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Abstract We study Jacobi matrices on trees with one end at infinity. We show that the
defect indices cannot be greater than 1 and give criteria for essential self-adjointness.
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1 Introduction

The aim of the paper is to study a special class of symmetric unbounded operators
and their spectral properties. These are Jacobi operators defined on trees. They are
immediate generalizations of classical Jacobi matrices that act on sequences {un}∞n=0
by the rule

(Ju)n = λnun+1 + βnun + λn−1un−1, n ≥ 0,

where {λn}∞n=0 and {βn}∞n=0 are sequences of positive and real numbers, respectively,
with the convention u−1 = λ−1 = 0. These matrices are closely related to the set of
polynomials defined recursively by
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xpn(x) = λn pn+1(x) + βn pn(x) + λn−1 pn−1(x), n ≥ 0, (1)

with p−1 = 0, p0 = 1.
In the case when the coefficients of the matrix are bounded, the matrix J represents

a self-adjoint operator on �2(N0). If E(x) denotes the resolution of identity associated
with J, then the polynomials pn(x) are orthonormal with respect to the measure
dμ(x) = d(E(x)e0, e0), where e0 is the sequence taking value 1 at n = 0 and
vanishing elsewhere and (u, v) denotes the standard inner product in �2(N0). The
measure μ has bounded support.

When the coefficients are unbounded, the operator J is well defined on the domain
D(J ) consisting of sequences with finitely many nonzero terms. In that case, if this
operator is essentially self-adjoint, then again the polynomials pn are orthonormal
with respect to the measure dμ(x) = d(E(x)e0, e0), except that this measure has
unbounded support. Moreover, there is a unique orthogonality measure for polynomi-
als pn . By a classical theorem, if the operator J is not essentially self-adjoint, there
are many measures μ on the real line so that the polynomials belong to L2(μ); i.e.,

∞∫

−∞
x2n dμ(x) < ∞, n ∈ N0,

and the polynomials pn are orthogonal with respect to the inner product

( f, g) =
∞∫

−∞
f (x)g(x) dμ(x).

Therefore essential self-adjointness is a crucial property that distinguishes between
the so-called determinate and indeterminate cases. Intuitively the unbounded matrix
J is essentially self-adjoint when the coefficients have moderate growth. But the
converse is not true in general. For the classical theory of Jacobi matrices, orthogonal
polynomials, and moment problems, we direct the reader to [1,2,6], and to [5] for a
modern treatment.

In a recent paper [3], homogeneous Jacobi matrices on homogeneous trees were
studied. Two types of homogeneous trees were considered. One of them was the tree
with infinitely many origin points called leaves, like in Fig. 1.

The tree � consists of vertices with heights from zero to infinity. Every vertex x
with height n ≥ 1 is connected to a unique vertex η(x), the parent, with height n + 1,
and d vertices x1, . . . , xd with height n − 1, the children, like in Fig. 2.

Every vertex x with height zero determines the infinite sequence ηk(x) of vertices
with height k.Moreover, for every two vertices x and y with height zero, the sequences
ηk(x) and ηk(y) coincide for k large enough. Therefore, we say that the tree � has
one end at infinity:

The Jacobi matrices were defined on �2(�), where � denotes the set of all vertices
of the tree. The formula is as follows:
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Fig. 1 A tree with infinitely many origin points

Fig. 2 The vertex x and its
neighborhood

x

η(x)

x1 x2 xd

. . .

(Jv)(x) = λnv(η(x)) + βnv(x) + λn−1[v(x1) + v(x2) + · · · + v(xd)],

where n denotes the height of the vertex x .
An interesting phenomenon occurred. It turned out that the operator J defined

on functions {v(x)}x∈�, with finitely many nonzero terms, is always essentially self-
adjoint, regardless of the growthof the coefficientsλn andβn .For example, the operator
J with coefficients λn = (n + 1)2 and βn = 0 is not essentially self-adjoint when
considered as the classical Jacobi matrix on �2(N0). But it is essentialy self-adjoint
when it acts on �2(�).

