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Definicja 1.1. Algebrg nazywamy przestrzen liniowg nad C z mnozeniem.

Mnozenie jest rozdzielne wzgledem dodawania (obustronnie) oraz

a(zy) = (ax)y = z(ay), a€C

Definicja 1.2. Algebrg unormowang nazywamy algebre z normg spetniajgcg
warunek podmultiplikatywnosci

Jesli algebra jest zupelna, to nazywamy jo algebrg Banacha.

[yl < [l lyll

*Wyklad opracowany na podstawie notatek Wiktora Malinowskiego
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Przyktady

(a) C[0,1]
[fllee = max |f(z)|, (fg)(x) = f(x)g(x)

0<z<1

tzn. mnozenie jest punktowe. Przedzial [0, 1] mozna zastapi¢ zwarta
przestrzenia topologiczna.

(b)
Co®) = {f € CR : lm f() =0}, [|fllo = max|f(x)

(¢) B(H) przestrzen operatoréw ograniczonych na przestrzeni Hilberta z

norma operatorowa: [|[AB| < ||A]l||B]|

Definicja 1.3. Algebre nazywamy przemiennq, jesli mnozenie jest przemien-
ne. Element e w algebrze A nazywamy jednosciq, jesli

eca=ae=a, a€A

Twierdzenie 1.4. Kazdg algebre unormowang (algebre Banacha) mozna
rozszerzyc¢ do algebry unormowanej (algebry Banacha) z jednoscig.

Dowdd. Niech A bedzie algebra Banacha bez jednosci. Okreslmy mnozenie
w przestrzeni liniowej A = A ® C wzorem

(a®N)(bdp) = (ab+ \b+ pa) ® Au

Okredlamy normg [la @ A|| = [[a|| +|A[. Wtedy element 0@ 1 jest jednoscia w
A, bo
Oel)(ecdA)=adA=(adN)(0@1)

Norma jest podmultiplikatywna, bo

(@@ )@ p)l| =llab+ b+ pall + Ayl
<l Ioll + [ATION 4 [l llall + [A] |l
=(llall + ADIBI + ul) = lla @ A0 © 4l

Jesli A jest zupelna, to réwniez A jest zupela. O

Przyktady
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(a) co - przestrzen ciagéw o wyrazach zespolonych zbieznych do 0, z norma
|z|| = sup,, |x,|. Wtedy

¢o = c={x : limz, istnieje}
n

(b) Co(R). Wtedy

—~—

ColR) = {f € C(R) : lim_f(x) = lim f(x)}

T—00

W obu przyktadach normy w A sa réwnowazne normom || ||s.
Jesli A # {0} jest algebra Banacha z jednoscia e, to e # 0 oraz

lell = fle-ell < llel[ flel]

zatem || > 1.
Odtad nie bedziemy rozwazaé algebr zerowych A = {0}.

Twierdzenie 1.5. Dla algebry Banacha z jednosciq istnieje norma na A
rownowazna normie wyjsciowej, dla ktorej norma jednosci wynosi 1.

Dowdd. Dla x € A rozwazamy odwzorowanie L, : A — A okreslone wzorem
L,y = xy. Wtedy L, jest operatorem liniowym na A oraz

ILeyll = llzyll < [zl [yl
Zatem L, jest operatorem ograniczonym. Mamy

]| = [| Lael] < [[La]l [[e]]
Zatem ||L|| = |le]|~t|z||. Tzn.

lell =l < Nl Zall < [l (1.1)

Okreslmy ||z||" := ||L.||. Wzbr okresla norme. Sprawdzimy podaddytywnos$é
i podmultiplikatywnosc.

7+ yll" = Loyl = 1La + Lyll < [Lall + 1Ly [l = [l + Iyl
lzyll" = [[Layll = 1 LaLyll < ILall 1Lyl = =l Tyl

Ponadto |le||' = || Le|]| = ||I|| = 1. Na podstawie (|1.1)) normy || || oraz || || sa
réwnowazne. L



Algebry Banacha 4

Przyktady

(a)

A={feC(D) : f— holomorficzna w int D},
If]l = max{[f(z)] : [2] =1}

A nazywamy algebrg dyskowa. Funkcja stale rowna 1 jest jednoscig.

A = (Y(Z). Dla a = {a,}_. mamy [la]| = Y |a,|. Okreslamy

n=—oo

mnozenie (splot) wzorem

o0

c=axb, c¢,= Z b1

k=—00

Wspélezynniki ¢, sa dobrze okreslone bo ciag b, jest ograniczony. Mno-
zenie jest przemienne. Reguta mnozenia powstata poprzez analogie z
mnozeniem szeregéw Laurenta w 0.

(5 0} (£ 05) - (£ a)em § wi

n=-—00 n=—00 n=—o00 k=—00

Sprawdzamy podmultiplikatywnosé normy.

oo oo oo oo
lell = > 1> awbai| < Do D faw [basl
n=—00 |k=—o0 n=—00 k=—o00
oo oo
= > lal D2 [ba—kl = lla]l[|5]
k=—00 n=-—0oo

czyli ||a % b]| < ||al| ||b]|. Ciag e = dp(n) jest jednoscia.

Definicja 1.6. W algebrze A z jednoscia e element x nazywamy odwracalnym
jesli istnieje element y € A spelniajocy xy = yxr = e. Element y nazywamy

odwrotnym do x 1 oznaczamy symbolem x=".

1

Element odwrotny do x, o ile istnieje, jest jedyny.
Symbolem G(A) oznaczamy grupe elementéw odwracalnych w algebrze
Banacha A.

