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Abstract

The polynomials pn orthogonal on the interval [−1, 1], normalized
by pn(1) = 1, satisfy Turán’s inequality if p2n(x)− pn−1(x)pn+1(x) ≥ 0
for n ≥ 1 and for all x in the interval of orthogonality. We give
a general criterion for orthogonal polynomials to satisfy Turán’s in-
equality. This extends essentially the results of [18]. In particular the
results can be applied to many classes of orthogonal polynomials, by
inspecting their recurrence relation.

Keywords— orthogonal polynomials, Turán determinants, recurrence for-
mula

1 Introduction

Consider a symmetric probability measure µ such that suppµ = [−1, 1]. By the
Gram-Schmidt orthogonalization procedure applied to the system of monomials
xn, n ≥ 0, we obtain a sequence of orthogonal polynomials pn(x), n ≥ 0. Every
polynomial pn is of exact degree n. We may assume that its leading coefficient is
positive. It is well known that the polynomials pn satisfy the three term recurrence
relation of the form

xpn = γnpn+1 + αnpn−1, n ≥ 0, (1)

with convention α0 = p−1 = 0. Due to orthogonality the polynomial pn has n roots
in the open interval (−1, 1). Therefore pn(1) > 0. Let

Pn(x) =
pn(x)

pn(1)
, n ≥ 0.
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The coefficients γn, αn+1 are positive for n ≥ 0. In case the polynomials pn are
orthonormal then the sequences of the coefficients are related by γn = αn+1 and
the recurrence relation simplifies to

xpn = αn+1pn+1 + αnpn−1, n ≥ 0.

We refer to [5, 14] for the basic theory concerning orthogonal polynomials.
We are interested in determining when

∆n(x) := Pn(x)2 − Pn−1(x)Pn+1(x) ≥ 0, n ≥ 1. (2)

The expression ∆n(x) is called the Turán’s determinant. The problem has been
studied for many classes of specific orthogonal polynomials (see [1, 2, 3, 4, 6, 7, 8,
10, 12, 13, 15, 16, 20, 21]. We refer to the introduction in [18] for a short account
of known results.

Turán determinants can be used to determine the orthogonality measure µ in
terms of orthonormal polynomials pn. Paul Nevai [11] observed if αn

n→ 1/2 then
the sequence of measures (perhaps signed)

[p2n(x)− pn−1(x)pn+1(x)] dµ(x)

is weakly convergent to the measure

2

π

√
1− x2 dx, |x| < 1.

Máté and Nevai [9] showed that if additionally sequence αn has bounded variation
then the limit of Turán determinants exists. Moreover the orthogonality measure
is absolutely continuous on the interval (−1, 1) its density is given by

2
√

1− x2
πf(x)

, |x| < 1,

where
f(x) := lim

n
[p2n(x)− pn−1(x)pn+1(x)] > 0, |x| < 1.

It turns out that the way we normalize the polynomials is essential for the
Turán inequality to hold. Indeed, assume pn satisfy (1) and pn(1) = 1, i.e.

αn + γn = 1. (3)

Assume
p2n(x)− pn−1(x)pn+1(x) ≥ 0, |x| ≤ 1, n ≥ 1.
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Define new polynomials by p
(σ)
n (x) = σnpn(x), where σn is a sequence of positive

coefficients. Then the condition

{p(σ)n (x)}2 − p(σ)n−1(x)p
(σ)
n+1(x) ≥ 0, |x| ≤ 1, n ≥ 1

is equivalent to (see Proposition [18])

σ2n − σn−1σn+1 ≥ 0, n ≥ 1.

This means if the Turán determinants are nonnegative, when the polynomials
are normalized at x = 1, then they stay nonnegative for any other normalization

provided that they are nonnegative at x = 1, as σn = p
(σ)
n (1).

By Theorem 1 [18] if the polynomials are normalized at x = 1, i.e. pn(1) = 1,
αn is increasing and αn ≤ 1

2 , the Turán determinants are positive in the interval
(−1, 1). This result can be applied to many classes of orthogonal polynomials,
including for example the ultraspherical polynomials for which positivity has been
obtained in [12, 13]

The result mentioned above can be applied provided that we are given the
coefficients αn explicitly. For many classes of orthogonal polynomials in the interval
[−1, 1] we are given recurrence relations, but the values pn(1) cannot be evaluated
in the explicit form. Therefore we are unable to provide a recurrence relation for
the polynomials Pn(x) = pn(x)/pn(1), in the form for which we can inspect easily
the assumptions of Theorem 1 [18]. This occurs when we study the associated
polynomials. Indeed assume pn satisfy (1) and (3). For a fixed natural number

the associated polynomials p
(k)
n of order k are defined by

xp(k)n =

{
γkp

(k)
1 n = 0,

γn+kp
(k)
n+1 + αn+kp

(k)
n−1 n ≥ 1.