Moreover, its spectrum is discrete and consists of the zeros of all the polynomials
pn associated with the classical Jacobi matrix with coefficients

√
d λn and βn, i.e.,

satisfying

xpn(x) = √
d λn pn+1(x) + βn pn(x) + √

d λn−1 pn−1(x), n ≥ 0.

Every eigenvalue is of infinite multiplicity.
Our aim is to study the inhomogeneous Jacobi matrix on that tree. This means we

do not require that the coefficients of the matrix depend only on the height of the
vertex. With every vertex x , we associate a positive number λx and a real number βx .

We are going to study operators of the form

Jv(x) = λxv(η(x)) + βxv(x) + λx1v(x1) + λx2v(x2) + · · · + λxdv(xd).

One of the main differences between the classical case and the case of the tree � is
that the eigenvalue equation

zv(x) = λxv(η(x)) + βxv(x) + λx1v(x1) + λx2v(x2) + · · · + λxdv(xd) (2)
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Fig. 3 The vertex x and its
direct relatives

x

η(x)

. . .

η−1(x)

cannot be solved recursively, unlike the equation

zv(n) = λnv(n + 1) + βnv(n) + λn−1v(n − 1).

Nonetheless, we will show that the equation has a nonzero solution for every nonreal
number z (Corollary 5).

Actually, when we give up homogeneity of the matrix J, we can as well give up
homogeneity of the tree. This means the number of descendants of vertices of � is not
constant; i.e., the quantities #η−1(x) may vary.

The operator J is symmetric on �2(�) with respect to the natural inner product

(u, v) =
∑
x∈�

u(x)v(x).

We are interested in studying the essential self-adjointness of the matrix J. It turns out
that, unlike in the homogeneous case, the matrix J may not be essentially self-adjoint.
However, the defect indices cannot be greater than 1 (Proposition 6).We derive certain
criteria assuring essential self-adjointness. For example, the analog of the Carleman
condition holds (see Theorem 16). Moreover, we relate essential self-adjointness of
J with essential self-adjointness of the classical Jacobi matrix J0 obtained from J by
restriction to an infinite path of the tree (see Theorem 9).

2 Definitions and Basic Properties

We will consider a tree � with one end at infinity. Its vertices are located on heights
from zero to infinity. Let l(x) denote the height of the vertex x . Every vertex x with
height l(x) ≥ 0 is directly connected to a unique vertex η(x) with height l(x) + 1,
the parent. When l(x) ≥ 1, the vertex x is directly connected to a finite nonempty set
of vertices y on height l(x) − 1, called its children. The set of children of x will be
denoted by η−1(x) (see Fig. 3). The number of vertices in η−1(x) may vary with x .
Vertices x with l(x) = 0 have no children; i.e., η−1(x) = ∅.

For a given vertex x , let�x denote the finite subtree containing the vertex x together
with all its descendants, i.e., vertices y such that ηk(y) = x for some k. Thus l(y) =
l(x) − k.

Define F(�) to be the set of all complex valued functions on �, while F0(�)

denotes the subspace consisting of functions with finite support. By �2(�), we denote
the space of square summable functions on � with standard inner product
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( f, g) =
∑
x∈�

f (x)g(x).

Let

δx (y) =
{
1 y = x,

0 y �= x .

Consider the operator J acting on F0(�) according to the rule

Jδx = λxδη(x) + βxδx +
∑

y∈η−1(x)

λyδy, l(x) ≥ 1, (3)

Jδx = λxδη(x) + βxδx , l(x) = 0, (4)

where λx are positive constants while βx are real ones.

Remark In the case when #(η−1(x)) = 1, for all x ∈ � with l(x) ≥ 1, the tree �

consists of one vertical line that can be identified with N0. The matrix J becomes a
classical Jacobi matrix.

Let S and S∗ be the operators acting on F0(�) as follows:

Sδx = λxδη(x), S∗δx =

⎧⎪⎨
⎪⎩

∑
y∈η−1(x)

λyδy, l(x) > 0,

0, l(x) = 0.

Then

(S f, g) = ( f, S∗g), f, g ∈ F0(�).

The operators S and S∗ are straightforward generalizations of weighted shift and
backwardweighted shift operators usually acting on �2(N0).LetM be amultiplication
operator on F0(�) defined by

Mδx = βxδx .