Twierdzenie 1.7. Dla algebry Banacha z jednoscia G(A) jest otwartym pod-
zbiorem w A. Ponadto odwzorowanie x — x~1 z G(A) w siebie jest ciggle.
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Dowéd. Dla y # 0 okredlamy y° = e. Jedli ||y|| < 1, to element e — y jest
odwracalny, bo

[e o]

(e—y)> y"=> y'(le—y) =Dy —> y=e
n=0 n=0 n=0 n=1

Zatem jedli |le — z]] < 1 to element x jest odwracalny, bo z = e — y dla
y=e—x.

lz=H =20y < Do il = =
D A T I e

Zatézmy, 7e 19 € G(A). Dla x € A mamy z = x¢(z; ‘). Wystarczy pokazad,
ze x5 'z jest odwracalny jesli 2 jest dostatecznie blisko xo. Mamy

le = zg ] = 2o (zo — 2)|| < 2 || [l — 2ol

Jesli ||z — o] < ||zg ]| 7Y, to element x5 'z jest odwracalny, co koficzy dowdd
otwartoéci. Ponadto 271 = (x5'2) tay!. Przy zalozeniu ||z — x| < [|ag ]|~
otrzymujemy

o™ 1 = [l (g ) " g | < g (g ")~

S Tl I
T= e =y el ~ 1=l e — o

[El

Sprawdzamy ciagto$é. Niech z, o € G(A). Wtedy

=gl =l (o — @)z < T gl — ol

[l

1= [l [} Iz — ol

2

< [ = ol

]

Definicja 1.8. Dla elementu x € A okreslamy spektrum
o(z) ={A € C : Xe — z jest nieodwracalny }
Zbiorem rezolwenty dla x oznaczamy o(x) = C\ o(z), czyli

o(x) ={A € C : Xe — z jest odwracalny}



Algebry Banacha 6

Przyktady

(a) A = M,(C)- macierze kwadratowe wymiaru n X n z norma operatorowa
na C", z normg euklidesowa. Wtedy

0(A) ={ e C : det(A\ — A) =0}
czyli o(A) jest zbiorem wartosci whasnych.
(b) A=C[0,1]. Dla f € C0,1] mamy
o(f) ={reC: flx) #X 0<z <1} =C\ f([0,1])
(c) Algebra dyskowa A(D). Dla f € A(D) zachodzi o(f) = f(D).
Twierdzenie 1.9.

(a) Dla elementu x algebry Banacha z jednoscia istnieje granica lim 2™ ||*/n
oraz

inf fla”|/* = lim [|o"[[/" = sup{|A| : A € o(x)}
(b) o(x) jest zwartym i niepustym podzbiorem w C.
Dowdd. Dow6éd mozna przeprowadzié podobnie jak dla przestrzeni B(X),

gdzie X jest przestrzeniag Banacha. O]

Zauwazmy, ze o(x) C {\ : |\ < ||z]|}. Istotnie dla [A] > ||z|| mamy |A\"'z| <
1, wiec element
e —x = Ne—\"1n)

jest odwracalny.
Twierdzenie 1.10. Dla dowolnych elementow x,y algebry Banacha z jed-
nosciqg mamy

o(zy) U{0} = o(yx) U{0}

Uwaga. Wzor o(zy) = o(yz) nie musi by¢ spetniony. Na przyktad roz-

wazmy operator S : (2(Ny) — ¢?(Ny) okreslony wzorem

S(zo, x1,...) = (x1,22,...)
Wtedy

S*(l’o, L1,y ) = (O, Lo, L1,y . - )

Mamy SS* = I ale S*S jest rzutem na &y . Zatem o(SS*) = {1}, 0(S*S) =
{0,1}.
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Dowéd. Rozwazmy liczbe niezerowag A\ ¢ o(xy). Chcemy pokazaé, ze \ ¢
o(yz). Bez straty ogdlnosci mozemy przyjaé, ze A = 1. Chcemy znalezé wzor
na (e — yx)~! za pomoca (e — xy)~'. Nieformalnie mamy

(e—yo) ' = S (ya) = ety [i(acy)"] r=etyle—wy) e

n=0 n=0

Sprawdzimy, ze faktycznie element e+ y(e — xy) 'z jest odwrotny do e — yu.

(e —yz)le+yle—ay) 'zl =e—yz+yle — ay) 'z — yay(e — ay) 'z

= e—yr+y [(e —zy) Tt —ayle — a:y)_l} r = e—yr+r(e—xy)(e—zy) 'x =c

O
Whniosek 1.11. Nie istniejg elementy x,y € A spelniajgce xy — yr = e.
Dowod. Zatézmy, ze xy — yxr = e. Wtedy
o(zy) =o(yr+e) =o(yr)+1

Stad
[o(yx) + 1] U{0} = o(zy) U{0} = o(yz) U{0}

Oznaczmy C' = o(yz). Zbiér C jest niepusty, ograniczony i spetnia (C' + 1)U
{0} = CU{0}. Otrzymujemy sprzecznos¢. Rzeczywiscie jesli C' zawiera liczbe
niecatkowitg ¢ lub nieujemng liczbe catkowity, to ¢ +n € C dla wszystkich
n. Zatem C' jest skonczonym podzbiorem ujemnych liczb catkowitych. Niech
¢ oznacza najmniejszg z nich. Wtedy najmniejsza liczbg w C' 4 1 jest liczba
¢+ 1, co prowadzi do sprzecznosci. O]

Przyktad Dla przestrzeni funkcji rézniczkowalnych w przedziale [0, 1]
mamy

d d
%(tf) —tgf =f

Zatem operatory (M f)(t) = tf(t) oraz D f = df /dt spelniaja DM —MD = I.

Twierdzenie 1.12 (Gelfand-Mazur). Jesli algebra Banacha A jest pierscie-
niem z dzieleniem, tzn. kazdy niezerowy element jest odwracalny, to A jest
izomorficzna z C.
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Dowdd. Zalézmy, ze A jest cialem. Dla a € A mamy o(a) # (). Niech \ €
o(a). Tzn. element Ae — a jest nieodwracalny. Stad Ae —a = 0, czyli a = Xe.
Zatem A = Ce. m

Uwaga Rozwazmy algebr¢ A, ktéra jest przestrzenia nad ciatem liczb
rzeczywistych. Rozwazamy kompleksyfikacje A = A @& A zadana poprzez
mnozenie

(@ + i) (2" +y/i) = (22’ — yy') ® (2 + 2'y)i
Wtedy A jest algebra zespolong, poprzez okreslenie
0@ i) (2 DY) = (—y) & i

Dla kazdego element = € A jego spektrum w A jest niepuste, tzn. element
x — (a + bi)e jest nieodwracalny dla pewnych a,b € R. Wtedy element

(x —a)* +b%e = [z — (a +bi)e] [z + (a + bi)e]
jest nieodwracalny. Zatem
(z—a)*+b%e=0
Jesli b= 0, to x = a. W przeciwnym wypadku

x — ae?

b +e=0

Réwnanie 22 +e = 0 ma dwa rozwiazania. Rzeczywidcie, jesli 22 +e = y?+e =
0, to
(—y)x+y)=0
W ostattnim wzorze wykorzystalismy przemiennosé algebry. Uzyskujemy x =
y lub x = —y. Oznaczmy symbolem f jedno z tych rozwiazan. Wtedy
T — ae
b

stad x = aetbf. Zatem A = C, albo A = R, o ile b = 0 dla kazdego elementu
x € A

=4f

Definicja 1.13. Podprzestrzen I w algebrze A nazywamy prawostronnym
(odpowiednio lewostronnym) ideatem, jesli ab € I (odpowiednio ba € I) dla
wszystkich a € A oraz b € 1. Podprzestrzen nazywamy ideatem dwustronnym,
jesli jest ideatem zaréwno prawo jak i lewostronnym.
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Przyktady
(a) Dla algebry dyskowej podprzestrzen
I={f€AD): f(0) =0}
jest ideatem dwustronnym.