(4)

These polynomials do not satisfy p
(k)
n (1) = 1 as

p
(k)
1 (1) = γ−1

k = (1− αk)−1 > 1.

The obstacle described above has been partially overcome in Corollary 1 of
[18], but it required additional assumptions, in particular γ0 ≥ 1. Unfortunately
many examples including the associated polynomials violate that condition. The
aim of this note is to provide a counterpart to Corollory 1 [18] by allowing γ0 < 1.
This is done in Theorem 1. As the assumptions in this theorem are complicated
Corollary 1 provides a wide class of relatively simple recurrence relations for which
Theorem 1 applies. General examples are provided at the end of the paper.
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2 Results

Theorem 1. Assume the polynomials pn satisfy

xpn = γnpn+1 + αnpn−1, n ≥ 0, (5)

where α0 = p−1 = 0, p0 = 1. Assume

(a) the sequence αn is strictly increasing and αn ≤ 1/2,

(b) the sequence γn is positive and strictly decreasing ,

(c) αn + γn ≤ 1.

Assume also that there holds

αn − αn−1

αnγn−1 − αn−1γn
≤ αn+1γn − αnγn+1

γn − γn+1
, n ≥ 1, (6)

γ0 − γ1 ≤ α1γ
2
0 . (7)

Then for

Pn(x) =
pn(x)

pn(1)

we have
Pn(x)2 − Pn−1(x)Pn+1(x) ≥ 0, −1 ≤ x ≤ 1.

Proof. Let

gn =
pn+1(1)

pn(1)
.

By (5) we get

gn =
1

γn

(
1− αn

gn−1

)
, n ≥ 1. (8)

Lemma 1. Under assumptions of Theorem 1 there holds

1 ≤ gn ≤
αn+1γn − αnγn+1

γn − γn+1
, n ≥ 0. (9)

Proof. (5) gives g0 = 1/γ0 ≥ 1. Assume gn−1 ≥ 1 for n ≥ 1. By (8) and (c) we get

gn ≥
1

γn
(1− αn) ≥ 1.

This shows the left hand side inequality.
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By (7) we get

g0 =
1

γ0
≤ α1γ0
γ0 − γ1

,

which shows the right hand side inequality in (9) for n = 0. Assume (9) holds for
some n ≥ 0. Then, in view of (8) and (6), we get

gn+1 =
1

γn+1

(
1− αn+1

gn

)
≤ 1

γn+1

(
1− αn+1(γn − γn+1)

αn+1γn − αnγn+1

)
=

αn+1 − αn
αn+1γn − αnγn+1

≤ αn+2γn+1 − αn+1γn+2

γn+1 − γn+2
.

Lemma 2. Under the assumptions of Theorem 1 the sequence gn = pn+1(1)/pn(1)
is nonincreasing.

Proof. Let

fk(x) =
1

γk

(
1− αk

x

)
, x ≥ 1.

The functions fk are nondecreasing. Moreover by a straightforward computation
we get

fk+1(x) ≤ fk(x), 1 ≤ x ≤ αk+1γk − αkγk+1

γk − γk+1
. (10)

We have

g0 =
1

γ0
, g1 =

1

γ1
(1− α1γ0).

By (7) we get g0 ≥ g1. Assume gn−1 ≥ gn. Then in view of (8) and Lemma 1 we
obtain

gn+1 = fn+1(gn) ≤ fn(gn) ≤ fn(gn−1) = gn.

The polynomials Pn satisfy

xPn = γ̃nPn+1 + α̃nPn−1, n ≥ 0,

where

α̃n = αn
pn−1(1)

pn(1)
, γ̃n = γn

pn+1(1)

pn(1)
.

Since Pn(1) = 1 we get
α̃n + γ̃n = 1.

Moreover by Lemma 1, Lemma 2 and (a) the sequence α̃n is nondecreasing and
α̃n ≤ 1/2. Thus the conclusion follows from Theorem 1(i) of [18].
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Remark 1. As a side effect of Theorem 1 we get that the polynomials pn ad-
mit nonnegative linearization as the polynomials Pn satisfy the assumptions of
Theorem 1 in [17]. We refer to [19] where this problem is discussed in detail.