Then

J = S + S∗ + M.

In particular, J is a symmetric linear operator on F0(�).

Let v ∈ F0(�) and x ∈ �. Then

Jv(x) =

⎧⎪⎨
⎪⎩

λxv(η(x)) + βxv(x) +
∑

y∈η−1(x)

λyv(y) l(x) ≥ 1,

λxv(η(x)) + βxv(x) l(x) = 0.
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The formula makes sense for all functions v in F(�). Hence we may extend the
definition of J to the whole space F(�), by setting

Jv(x) = λxv(η(x)) + βxv(x) +
∑

y∈η−1(x)

λyv(y), v ∈ F(�).

On the way, we have simplified the notation as η−1(x) = ∅ for l(x) = 0.
Observe that the adjoint of (J,F0(�)) in �2(�) is the restriction of this extension

to the domain of the adjoint operator, i.e., to the space of all functions v ∈ �2(�), so
that Jv belongs to �2(�).

Wewill study eigenfunctions of the operator J, i.e., functions v ∈ F(�) satisfying

Jv = zv

or equivalently,

zv(x) = λxv(η(x)) + βxv(x) +
∑

y∈η−1(x)

λyv(y). (5)

Unlike in the classical case, this equation cannot be solved recursively; i.e., setting
v(x0) = 1 at a vertex x0, with l(x0) = 0, doesn’t allow recursive computation of all
other values v(x), for x ∈ �. Therefore the existence of nonzero solutions of (5) is
not obvious. Our aim is to show that such solutions exist for every nonreal number z.

For x ∈ �, let Jx denote the truncation of the Jacobi matrix J to the subtree �x ,

i.e., the matrix with the parameters λx
y, βx

y so that

λx
y =

{
λy for y ∈ �x\{x},
0 for y = x,

βx
y = βy for y ∈ �x .

Lemma 1 Fix a vertex x ∈ �. Assume there exists a nonzero function v ∈ F(�x ∪
{η(x)}) and z /∈ R such that Jv(y) = zv(y) for y ∈ �x . Then v(η(x)) �= 0.

Proof Assume for a contradiction that v(η(x)) = 0. Let w denote the truncation of v

to �x . Thus Jxw = zw. Moreover w �= 0. Therefore z must be a real number, as Jx
is a finite dimensional symmetric linear operator. 
�
Lemma 2 Fix a vertex x ∈ �. Assume there exists 0 �= v ∈ F(�x ) and z /∈ R such
that (Jv)(y) = zv(y) for y ∈ �x\{x}. Then

zv(x) �= βxv(x) +
∑

y∈η−1(x)

λyv(y).

Proof Assume for a contradiction that

zv(x) = βxv(x) +
∑

y∈η−1(x)

λyv(y).
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Define the function u ∈ F(�x ∪ {η(x)}) by setting u(y) = v(y) for y ∈ �x and
u(η(x)) = 0. Then (Ju)(y) = zu(y) for y ∈ �x . In view of Lemma 1, we get a
contradiction. 
�
Corollary 3 Assume there exists a function v �= 0 on� and z /∈ R such that (Jv)(x) =
zv(x) for x ∈ �. Then v does not vanish on �.

Proof Assume for a contradiction that v(y) = 0 for a vertex y. First we will show that
v vanishes on �y . If �(y) = 0, then �y = {y}, and the conclusion follows. Assume
�(y) ≥ 1. Consider any vertex x ∈ η−1(y); i.e., y = η(x). Then by Lemma 1, we get
that the function v vanishes identically on �x . But

�y = {y} ∪
⋃

x∈η−1(y)

�x ;

hence v vanishes on �y . From the recurrence relation

zv(y) = λyv(η(y)) + βyv(y) +
∑

u∈η−1(y)

λuv(u),

we get v(η(y)) = 0. Therefore, by the first part of the proof, v vanishes identically on
�η(y). Applying the same procedure infinitely many times we achieve that v vanishes
at every vertex of �, as

� =
∞⋃
k=0

�ηk (y).