(b) W algebrze B(H) operatory zwarte, operatory Hilberta-Schmidta oraz
operatory $ladowe sg idealami dwustronnymi.

(c) Dla algebry A = (!(Z) podprzestrzen

[e.e]
]:{(an) : Z an:()}
n=—o0
jest ideatem dwustronnym. Rzeczywiscie, teza wynika ze wzoru

S e (£ ) (S 1)

n=—oo n=—0o0 n=—0oo

Twierdzenie 1.14. Niech A bedzie algebrg Banacha (niekoniecznie z jedno-
$cig) oraz I domknietym ideatem dwustronnym w A. Wtedy algebra ilorazowa
A/I jest algebrg Banacha z normg

la]ll = inf fla + ull

Jesli A posiada jednosé e oraz I C A, to [e] jest jednosciq w AJI oraz ||[e]]| =
1 o ile|le]| = 1.

Dowdd. 7 kursu Analizy Funkcjonalnej 1 wiemy, ze A/I jest przestrzenia
Banacha z normg okre$long w tresci twierdzenia. Z kursy z algebry wiadomo,
ze A jest algebra z dzialaniami

[a] +[b] = [a+ 0], [a] - [b] = [a- b], Ala] = [Ad]
Pozostaje sprawdzi¢ podmultiplikatywnosé normy. Mamy
I[al[6]]] = ||[ab]]| = 113 lab + ul| < iné llab 4+ aw + bv + vw||
= nf fl(a +v)(b+w)l| < inf fla+ o[ {|b+w]| = [[a]|l | [b]]

Z kursu algebry wiadomo, ze jesli e jest jednoscia w A, I C A, to [e] jest
jednoscia w A/I oraz [e] # 0. Mamy ||[e]|] = inf,es |le + v]| < [le|| = 1. Ale
I[e]ll > 1, zatem ||[e]|| = 1. O
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2 Teoria Gelfanda

Definicja 2.1. Ideal I (lewo, prawo-, dwustronny) nazywamy maksymalnym,
jesli I jest wlasciwym podzbiorem A oraz nie istnieje ideal J (lewo, prawo-,
dwustronny) taki, ze I C J C A.

Twierdzenie 2.2. Kazdy ideal maksymalny w algebrze Banacha z jednoscig
jest domkniety.

Dowdd. Zalézmy, ze I jest ideatem maksymalnym. Wtedy TNG(A) = 0, czyli
I c A\ G(A). Poniewaz drugi zbiér jest domkniety, to I € T C A\ G(A).
Zbiér T jest ideatem, wiec z maksymalnoéci otrzymujemy I = 1. O

Definicja 2.3. Funkcje ¢ : A — C nazywamy homomorfizmem algebry A w
algebre C jesli ¢ jest funkcjonatem liniowym oraz p(ab) = ¢(a)p(b).

Uwaga. Dla homomorfizmu ¢ : A — Czbiérkerp ={a € A : p(a) =0}
jest ideatem dwustronnym. Rzeczywiscie, jesli ¢(a) = 0, to

p(ab) = @(a)p(b) = 0, p(ba) = p(b)p(a) =0

Twierdzenie 2.4. Kazdy homomorfizm algebry Banacha w C jest ciggly.
Ponadto norma tego odwzorowania liniowego nie przekracza wartosci 1.

Dowdd. Zatézmy, ze ¢ : A — C jest niezerowym homomorfizmem. Istnieje
element a taki, ze p(a) # 0. Jesli A ma jednosé e, to p(a) = ¢(e)p(a). Zatem
o(e) = 1. Jedli b jest elementem odwracalnym, to

1=p(e) = @(b'b) = e(b~")p(b)

Stad ¢(b) # 0. Dla dowolnego elementu a € A mamy pla — p(a)e] = p(a) —
o(a) = 0. Zatem element a — p(a)e nie jest odwracalny. Czyli

pla) e o(a) C{A e C : Al <lall}

Stad otrzymujemy [p(a)| < |[a]|, co pociaga ciagtos¢ ¢ oraz ||| < 1.
Jesli A nie ma jednosci, to rozwazamy A = A©C oraz p(a®A) = ¢(a)+A.
Wtedy ¢ jest homomorfizmem dla A. Rzeczywiscie
Plla® ) (6@ p)]

e(ab 4+ \b+ pa) + A\
p(a)p(d) + Ap(b) + pp(a) + A
= [p(a) + Al [p(b) + p] = Pla © N)@(b D p)
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Z pierwszej czeéci dowodu wynika, ze @ jest ciagly zatem ¢ = @ |40} tez
jest ciagly.

Jesli A ma jedno$¢, |le|| = 1 oraz ¢ # 0 to, p(e) = 1 = |le||. Zatem
el = 1. O

Definicja 2.5. Niezerowy homomorfizm algebry Banacha w C nazywamy
charakterem.

Twierdzenie 2.6 (Gelfand-Mazur). Istnieje wzajemnie jednoznaczna odpo-
wiedniosé pomiedzy charakterami przemiennej algebry Banacha z jednoscia a
tdeatami maksymalnymi tej algebry, poprzez przyporzgdkownaie charakterow:
jego jadra.

Dowdéd. Rozwazmy charakter ¢. Niech J = ker p. Wtedy J jest ideatem.
Mamy
a=[a—pla)e] +¢a)e C J & Ce

Zatem A = J @ Ce. Stad J jest ideatem maksymalnym, bo J jest podprze-
strzenig kowymiaru 1.