The assumption (6) in Theorem 1 can be troublesome for verification in exam-
ples. However there is a wide class of examples for which (6) simplifies substan-
tially.

Corollary 1. Let the polynomials pn satify (5) with

αn =
1

2
− αδn, γn =

1

2
+ γδn, n ≥ 0.

where α ≥ γ > 0 and δn ↘ 0. Then the conclusion of Theorem 1 holds.

Proof. We have

αn+1γn − αnγn+1 =
1

2
(α+ γ)(δn − δn+1), n ≥ 0.

Thus (6) takes the form
2α

α+ γ
≤ α+ γ

2γ
,

which is true for any numbers α, γ > 0.
Next, since

0 = α0 =
1

2
− αδ0

we get αδ0 = 1/2. Thus

α1γ
2
0 =

(
1

2
− 1

2

δ1
δ0

)(
1

2
+ γδ0

)2

≥ δ0 − δ1
2δ0

2γδ0 = γ0 − γ1.

Therefore all the assumptions of Theorem 1 are satisfied.

Example 1. Consider the symmetric Pollaczek polynomials P λn (x; a). They are
orthogonal in the interval [−1, 1] and satisfy the recurrence relation

xP λn (x; a) =
n+ 1

2(n+ λ+ a)
P λn+1(x; a) +

n+ 2λ− 1

2(n+ λ+ a)
P λn−1(x; a),

where the parameters satisfy a > 0, λ > 0. Set

pn(x) =
n!

(2λ)n
P λn (x; a),

where (µ)n = µ(µ+1) . . . (µ+n−1). Then the polynomials pn satisfy the recurrence
relation

xpn =
n+ 2λ

2(n+ λ+ a)
pn+1 +

n

2(n+ λ+ a)
pn−1.

Observe that the assumptions of Corollary 1(i) of [18] are satisfied for a ≥ λ.
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Remark 2. There is a misprint in the formulation of Corollary 1 in [18]. The
assumptions there required that

lim
n
αn =

1

2
ã, lim

n
γn =

1

2
ã−1

with 0 < ã < 1. But the conclusion holds also for ã = 1 with the same proof as in
[18]. For symmetric Pollaczek polynomials we actually have ã = 1.

However for λ > a the assumptions of Corollary 1(ii) [18] are not satisfied as
was wrongly stated in [18], because γ0 < 1. Instead we can apply Corollary 1, on
the previous page, with

α = λ+ a, γ = λ− a, δn =
1

2(n+ λ+ a)
.

Remark 3. Corollary 1 requires αδ0 = 1
2 , i.e. the quantity δ0 is determined by

α, which limits the range of examples. We will get rid of that assumption in the
next corollary, allowing some flexibility for the quantity δ0.

Corollary 2. Let the polynomials pn satify (5) with

α0 = 0, γ0 =
1

2
+ γδ0,

αn =
1

2
− αδn, γn =

1

2
+ γδn, n ≥ 1,

where α ≥ γ > 0 and δn ↘ 0. Assume also that

3γ − α
2γ(α+ γ)

≤ δ0 ≤
1

2α
. (11)

Then the conclusion of Corollary 1 holds.

Remark 4. The condition δ0 ≤ 1/(2α) is not artificial. Instead of setting α0 = 0
we could define

α0 =
1

2
− αδ0.

The aformentioned assumption amounts to the condition α0 ≥ 0.
Observe also that the possible range for the quantity δ0 described in (11) is

nonempty as we always have

3γ − α
2γ(α+ γ)

≤ 1

2α
.
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Proof. We are forced to modify the proof of the preceding corollary at places
where δ0 shows up, as α0 = 0 is no longer equal 1

2 − αδ0. Thus we have to make
calculations concerning (6), for n = 1, and (7), by hand. Since αδ0 ≤ 1

2 we get

α1γ
2
0 ≥

(
1

2
− 1

2

δ1
δ0

)(
1

2
+ γδ0

)2

≥ δ0 − δ1
2δ0

2γδ0 = γ0 − γ1.

This gives (7). Next we verify (6) for n = 1, as the value δ0 is involved there on
the left hand side. The inequality (6) in this case reduces to

1

γ0
=

2

1 + 2γδ0
≤ α+ γ

2γ
.

This inequality is equivalent to the left hand side of (11).