�
Lemma 4 For any nonreal number z and any x0 ∈ � with l(x0) ≥ 1, there exists a
nonzero function v defined on �x0 satisfying

(Jv)(x) = zv(x), x ∈ �x0\{x0}. (6)

Moreover, the function v cannot vanish and is unique up to a constant multiple.

Proof We will use induction on the height l(x0). Assume l(x0) = 1. Set v(x0) = 1.
Let x ∈ η−1(x0). Then l(x) = 0. We want to have

zv(x) = λxv(x0) + βxv(x).

Thus we may set

v(x) = λxv(x0)

z − βx
.

In this way (6) is fulfilled.
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Assume the conclusion is true for all vertices on height n. Let l(x0) = n + 1.
Consider vertices x1, x2, . . . , xk ∈ η−1(x0). Then l(x j ) = n for j = 1, 2, . . . , k.
By the induction hypothesis, for every vertex x j , there exists a nonzero function v j

defined on �x j satisfying

(Jv j )(x) = zv j (x), x ∈ �x j \{x j }.

We have

�x0 =
k⋃
j=1

�x j ∪ {x0}.

We are going to define the function v on �x0 in the following way. Set v(x0) = 1 and

v(x) = c jv j (x), for x ∈ �x j ,

for some constants c j , which will be specified later. In this way, we get

(Jv)(x) = zv(x), x ∈ �x j \{x j }, j = 1, 2, . . . , k.

In order to conclude the proof, we must show that

(Jv)(x j ) = zv(x j ), j = 1, 2, . . . , k.

Thus we want to have

zc jv j (x j ) = λx j v(x0) + βx j c jv j (x j ) +
∑

y∈η−1(x j )

λyc jv j (y);

i.e.,

λx j v(x0) = c j

⎛
⎝zv j (x j ) − βx j v j (x j ) −

∑
y∈η−1(x j )

λyv j (y)

⎞
⎠ . (7)

The expression in the brackets on the right-hand side is nonzero for every j =
1, 2, . . . , k, byLemma4. Therefore (7) is satisfied for an appropriate choice of nonzero
constants c1, c2, c3, . . . , ck .

By Lemma 1, the function v cannot vanish at any vertex. Moreover, if there was
another function ṽ satisfying the conclusion of Lemma 4, then v − cṽ would also
satisfy the conclusion and would vanish for an appropriate choice of the constant c.
Thus v = cṽ. 
�
Corollary 5 For any nonreal number z, there exists a nonzero function v so that

(Jv)(x) = zv(x) x ∈ �.

The function v cannot vanish and is unique up to a constant multiple.
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Proof Fix a vertex y, l(y) = 0. By Lemma 4, for any subtree �ηk (y), k ≥ 1, there
exists a unique function vk defined on �ηk (y) so that

vk(y) = 1, (Jvk)(x) = zvk(x) for x ∈ �ηk (y)\{ηk(y)}.

As

�ηk (y)\{ηk(y)} ⊂ �ηk+1(u)\{ηk+1(y)},

the function vk+1 is a multiple of vk on �ηk (y), by Lemma 4 applied to x0 = ηk(y).
As vk+1(y) = vk(y) = 1, we get

vk+1(x) = vk(x) for x ∈ �ηk (y).

Define

v(x) = vk(x) for x ∈ �ηk (y).

Since

� =
∞⋃
k=1

�ηk (y),

the function v is defined at every vertex of �, and the conclusion follows. 
�
Remark The conclusion may not be true for some real values of z. Indeed, consider a
tree � with infinitely many vertices at height 0. Assume #(η−1(x)) = 2 for any vertex
x ∈ � with l(x) ≥ 1. Let λy = 1 and βy = 0 for all vertices y such that l(y) = 0.
Let l(y1) = l(y2) = 0 and η(y1) = η(y2). Then the function v = δy1 − δy2 satisfies
Jv = 0. In this way, we obtain infinitely many solutions, which vanish on x with
l(x) ≥ 1.