Odwrotnie, niech J bedzie idealem maksymalnym. Wtedy A/J jest al-
gebra Banacha z jednoscia. Z maksymalnosci J wynika, ze A/J jest ciatem.
Rzeczywiscie, zalézmy niewprost, ze 0 # [a] € A/J oraz [a] jest nieodwracal-
ny. Rozwazmy J = J 4+ aA. Wtedy J jest ideatem oraz J - J,bo a e J, ale
a ¢ J. Z maksymalnosci J otrzymujemy J=A=J+aA. W szczegdlnosci
e = j + ab, dla pewnych elementéw j € J oraz b € A. Zatem [e] = [a] [b]. To
oznacza, ze element [a] jest odwracalny w A/J, co prowadzi do sprzecznosci.

Z poprzedniego twierdzenia Gelfanda-Mazura wynika, ze A/J = Cle].
Rozwazmy odwzorowanie

A-L 4175
gdzie j jest odwzorowaniem ilorazowym j(a) = [a] oraz )(\[e]) = A. Zlozenie
jow: A— C jest charakterem oraz ker(j o) = J, (jop)9e) = 1.

Zatézmy, ze istnieja dwa charaktery o i @9 takie, ze ker ¢p; = ker p,.
Element a — ¢;(a)e lezy w ker ¢ = ker o. Zatem

0 = pola — pi(a)e] = p2(a) — ¢1(a)

Czyli 1 = ps. O]
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Twierdzenie 2.7. Kazda przemienna algebra Banacha z jednoscig posiada
charakter.

Dowaod. Jesli A jest ciatem, to A = Ce. Wtedy Ae — A jest charakterem.
Zatozmy, ze A nie jest cialem. Dla niezerowego elementu nieodwracalne-
go a € A zbior aA jest idealem wlasciwym, bo e ¢ aA. Rozwazmy rodzine
wszystkich wtasciwych ideatow zawierajacych aA. Rodzina jest niepusta i
uporzadkowana przez inkluzje. Rozwazmy laiicuch w tej rodzinie. Zaden z
idealéow tancucha nie zawiera e, zatem suma mnogosciowa tancucha (ktéra
jest ideatem) rowniez nie zawiera e. To oznacza, ze kazdy tancuch jest ograni-
czony (przez sume mnogosciowa ideatéw tancucha). Z lematu Kuratowskiego-
Zorna wynika, ze rodzina zawiera element maksymalny. O

Whniosek 2.8. W przemiennej algebrze Banacha z jednoScig element a jest
odwracalny wtedy i tylko wtedy, gdy p(a) # 0 dla kaZdego charakteru ¢ alge-
bry.

Dowdd. (=)

Z dowodu poprzedniego twierdzenia wynika, ze dla elementu nieodwra-
calnego a ideal aA jest zawarty w pewnym ideale maksymalnym /. Niech ¢
oznacza charakter odpowiadajacy idealowi I, tzn. ker p = I. Wtedy ¢(a) = 0.
(=)

Jesli a jest odwracalny, to dla dowolnego charakteru ¢ mamy

1=(e) = plaa™") = p(a)p(a™")
Zatem p(a) # 0. =

Uwaga. Algebra nieprzemienna moze nie mie¢ charakteréw. Np. niech

A = M, (C) tworzy algebre z naturalnymi dzialaniami i norma operatorowa

|Al| = [max ||Az||2. Wtedy ||I|| = 1. Nich e;; oznacza macierz z wyrazem
z|o=

rownym 1 na przecieciu i-tego wiersza i j-tej kolumnie, i zerowymi wyrazami
w pozostatych miejscach. Wtedy

ejeij =0, eyeji =€y, 1F#]
Dla charakteru ¢ otrzymujemy

0= p(esje) = pley)” = pley) =0, i
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Zatem
plein) = pleji)plei) =0, i#j=0
Otrzymujemy

Ll=p()=pler1+ex+...+em) =plerr) + @len) + ...+ vlenm) =0

co prowadzi do sprzecznosci.
Przyktad

Rozwazmy A = (*(Z) ze splotem. Chcemy wyznaczy¢ wszystkie charak-
tery dla A. Dla 6, (k) = 0, mamy 0, * 0, = Opm, 1, M € Z. Rzeczywiscie

(30,00 = 32 0,3l — ) =

k=—o0

{0 n;«él—m:{o l#£n+m

1 n=0l—-m 1 I=n+m

W szczego6lnosei 67" = 6,, dla n € N. Element ¢y jest jednoscia, bo

e}

(axdo)(l) = D alk)do(l— k) =q

k=—00

czyli a * 09 = a. Wzér wynika tez z o, *x o9 = d,,. Poniewaz &1 *x d_; = dg, to
((51)_1 = (571. St@d (51)71 = 571 dlan e Z \ {O}
Rozwazmy charakter o na ¢*(Z). Wtedy

@(0n) = ©((61)™") = [p(01)]", n#0

Oznaczmy A = ¢(01). Wtedy ¢(0,) = A" dla n # 0. Wiemy, ze ||¢| = 1.
Zatem

(X' < llelll|onlls =1, n#0
W szczegblnosci dla n = +1 otrzymujemy |[A| < 1 oraz |A|7! < 1, czyli [\ =
1. To oznacza, ze A = €'t dla pewnej liczby 0 < t < 27. Inne wyjasnienie: dla

|A| # 1 element 0; — Ady. Rzeczywiscie dla A = 0 mamy 07 * 6_; = d. Dalej,
dla A # 0 mamy

51 — >\(50 = —)\((50 — /\_1(51) = (51 * ((50 — /\(5_1)

Zatem dla |A| > 1 z pierwszej réwnosci wynika odwracalnosé. Z kolei druga
réwnosé pociaga odwracalnosé dla |A| < 1. Reasumujac p(d,) = €™ dla
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n € Z.Dlaa € (*(Z) mamy a = Y _ a,0,, przy czy szereg jest zbiezny w

przestrzeni ¢'(Z). Poniewaz kazdy charakter jest ciagly, to

[e.9]

pla) = Y anp(d Z ane’

n=-—oo n=—oo
Mozna sprawdzi¢, ze dla kazdej wartosci 0 <t < 27
o0
Z a eint
n
n=—00

jest charakterem. Rzeczywiscie ¢, jest ciaglym funkcjonatem liniowym, bo
|ee(a)] < llafy. Mamy

n=—oo \k=—o0

axb= Z (Z akbnk)(Sn

Zatem

wi(a*b) = Z ( Z akbn_k) et = Z ( Z akeiktbn_kei("_k)t)
n=—oco \k=—o0 n=—00 \k=-o00

