v ∈ C \ R, then D(v) 6= 0, and using (58) we get

D(u, v) = D(v)[B(u) − ρD(u)], ρ := B(v)/D(v),

so u ∈ Z(D)v iff B(u) = ρD(u). For such u we must have D(u) 6= 0 for
otherwise B(u) = D(u) = 0 contradicting (12). This gives u ∈ Z(D)v iff
B(u)/D(u) = ρ. Using that B/D is a Pick function by Proposition 5.8, we
see that u, v belong to the same half-plane.

Case 2: We consider Z(B)v and use (56), viz.

B(u, v) = B(u)C(v) −D(u)A(v).
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Let first v ∈ R. If C(v) = 0 then A(v) 6= 0 by (12), so B(u, v) = 0 iff
D(u) = 0, hence Z(B)v ⊂ R. If C(v) 6= 0 then

B(u, v) = C(v)[B(u) − τD(u)], τ := A(v)/C(v) ∈ R,

so Z(B)v is the zero set of B − τD, hence real by Proposition 3.1.
Let next v ∈ C \R. Then C(v) 6= 0, so u ∈ Z(B)v iff B(u) = τD(u) with

τ as above, but this is only possible if D(u) 6= 0 and hence B(u)/D(u) = τ .
Using that both A/C and B/D are Pick functions, cf. Proposition 5.8, we
see that u, v belong to the same half-plane.

Case 3: We consider Z(C)v and use (57), viz.

C(u, v) = A(u)D(v) − C(u)B(v).

By considering the cases v ∈ R and v ∈ C\R separately and factor out D(v)
in case it is non-zero, we may proceed as in case 2.

Finally, the case of Z(A)v follows from the case 1 by considering the
truncated case as in Remark 2.4. �

Remark 5.10. As noticed in the proof above one has for v ∈ R:

D(u, v) = 0 ⇐⇒ u ∈ supp(µ),

where µ is the N-extremal measure such that v ∈ supp(µ).
Compare also with Remark 3.3.

Proof of Proposition 1.4:
Case (i): From the proof of Theorem 1.2 (i) we know that B(u, v) =

−D(u, z)/D(v, z) for all z ∈ C \R since D(v, z) 6= 0 for these z. By assump-
tion D(x, v) 6= 0 for u < x < v, so by continuity B(u, v) = −D(u, x)/D(v, x)
for these x. We next observe that

B(u, v)
v − x

x− u
=

v − x

D(v, x)

D(u, x)

u− x
6= 0, u < x < v, (61)

and

lim
x→u+

D(u, x)

u− x
= ||pu||

2, lim
x→v−

D(v, x)

v − x
= ||pv||

2,

so the function in (61) is positive for u < x < v, hence B(u, v) > 0.
Case (ii): This case is reduced to case (i) for the truncated Jacobi matrix

from Remark 2.4. If Ã, . . . , D̃ denote the Nevalinna functions of two variables
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for the truncated case, the following formulas can be found in [14]. (The
reader is warned that this reference follows the normalization of [11].)

B̃(u, v) = (v − b0)A(u, v) − C(u, v), D̃(u, v) = a20A(u, v),

and since we assume that A(u, v) = 0, we have −C(u, v) = B̃(u, v) > 0. �
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