3 Essential Self-Adjointness and Defect Indices

Let z /∈ C. The function v ∈ �2(�) belongs to the defect space Nz if v is orthogonal
to Im (z I − J ) = (z I − J )(F0(�)). In particular, v is orthogonal to (z I − J )δx for
any x ∈ �. This implies Jv = zv. The dimension of the defect space Nz is called the
defect index. It is known that the defect index is constant for z in the upper half-plane
and for z in the lower half-plane. In our case, the defect index is constant on C\R
as Jv = zv is equivalent to Jv = zv. We refer to [4,6] for the theory of symmetric
operators in Hilbert space and their self-adjoint extensions.

Proposition 6 The defect indices of the operator J cannot be greater than 1.

Proof Fix a nonreal number z. Assume J is not essentially self-adjoint. Then there
exists 0 �= v ∈ �2(�) satisfying Jv = zv. By Corollary 5, the function v is unique up
to a constant multiple. Hence the defect space is one-dimensional. 
�
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Proposition 6 implies the following.

Corollary 7 Let J be a Jacobi matrix on �. Fix a nonreal number z, and let v denote
the unique, up to a constant multiple, nonzero solution of the equation Jv = zv. Then
J is essentially self-adjoint if and only if v /∈ �2(�).

Theorem 8 There exist Jacobi matrices on � that are not essentially self-adjoint.

Proof We set βx ≡ 0. Fix a nonreal number z. Choose an infinite path {xn} in � so
that l(xn) = n. We will construct a matrix J by induction on n. Assume that we have
constructed a matrix J on �xn−1\{xn−1} and a nonvanishing function v on �xn−1 so
that

‖v |�xn−1
‖22 ≤ 1 − 2−(n−1)

and

(Jv)(x) = zv(x), x ∈ �xn−1\{xn−1}.

We want to extend the definition of J and v so that the conclusion remains valid when
n − 1 is replaced by n.

Our first task is to define λxn−1 and v(xn) so that

zv(xn−1) = λxn−1v(xn) +
∑

y∈η−1(xn−1)

λyv(y);

i.e.,
λxn−1v(xn) = zv(xn−1) −

∑
y∈η−1(xn−1)

λyv(y). (8)

The right-hand side of (8) cannot vanish by Lemma 2. We will define λxn−1 and v(xn)
so as to satisfy (8). By specifying λxn−1 large enough, we may assume that

|v(xn)|2 ≤ 2−n−1.

For any y ∈ η−1(xn) and y �= xn−1, consider the subtree �y\{y}. Set λx = 1 for
any x ∈ �y\{y}. By Lemma 4, there is a nonzero solution vy defined on �y satisfying

(Jvy)(x) = zvy(x), x ∈ �y\{y}.

By rescaling, we may assume that

∑
y∈η−1(xn)\{xn−1}

‖vy |�y ‖22 ≤ 2−n−1.
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We want to define the numbers λy for y ∈ η−1(xn) and y �= xn−1 so that

zvy(y) = (Jvy)(y) = λyvy(xn) +
∑

x∈η−1(y)

λxvy(x).

Hence we want to get

λy =
zvy(y) −

∑
x∈η−1(y)

λxvy(x)

v(xn)
. (9)

By Lemma 2, the numerator (9) cannot vanish. We may multiply vy by a constant of
absolute value 1 so that the expression on the right-hand side of (9) becomes positive.
In this way, the values λy for y ∈ η−1(xn) and y �= xn−1 are defined. We extend the
definition of v to �xn by setting

v(x) = vy(x), x ∈ �y, y �= xn−1.

On the way, we have also extended the definition of J so that

(Jv)(x) = zv(x), x ∈ �xn\{xn}.

Moreover, by construction, we have

‖v |�xn
‖22 = ‖v |�xn−1

‖22 +
∑

y∈η−1(xn),y �=xn−1

‖v |�y ‖22 + |v(xn)|2

≤ 1 − 2−(n−1) + 2−n−1 + 2−n−1 = 1 − 2−n .


�
Remark The Jacobi matrix J constructed in the proof satisfies βx ≡ 0 and λx = 1 for
vertices x whose distance from the path {xn} is greater than 2.