Poniewaz podwdjny szereg jest bezwzglednie zbiezny, to mozna zmieni¢ ko-

lejno$¢ sumowania. Otrzymamy

(@ D) Z ae' ( Z by e’ > = ¢i(a)pe(b)

k=—0o0 n=-—00

Z twierdzenia Stone’a-Weierstrassa przestrzen kombinacji liniowych funk-
cji {e"} ez tworzy gesta podalgebre A w Cpe,[0, 2] w normie jednostajne;.
W szczegdlnosel ta przestrzen jest gesta w Cper[0, 27 w normie L?(0, 27), bo
I fll2 < |If]l2 dla f € Cphe[0, 27]. Poniewaz Cpe,[0, 27] jest gesta w L*(0, 2m),
to przez przechodnio$¢ przestrzen kombinacji liniowych funkcji {€™},cz jest
gesta w L2(0,27). Uklad {e™™},cz jest ortonormalny w L?(0,27), bo

27 27
. . 1 . . 1 ,
<€znt’ ezmt> _ 27 /eznte—zmt dt = 27‘/61(71—771)15 dt
T 0 T 0
1 n=m 1 n=m
— 21 =
o7 gln—m)t n#m 0 n#m
0

Zatem uktad ten jest bazg ortonormalna w L?(0, 27).
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Twierdzenie 2.9 (Wiener). Niech [ bedzie funkcjq ciggle o okresie 2w,

dla ktorej szereg Fouriera, czyli Z f (n)e™ jest bezwzglednie zbieiny. Jesli

n=—oo

ft) # 0 dla wszystkich wartosci t, to szereg Fouriera funkcji 1/f jest tez
bezwglednie zbiezny.

~

Dowdd. Dla funkcji f wspotezynniki f(n) sa okreslone wzorem

1

. 2T . .
f(n) = %/0 f@)e ™ dt = (f, ™) 120,2n)

o0
7 zalozenia liczby a, = f(n) spelniaja Z la,| < co. Tzn. a = {an}tnez

lezy w (1(Z). Zatem szereg

0 .

Z anemt
jest jednostajnie zbiezny i jego suma jest funkcja ciagta o okresie 27. Otrzy-
mujemy

f(t) — Z aneint

przy czym réwno$é jest punktowa (nie tylko w L?(0,27)), bo szereg jest
jednostajnie zbiezny a funkcja f jest ciagla o okresie 2. Zalozenie f(t) # 0,
dla 0 < t < 27, oznacza, ze ¢(a) # 0 dla kazdego charakteru algebry ¢!(Z).

Zatem element a jest odwracalny w ((Z). Czyli istnieje ciag b € ¢(Z) taki,
ze ax b= 9y. Wtedy

1= ¢y(ab) = gyla)p(b) = ( i anemt> ( i bne““> = f(t)g(t)

n=—oo n=—oo

gdzie g(t) = Z b,e™. 7 jednostajnej zbieznosci szeregu wnioskujemy, ze

n=—oo

g(n) =by,. O

Twierdzenie Banacha-Alaoglu moéwi, ze kula jednostkowa przestrzeni A*
(sprzezonej do A) jest zwarta w x-stabej topologii. Jesli przestrzen A jest
o$rodkowa, to x-staba topologia na kuli jednostkowej jest metryzowalna. Wte-
dy zwartos¢ oznacza, ze kazdy ciag zawiera podciag x-stabo zbiezny.
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Definicja 2.10. Spektrum algebry Banacha A nazywamy zbior wszystkich
charakterow algebry A i oznaczamy symbolem Sp(A).

Twierdzenie 2.11. Dia algebry Banacha z jednoscig Sp(A) jest domknie-
tym podzbiorem kuli jednostkowej w *-stabej topologii (sfery jednostkowej jesli
lle|| = 1). W szczegdlnosci spektrum Sp(A) jest zwarte w *-stabej topologii.

Dowdd. Charaktery sa funkcjonatami liniowymi o normie nie przekraczaja-
cej 1. Stad Sp(A) C Aj. Sprawdzamy domknietosé. Uzyjemy ciagéw uogdl-
nionych. Niech ¢, € Sp(A) bedzie ciagiem uogélnionym zbieznym x-stabo
do . To oznacza z definicji, ze dla dowolnego elementu z € A mamy
©Ya(T) — o(x). Wiemy, ze wtedy ¢ € Af. Trzeba sprawdzié, ze ¢ jest
charakterem. Dla z,y € A mamy

p(ry) = Palry) = pa(r)paly) — w()e(y)

czyli o(xy) = @(x)p(y). SkorzystaliSmy z faktu, ze jesli ciggi uogdlnione
liczb t, oraz s, sa zbiezne do t i s, to ciagg uogdlniony t,s, jest zbiezny do
ts (zadanie). Ponadto ¢(e) = lim, @, (e) = 1. Zatem ¢ # 0.

Nastepujacy dowdd nie korzysta z ciggdédw uogoédlnionych . Niech ¢ €
A\ Sp(A). Tzn. ¢ = 0 lub ¢ nie jest funkcjonalem multiplikatywnym.
Rozwazmy drugi przypadek. Wtedy istnieja elementy a,b € A takie, ze
p(ab) # (a)p(b). Dla liczby € > 0 zbiér

Ue={¢ € A" : [¢(a) —p(a)] <&, |(b) = p(b)] <&, [¢(ab) — p(ab)| < e}

jest otoczeniem funkcjonatu ¢ w A* w x-stabej topologii. Wtedy U. N A7 jest
otoczeniem ¢ w Aj. Jesli € > 0 jest dostatecznie mate, to ¢ (ab) # ¥ (a)y(b).
Zatem [U. N (A*)1] N Sp(A) = 0.

Dla ¢ = 0 rozwazamy

v={ve4: el <)

Zbiér V jest otoczeniem ¢ = 0. Otrzymujemy v(e) # 1, zatem V N Sp(A) =
0. O

Uwaga. Zbior Sp(A) jest przestrzenia Hausdorffa w x-stabej topologii na
A3, bo A7 jest przestrzenia Hausdorffa w tej topologii.
Niech C'(Sp(A)) oznacza algebre ciagtych zespolonych funkcji na Sp(A).
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Twierdzenie 2.12. Niech A bedzie przemienng algebrg Banacha z jednosciq.
Dla elementu x € A okreslamy funkcje T : Sp(A) — C wzorem Z(p) = ¢(x).
Wtedy Z(Sp(A)) = o(x). Ponadto funkcja T jest ciggla oraz odwzorowanie
~: A — C(Sp(A)) jest homomorfizmem algebr Banacha oraz %] < ||z
Odwzorowanie ~ nazywamy transformatqe Gelfanda.