Remark 5. Corollary 1 requires that the sequence

γn − 1
2

1
2 − αn

, n ≥ 1 (12)

is constant. It is possible to extend Corollary 1 to the case when the sequence in
(12) is nondecreasing. Indeed

αn+1γn − αnγn+1 =
[(
γn+1 − 1

2

) (
1
2 − αn

)
−
(
γn − 1

2

) (
1
2 − αn+1

)]
+ 1

2(αn+1 − αn + γn − γn+1) ≥ 1
2(αn+1 − αn + γn − γn+1). (13)

Denote
un = αn+1 − αn, vn = γn − γn+1. (14)

By (13) the assumption (6) will be satisfied if

(un−1 + vn−1)(un + vn) ≥ 4un−1vn. (15)

Let
vk = λkuk, 0 < λk ≤ 1. (16)

Then (15) takes the form

(1 + λn−1)(1 + λn) ≥ 4λn

i.e.

λn ≤
1 + λn−1

3− λn−1
. (17)

Let

f(x) =
1 + x

3− x
, 0 ≤ x ≤ 1.
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The condition (17) amounts to

λn ≤ f(λn−1). (18)

Thus (18) implies (6), provided that the sequence in (12) is nondecreasing. As
f(x) ≥ 1

3 , the inequality (18), and consequently (6), is satisfied whenever λn ≤ 1/3.
Observe that for y ≥ 1 we have

f

(
y − 1

y + 1

)
=

y

y + 2
. (19)

Remark 5 gives rise to new examples.

Example 2. For εn ↘ 0, δn ↘ δ ≥ 0, let

αn =
1

2
− 3εn(1 + δn), γn =

1

2
+ εn, n ≥ 0.

Then
γn − 1

2
1
2 − αn

=
1

3(1 + δn)
↗ 1

3(1 + δ)

and (see (14) and (16))

λn =
εn − εn+1

3(εn − εn+1) + 3(εnδn − εn+1δn+1)
≤ 1

3
.

Next

1 + δ1 ≤ 1 + δ0 =
1

6ε0

(the last equality follows from α0 = 0). Then

α1γ
2
0 =

[
1

2
− 3ε1(1 + δ1)

] (
1

2
+ ε0

)2

≥ 1

2

(
1− ε1

ε0

)(
1

2
+ ε0

)2

≥ 1

2

(
1− ε1

ε0

)
2ε0 = γ0 − γ1.

This gives (7).

Example 3. For a > 0 let

αn =
1

2
− a

2(n+ a)
, γn =

1

2
+

a

2(n+ a+ 1)
.
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Then the sequence in (12) is increasing. Furthermore (cf. (14) and (16))

un =
a

2(n+ a)(n+ a+ 1)
, vn =

a

2(n+ a+ 1)(n+ a+ 2)
, λn =

n+ a

n+ a+ 2
.

By (19) we have f(λn−1) = λn. Thus (6) is satisfied. Next

γ0 − γ1 = v0 =
a

2(a+ 1)(a+ 2)
≤ a

2(a+ 1)2
,

α1γ
2
0 =

(2a+ 1)2

8(a+ 1)3
.

As
(2a+ 1)2 ≥ 4(a+ 1)a,

we get

α1γ
2
0 ≥

a

2(a+ 1)2
≥ γ0 − γ1,

so the condition (7) is also satisfied.

Remark 6. Let

λn =
yn − 1

yn + 1
.

Then

yn =
1 + λn
1− λn

. (20)

Moreover condition (17) is equivalent to

yn ≤ yn−1 + 1. (21)

Using Remark 6 we can still generalize Example 3.

Example 4. For a > 0, b ≥ 0 let

αn =
1

2
− a

2(n+ a)
, γn =

1

2
+

a

2(n+ a+ b+ 1)
.

The sequence in (12) is increasing. Next

un =
a

2(n+ a)(n+ a+ 1)
,

vn =
a

2(n+ a+ b+ 1)(n+ a+ b+ 2)
,

λn =
(n+ a)(n+ a+ 1)

(n+ a+ b+ 1)(n+ a+ b+ 2)
.
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By (20) we get

yn =
n

b+ 1
+

2a+ b+ 2

2(b+ 1)
+

b2 + 2b

2(b+ 1)(2n+ 2a+ b+ 2)
.

Since b ≥ 0, the inequality (21) holds. Next

γ0 − γ1 = v0 =
a

2(a+ b+ 1)(a+ b+ 2)
≤ a

2(a+ b+ 1)2
,

α1γ
2
0 =

(2a+ b+ 1)2

8(a+ 1)(a+ b+ 1)2
≥ (2a+ 1)2

8(a+ 1)(a+ b+ 1)2
≥ a

2(a+ b+ 1)2
.

Thus (7) is fulfilled.

Acknowledgment I am grateful to the referees. Their remarks improved the
exposition substantially.
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