Remark Another way of proving Theorem 8 is as follows. Fix any Jacobi matrix
J0 so that the operator J0 is bounded on �2(�). For example, we may set βx ≡ 0
and λx = (

#η−1(y)
)−1/2

, whenever x ∈ η−1(y). Let S denote the operator acting
according to the rule

Sv(x) = λxv(η(x)).

By �0 we denote the set of leaves, i.e., vertices with height 0. Then

‖Sv‖22 =
∑
x∈�

|Sv(x)|2 =
∑
x∈�

λ2x |v(η(x))|2

=
∑

y∈�\�0

|v(y)|2
∑

x∈η−1(y)

λ2x =
∑

y∈�\�0

|v(y)|2 ≤ ‖v‖22.
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The operator S is thus bounded on �2(�) with ‖S‖ ≤ 1. The adjoint operator S∗ acts
by the rule

S∗v(x) =
∑

y∈η−1(x)

λyv(y), x /∈ �0,

S∗v(x) = 0, x ∈ �0.

Then for J0 = S + S∗, we get ‖J0‖ ≤ 2. Fix an infinite path {xn} and a sequence of
positive numbers {λn}. Let J1 be the degenerate Jacobi matrix defined by βx ≡ 0 and
λxn = λn, λx = 0, for x /∈ {xn}. Choose the coefficients λn so that the classical Jacobi
matrix associatedwith the coefficientsλn andβn ≡ 0 is not essentially self-adjoint. For
example, set λn = 2n . Let J = J0 + J1. The matrix J is nondegenerate. Moreover, J
is not essentially self-adjoint as a bounded perturbation of a not essentially self-adjoint
operator ([6], cf. Prop. 8.6 [4]).

The next theorem provides a relation between Jacobi matrices on the tree � and
classical Jacobi matrices associated with an infinite path of �.

Theorem 9 Assume a Jacobi matrix J on� is not essentially self-adjoint and βx ≡ 0.
Choose an infinite path {xn}with l(x0) = 0 and xn = ηn(x0).Then the classical Jacobi
matrix J0 with λn = λxn and βn ≡ 0 is not essentialy self-adjoint.

Before proving Theorem 9 we will need the following lemma.

Lemma 10 Let J be a Jacobi matrix on � with βx ≡ 0. Let Jv = iv and v(x0) = 1
for a vertex x0 on height 0. Then the function ṽ(x) = i−l(x)v(x) is positive.

Proof By assumption, we have

iv(x) = λxv(η(x)) +
∑

y∈η−1(x)

λyv(y).

Thus
ṽ(x) = λx ṽ(η(x)) −

∑
y∈η−1(x)

λy ṽ(y). (10)

We know that ṽ cannot vanish and is unique up to a constant multiple. The function
Re ṽ also satisfies (10) and takes the value 1 at x0. Thus ṽ = Re ṽ; i.e., ṽ is real valued.
Multiplying (10) by ṽ(x) = ṽ(η(y)) results in

λx ṽ(x)ṽ(η(x)) = ṽ(x)2 +
∑

y∈η−1(x)

λy ṽ(y)ṽ(η(y)). (11)

By (11), if the quantity ṽ(x)ṽ(η(x)) is positive for vertices x ∈ �, with �(x) = n,

then it is positive for �(x) = n + 1. For �(x) = 0, the sum in (11) is empty; hence
ṽ(x)ṽ(η(x)) > 0. Summarizing ṽ(x)ṽ(η(x)) > 0 for any x ∈ �. In other words, the
values ṽ(x) and ṽ(η(x)) have the same sign for any x ∈ �. Since � is connected, the
function x �→ ṽ(x) must have constant sign on �. 
�
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Proof of Theorem 9 By Corollary 5, there exists a nonvanishing function v on � so
that Jv = iv and v(x0) = 1. In view of Corollary 7, the function v is square summable
on �. By (10) evaluated at x = xn , we obtain

ṽ(xn) = λxn ṽ(xn+1) −
∑

y∈η−1(xn)

λy ṽ(y).

Hence

λxn ṽ(xn+1) − λxn−1 ṽ(xn−1) = ṽ(xn) +
∑

y∈η−1(xn)
y �=xn−1

λy ṽ(y) > 0.