Dowdd. Niech ¢ € Sp(A). Wtedy ¢(z) € o(x), bo p(x — p(z)e) = 0, czyli
element © — ¢(x)e = © — Z(p)e nie jest odwracalny. Zatem Z(p) € o(x) co
pociaga Z(Sp(A)) C o(z). Dla dowodu odwrotnego zawierania, niech A €
o(x), tzn. element x — Ae nie jest odwracalny. Wtedy istnieje charakter ¢ €
Sp(A), dla ktorego p(z—Ae) = 0. Tzn. A = p(z) = Z(p), czyli A € Z(Sp(A)).
Otrzymujemy wiec o(z) C Z(Sp(A4)).

Odwzorowanie ~: x +— Z jest liniowe z okreslenia ~. Ponadto

zy(p) = p(ry) = p(x)p(y) = 2()7(p)

czyli = jest homomorfizmem.
Pozostaje uzasadni¢ cigglos¢ funkeji

z:Sp(A) —C
Wtasno$¢ wynika z okreslenia topologii na Sp(A). Niech ¢, — x-stabo,

gdzie @q, ¢ € Sp(A). Zatem

Z(pa) = Pa(r) — p(x) =Z(p), z€A

«

To oznacza cigglo$é funkeji  na Sp(A).
Bez uzycia ciagéw uogoélnionych: ustalmy x € A. Sprawdzamy ciaglto$¢
w punkcie ¢ € Sp(A). Dla € > 0 okreslamy

Ue = { € Sp(A) : [(z) — ¢(z)] < e}

Wtedy U. jest otoczeniem punktu ¢ w *-stabej topologii na Sp(A). Dla
¥ € U, mamy
2(¢) = Z(p)| = [¥(z) — p(z)| <€

Przyklad Rozwazmy A = (!(Z). Charaktery maja postac

oo
{an}el _sor— Y. ane™, 0<t<2m

n=—oo
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Oznaczmy \ = e, Tzn.

e}

{an}s o™ Y aX', N =1
Zatem Sp(A) = T jako zbiory. Pokazemy, ze Sp(A) = T jako przestrzenie
topologiczne. Rozwazmy d1. Wtedy 6, : Sp(A) == T, bo d1(px) = r(d1) =
A. Funkcja d; jest ciagtym réznowartosciowym odwzorowaniem z Sp(A) na

T. Zatem §; jest homeomorfizmem. Dla ustalonego ciagu a = {a,}>2
odwzorowanie a(A) = Y a,\" jest transformaty Gelfanda elementu a.

3 Rachunek symboliczny w algebrze Banacha

Twierdzenie Wienera mozna zinterpretowa¢ w nastepujacy sposob: w prze-
miennej algebrze Banacha jesli dla z € A funkcja T nie zeruje sie, to element
x jest odwracalny. Tzn. na element x mozemy nalozy¢ funkcje z — 27 1. Na-
szym celem jest okreslenie dziatania na elementach algebry wigkszej klasy
funkcji ciaglych

Rozwazmy funkcje ciaglta a : [a,0] — A tzn. dlaa < tp < bie > 0
istnieje liczba 0 > 0 taka, ze jesli |t — to] < 0, to ||a(t) — a(to)|| < €. Mozna
udowodnié, ze kazda funkcja ciagla jest jednostajnie ciggta (zadanie). Dla
podziatu P = {to,11,...,t,} przedzialu [a,b] wybieramy punkty posrednie
tj—1 < s; < t; 1 okreslamy sumy

S(P.f)= 30 At £(s)

b
gdzie f : [a,b] — A. Celem jest okreslenie catki [ f(t)dt. Symbolem d(P) =
max <<, At; oznaczamy srednice podziatu. ’

Lemat 3.1. Dla dwu podziatow Py i Py spetniajacych d(Pr) < 6 oraz d(Ps) <

0 mamy

1S(Py, f) = S(P2, f)I <2(b—a) sup [|f(t) = f(s)l

[t—s|<d

Dowdd. Niech P3 = Py U Py, z punktami posrednimi typu prawy koniec.
Wtedy

[S(P1) = S(P)I < IS(P1) = S(Ps)|| + 15 (Ps — S(P2|l
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Pokazemy, ze

[1S(P1) = S(Ps)| < (b—a) sup [If(t) = f(s)]l

[t—s|<d

Punkty {t] k}Z o 0znaczaja punkty podziatu Ps stanowiace podzial przedzia-
tu [t;_1,t;]. Mamy

n kj
S(Pl) ZAthJ ZZA]kf jk
j=1k=1
n kj
=D Atulf(ss) = ftin)]
Jj=1k=1
k;
bo At;), = At;. Poniewaz s;, tjx € [tj_1,;], to
k=1

1f(s5) = F(tiu)ll < sup [[f(t) = F(s)]

[t—s|<d

Stad wynika oszacowanie. Podobnie otrzymujemy

1S(Ps) = S(Po)|| < (b—a) sup [[f(t) = f(s)]

[t—s|<d
[

Whiosek 3.2. Zaléimy, ze funkcja f : [a,b] — A jest ciggla. Niech P,
oznacza cigg podziatow takich, ze d(P,) — 0. Wtedy cigg S(P,) jest zbieiny.