The last inequality follows from Lemma 10. Therefore

ṽ(x2n) ≥ λx0λx2 . . . λx2n−2

λx1λx3 . . . λx2n−1

ṽ(x0),

ṽ(x2n+1) ≥ λx1λx3 . . . λx2n−1

λx2λx4 . . . λx2n
ṽ(x1).

Since the sequence ṽ(xn) is square summable, we get

∞∑
n=1

(
λx0λx2 . . . λx2n−2

λx1λx3 . . . λx2n−1

)2

+
(

λx1λx3 . . . λx2n−1

λx2λx4 . . . λx2n

)2

< ∞. (12)

The last inequality is equivalent to not essential self-adjointness of the classical Jacobi
matrix J0 with λn = λxn and βn ≡ 0. Indeed, let pn and qn denote the polynomials
of the first and the second kind associated with J0; i.e.,

xpn(x) = λn pn+1(x) + λn−1 pn−1(x), n ≥ 0,

xqn(x) = λnqn+1(x) + λn−1qn−1(x), n ≥ 1,

where p−1 = 0 p0 = 1 and q0 = 0, q1 = 1/λ0. Then (12) is equivalent to

∞∑
n=1

[p2n(0) + q2n (0)] < ∞,

as

p2n(0) = (−1)n
λ0λ2 . . . λ2n−2

λ1λ3 . . . λ2n−1
, q2n+1(0) = (−1)n

λ1λ3 . . . λ2n−1

λ2λ4 . . . λ2n
.

In view of [1, Problem 10, p. 84] or [5, Thm. 3 (i), (iv)], the matrix J0 is not essentially
selfadjoint. 
�
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Fix a vertex x0, l(x0) = 0, and let x1 = η(x0). Assume also that

#η−1(x1) > 1,

i.e., that x1 has at least two children, i.e., x0 has a sibling.
By Corollary 5 applied to �, there exists a nonvanishing function vz on � satisfying

(Jvz)(x) = zvz(x), for x ∈ �, vz(x0) = 1. (13)

Similarly, Corollary 5 applied to �\{x0} implies existence of a nonvanishing function
uz on �\{x0} so that

(Juz)(x) = zuz(x), for x ∈ �\{x0}, uz(x1) = 1

λx0
. (14)

We extend the definition of the function uz to � by setting uz(x0) = 0.
The functions vz and uz satisfying (13) and (14) will be called the solution and the

associated solution of the equation

(J f )(x) = z f (x), x ∈ �\{x0}. (15)

By Corollary 5, every solution of (15) is a linear combination of vz and uz . The
following lemma is straightforward but useful.

Lemma 11 Consider a densely defined symmetric operator A on a Hilbert space
H. Let H0 be a finite dimensional subspace of D(A) ⊂ H, and let PH0 denote the
orthogonal projection ontoH0. Define the operator Ã : D(A) ∩ H⊥

0 → H⊥
0 by

Ã = (I − PH0)A(I − PH0).

The operator Ã is essentialy self-adjoint if and only if A is essentially self-adjoint.

Theorem 12 Assume J is not essentially self-adjoint. Fix a vertex x0 with l(x0) = 0,
so that x0 has a sibling, and a nonreal number z. Then the associated solution uz is
square summable on �.

Proof Let H0 = Cδx0 . The operator J̃ acts on �2(�\{x0}) and is not essentially self-
adjoint by Lemma 11. Moreover, if ũz denotes the truncation of uz to �̃ = �\{x0},
we have

( J̃ ũz)(x) = zũz(x), x ∈ �̃.

By Corollary 3 applied to �̃,we know that ũz cannot vanish. Since J̃ is not essentially
self-adjoint, there exists a function 0 �= ṽ ∈ �2(�̃) such that

( J̃ ṽ)(x) = zṽ(x), x ∈ �̃.
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By Lemma 4, applied to �̃, we get that ũz(x) = cṽ(x) for x ∈ �̃. Hence ũz is square
summable, which implies the conclusion. 
�

Corollary 7 and Theorem 12 imply:

Corollary 13 Assume a Jacobi matrix J on � is not essentially self-adjoint. Fix a
vertex x0 with l(x0) = 0, so that x0 has a sibling. Then for any nonreal number z,
every solution of the equation

zv(x) = λxv(η(x)) + βxv(x) +
∑

y∈η−1(x)

λyv(y), x �= x0

is square summable.