Dowdd. 7 lematu ciag S(P,) spelnia warunek Cauchy’ego, bo

1S(Pr, f) = S (P Il < 2(b—a) sup (&) = ()]

[t—s|<max{d(Prn),d(Pm)}

Definicja 3.3. Dla funkcji cigglej f : [a,b] — A okreslamy

b

[ 1ty dt=timS(P,, f), d(P.) =0

a
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Catka spehia:
() [1F@)+g@ldt= [ fyde+ [gityar

b
() [Nfe)de = [ f(e)de

a

(c) /bf(t)dt:jf(t)dt+/bf(t)dt, a<c<b
(@ iﬂwm <fwumw

Lemat 3.4. Dia ¢ € A* mamy

b b
w(/ﬂﬂﬁ)=/¢ﬁwﬁ#

Dowdéd. Dla ciagu podziatéw P, takich, ze d(P,) — 0 otrzymujemy

b

b
@ (/f(t) dt) = lim o(S(Pr, f)) = lim S(Py, 0 0 f) = /so(f(t))dt

a

]

Dla krzywej zorientowanej C' klasy C! w plaszczyznie C i funkcji cigglej
f: C — A okreslamy

[1e)dz = [sa@ymd, v:lat—Ccc

Calka nie zalezy od wyboru parametryzacji v(t), bo po natozeniu funkcjonatu
p € A* tak jest (zadanie). Ponadto (zadanie)

w(/ﬂaw)z/puw»w

Catke wzdhuz krzywej C' mozemy okresli¢, gdy krzywa C' jest ciagta, kawat-
kami klasy C', poprzez sume catek wzdtuz fragmentéw krzywej.
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Definicja 3.5. Niech f(z) bedzie funkcjg o wartoSciach w algebrze Banacha
A, okreslong na otwartym obszarze U C C. Mowimy, zZe funkcja f jest holo-
morficzna jesli f(z) posiada pochodng zespolong w kazdym punkcie obszaru
U, tzn. istniejg granice

o) i i TEER G o ) = £2)

h—0 h wW—2z w— z

, zeU

Przyklad Rozwazmy algebre Banacha A z jednoscig. Ustalmy a € A.
wtedy funkcja z — (ze —a)~! dla z € o(a) jest holomorficzna. Rzeczywiscie,
gdy w — z, to (we —a)™! — (ze — a)™! oraz

(we —a)™" = (ze — @)~ = —(w — =) (we — a) " (ze — a)”!
Stad
(we = “)_ul} - i’ze "0 e —a) Mo —a) !
zatem d
T(re—a) = —(ze—a)?

Skorzystaliémy z ciggtosci funkcji w — (we — e)~!. Ta wlasno$é¢ wynika ze
ztozenia funkcji cigglych

w— we — a — (we —a)

Twierdzenie 3.6. Niech C' bedzie prostqg krzywq zamknietq w C. Zatozmy,
ze funkcja f(z) o wartoSciach w A jest okreslona i holomorficzna w obszarze

otwartym U zawierajgcym krzywqg C' oraz obszar ograniczony przez te krzywg.
Wtedy

/f(z)dz:()
c

Dowaéd. Dla ¢ € A* mamy

@(/f(Z)dz) z/go(f(z))dz:()

Poniewaz ¢ jest dowolnym funkcjonalem na A, to / f(z)dz=0. O
c
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Whniosek 3.7. Niech U C C bedzie spéjnym obszarem ograniczonym, ktore-
go brzeg sklada si¢ ze skonczonej liczby prostych krzywych zamknigtych. Dia
funkcji f(2) holomorficznej w obszarze V- zawierajacym U mamy

/f(z) dz=0
oU

Dowdd. Obszar U mozemy podzieli¢ na skonczong liczbe obszarow jedno-
spojnych Uy, Us, ..., U,. Wtedy

/f(z)dz:/f(z)dz+/f(z)dz+...—|—/f(z)dzzo
ou

oy oU3 OUn

[]

Dla algebry Banacha z jednoscia mozemy okresli¢ p(a), gdzie p(z) jest wie-
lomianem. Wtedy (p1p2)(a) = p1(a)p2(a). Mozna rozwazy¢ funkcje catkowita

f(z) =Y 2" izdefiniowaé f(a) = > c,a”. Szereg jest absolutnie zbiezny,
n=0 n=0

bo lim, |c,[Y™ = 0. Zatem ||c,a®|| < |eal|lall™. Wiec 2% |en| |la]|” < oc.
Wystarczy, aby

lim sup | ¢, |/ < —
ol
Jesli f(2) 1 g(z) sa holomorficzne w obszarza otwartym U zawierajacym koto
{z : |z| < |la||} to (fg)(a) = f(a)g(a) w oparciu o mnozenie Cauchy’ego
szeregOw potegowych.

Przyktad. Niech A € M, (C). Zal6zmy, ze A sprowadza sie do postaci
diagonalnej, tzn. A = CDC™!, gdzie D jest macierzg diagonalng z wyrazami
{di}7_, na przekatnej. Dla f : C — C mozemy okresli¢ f(D) jako macierz
diagonalng z wyrazami { f(dy)}?_; na przekatnej. Niech f(A) = Cf(D)C~".
Wtedy (fg)(A) = f(A)g(A), bo

f(A)g(A) = Cf(D)C'Cg(D)C™" = Cf(D)g(D)C™' = C(fg)(D)C™' = (fg)(A)

Dla f = 1 mamy f(A) = Cf(D)C™! = CC™' = I. Z kolei dla f(z) = 2
zachodzi f(A) = CDC™! = A. Funkcja f nie musi by¢ okreslona na C.
Wystarczy, ze znamy jej wartosci na {dy}}_,, czyli na o(A).

Twierdzenie 3.8. Niech C bedzie prostg krzywq zamknietq, kawatkami C1,
obiegajgcq w kierunku dodatnim o(a) dla elementu a € A, lub skoriczong sumg
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takich krzywych, przy czym obszary otoczone przez te krzywe sq roztgczne.

Wiedy
1

e = /(ze—a)_l dz

2w
c
Uwaga Wzor jest podobny do wzoru Cauchy’ego

1—1/dzdz

o) z— 2z
C

gdzie liczba 2 lezy wewnatrz C.

Dowdd. Rozwazmy przypadek C' = C; U Cy. Tzn. o(a) jest zawarte w dwu
obszarach otwartych otoczonych przez te krzywe. Niech Cr oznacza okrag
o $rodku w 0 i promieniu tak duzym, ze krzywa C' lezy wewnatrz kota o
promieniu R. W obszarze otwartym U zawartym pomiedzy C' i Cr funkcja
2+ (ze —a)~! jest holomorficzna, bo obszar jest oddzielony od o (a). Zatem

1 / 1
— [(ze—a)""dz=0
27r26U
Stad
o [Ge—a)y iz = o [(ze—a)
5 | (e —a 2=5 - [(ee—a z
C Cr

Mozna przyjaé, ze R > ||a|. Wtedy

1 1 0
3 /(ze —a) tdz = o / nzzoz_"_la” dz
R Cr

Szereg jest zbiezny jednostajnie na C'r zatem w drugiej calce mozna zmienié¢
kolejnoé¢ catki z sumowaniem. Otrzymamy