Fix a vertex x0, l(x0) = 0, and remove from � all the edges from the infinite path
{xn}∞n=0, where xn = ηn(x0). Note that we do not remove vertices xn, n ≥ 0.
In this way the tree � splits into an infinite number of finite subtrees of the form
�n := �xn\�xn−1 . In other words, �n consists of xn and all its descendants with the
exception of xn−1 and its descendants.

Lemma 14 Let x ∈ �n for some n ≥ 1. Then vz(xn)uz(x) = uz(xn)vz(x).

Proof By Lemma 1, we know that vz and uz cannot vanish. Both functions satisfy
(Juz)(x) = zuz(x), (Jvz)(x) = zvz(x) for x ∈ �n\{xn}. By Lemma 4, we get
vz(x) = cuz(x) for x ∈ �n . Plugging in x = xn implies c = vz(xn)/uz(xn), and the
conclusion follows. 
�
Proposition 15 For the solution vz and the associated solution uz, we have

∣∣∣∣ vz(xn) uz(xn)
vz(xn+1) uz(xn+1)

∣∣∣∣ = 1

λxn
.

Proof By (14), we get for n ≥ 1,

λxn uz(xn+1) = zuz(xn) − βxn uz(xn) −
∑

y∈η−1(xn)

λyuz(y)

= zuz(xn) − βxn uz(xn) − λxn−1uz(xn−1) −
∑

y∈η−1(xn)\{xn−1}
λyuz(y),

λxnvz(xn+1) = zvz(xn) − βxnvz(xn) −
∑

y∈η−1(xn)

λyvz(y)

= zvz(xn) − βxnvz(xn) − λxn−1vz(xn−1) −
∑

y∈η−1(xn)\{xn−1}
λyvz(y).

Observe that η−1(xn)\{xn−1} ⊂ �n . Hence Lemma 14 implies

vz(xn)uz(y) = uz(xn)vz(y), y ∈ η−1(xn)\{xn−1}.
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Now, multiplying the equations by vz(xn) and uz(xn), respectively, and subtracting
sidewise leads to

λxn

∣∣∣∣ vz(xn) uz(xn)
vz(xn+1) uz(xn+1)

∣∣∣∣ = λxn−1

∣∣∣∣vz(xn−1) uz(xn−1)

vz(xn) uz(xn)

∣∣∣∣ .

The conclusion follows as

λx0

∣∣∣∣vz(x0) uz(x0)vz(x1) uz(x1)

∣∣∣∣ = 1.


�
The following theoremprovides a natural analog of theCarleman criterion for essential
self-adjointness.

Theorem 16 Let J be a Jacobi matrix associated with the coefficients λx and βx . Let
xn denote any infinite path such that l(x0) = 0 and xn = ηn(x0). Assume

∞∑
n=1

1

λxn
= ∞.

Then the operator J is essentially self-adjoint.

Proof Assumefirst that x0 has a sibling. Then the result follows by a standard argument
from Corollary 13 and Proposition 15. Indeed, if J was not essentially self-adjoint,
then the functions vz and uz would be square summable for any nonreal z. Thus the
series

∑
λ−1
xn would be summable, as well.

Assume now that x0 has no siblings. Set x1 = η(x0), and consider the tree �′ =
� ∪ {x ′

0} augmented by one vertex x ′
0, so that η(x ′

0) = x1. Let J ′ denote the Jacobi
matrix on �′ with coefficients λ′

x , β
′
x defined by

λ′
x =

{
λx x ∈ �,

1 x = x ′
0,

β ′
x =

{
βx x ∈ �,

0 x = x ′
0.

We have λ′
xn = λxn . By the first part of the proof, the operator J ′ is essentially self-

adjoint. However J ′ is a one-dimensional extension of the operator J. Hence, in view
of Lemma 11, the operator J is essentially selfadjoint. 
�
Remark The assumption does not depend on the choice of the infinite path, as any
two such paths meet at a certain vertex.
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