0 1
Z —,/z‘”_l dz| a" = ¢
| 2mi

R

Skorzystalismy z faktu, ze jesli f,(z)=f(z) dla z € C, to
/fn(z) dz — /f(z) dz
c 8!

dla funkcji ciagtych f,, f: C' — A. ]
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Whiosek 3.9. Przy zatozeniach poprzedniego twierdzenia, dla funkcji catko-

witej f(z) =Y e,2" spelniony jest wzor
n=0

f0) = 5= [ S e —a) e
C

gdzie f(a) = c,a”.
n=0

N
Dowdd. Wystarczy udowodnié¢ wzér dla wielomianu py(z) = Z cp 2" 1 teze
n=0

uzyskac¢ przez przejécie graniczne, gdy N — oo. Mamy

;Tic/pN(z)(ze —a) tdz = ;mc[[pN(z)e —pn(a)](ze —a) ' dz
—|—pN(a)21_ /(ze —a) tdz

™

Funkcja [py(2)e—pn(a)](ze—a) ™! jest wielomianem zmiennej z ze wspotczyn-
pn(2) — pv(w)

Z—w
uproszczeniu, pierwsza catka jest réwna 0. O

nikami z algebry A, zwigzang z wielomianem z —

. Zatem po

Definicja 3.10. Niech f(z) bedzie funkcjg holomorficzng w obszarze otwar-
tym U, zloZonym ze skonczonej liczby obszarow jednospdinych, zawierajgcym
o(a). Dla C prostej krzywej zamknietej, kawatkami Ct (lub skoticzonej sumy
takich krzywych) obiegajgcej w kierunku dodatnim zbidér o(a) i dla elementu
a € A okreslmy

fla) = 5 [ F)ze —a)dz
C

Uwaga. Definicja f(a) nie zalezy od wyboru krzywej C. Rzeczywiscie
niech Cg bedzie okregiem o promieniu R takim, ze krzywa C' lezy w otwartym
kole o promieniu R. Wtedy funkcja f(z)(ze — a)™' jest holomorficzna w
obszarze pomiedzy C' i Cg. Zatem catka wzdtuz brzegu obszaru wynosi 0,
czyli catki wzdtuz C' i Cg sa réwne.
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Uwaga. Mozna okresli¢ f(a), gdy U sklada sie ze skoniczonej liczby ob-
szaréw spojnych, ale niekoniecznie jednospdjnych. Np. wzor

1/(ze—a)_1dz:e

271

jest spelniony. Rzeczywiscie jedli krzywa C' nie zawiera wewnatrz punktow
z o(a), to calka wzdluz C jest réwna 0, bo funkcja z +— (ze — a)™' jest
holomorficzna w obszarze otwartym ograniczonym przez C.

Twierdzenie 3.11. Jesli funkcje f(2) i g(z) sq holomorficzne w otoczeniu
o(a), to
fla)g(a) = (fg)(a)

Dowdd. Dowdd przeprowadzimy dla przypadku, gdy f i ¢ sa holomorficzne
w otwartym obszarze jednosp6jnym zawierajacym o(a).

Wybierzmy krzywe (byé moze skonczone sumy krzywych) C; i Cy ota-
czajace o(a) takie, ze C lezy w obszarze otwartym ograniczonym przez Cs.
Wtedy

fla)g(a) = — g [ 1) e —a) " dz - [ glw)we —a)™ du
C1 ) Co
= —417r2/f(z) /g(w)(ze—a)_ (we —a) Y dw| dz
1 1C2

= —1/f(z) g(w) [(we —a)™! — (ze —a) ' dw| dz

47r20 zZ—w
_ _1/f(z)(ze—a)_1 /g(w) dw| dz
N 47r20 oWz
1 - f
—Wc/g(w)(we a)™? ) ZEZSU dz| d
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bo /f(z)(z —w) ' dz = 0. Zmiane kolejnosci catkowania mozna uzasadnié
(&5

poprzez natozenie funkcjonatu ¢ € A*. Otrzymujemy wtedy catki z funkcji o
wartosciach w C. O

Niech H(a) oznacza rodzine funkcji holomorficznych w otoczeniu o(a).
Wtedy H(a) tworzy algebre. Odwzorowanie H(a) > f +— f(a) € A jest
homomorfizmem algebr. Ponadto 1 — e oraz z — a.

Lemat 3.12. Niech A bedzie przemienng algebrg Banacha z jednoscig. Dla
a€ A, pe Sp(A) oraz f € H(a) mamy ¢(f(a)) = f(¢(a)). To oznacza, Ze

fla)=foa
Dowod. Mamy
e(f(a)) = (;Ti/f(z)(ze —a)? dz)
C
Y e

Z lematu otrzymujemy
Twierdzenie 3.13. Dia a € A oraz f € H(a) mamy o(f(a)) = f(o(a)).

Twierdzenie 3.14 (Wiener-Lévy). Zalozmy, ze funkcja o okresie 2w ma

absolutnie zbieiny szereg Fouriera, tzn. f(x) = che’m oraz Z len| < oc.
Niech h(z) bedzie funkcjg holomorficzng w otwartym otoczniu zbioru warto$ci
funkcji f. Wtedy szereg Fouriera funkcji h(f(z)) jest absolutnie zbiezny.
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Dowéd. Dla ciagu ¢ = {c,}°°__ € (Y(Z) zbadamy o(c) w algebrze (*(Z).
Funkcjonaty multiplikatywne majg postac

— i Cneinx:f(x)

Zatem o(c) = f([0,27)) = f(R). Z zaloZenia h € H(c), skad wynika, ze
d := h(c) € (*(z). To oznacza, ze h(x Z dne™ oraz i|dn| < 00.
Dalej N n_ioo -

HZOO dne™ = ¢u(d) = @u(h(c)) = h(pz(c)) = h(f(2))

]

Twierdzenie 3.15. Niech f(z) bedzie funkcjg holomorficzng w obszarze otwar-
tym zawierajgcym o(a). Wtedy dla dowolnej funkcji catkowitej g(w) mamy

9(f(a)) = (g f)(a)

Dowdéd. Niech g(z Z gnz". Wtedy

Zgnf Zgn ") (a <Zgnf"> )= (go f)(a)

4 Cr-algebry

Definicja 4.1. Operacje x : A — A w algebrze Banacha nazywamy sprzeze-
niem jesli

(a) (a+b)* =a" +b
(b) (Aa)* =
(c) (ab)" =
(d) (a) =
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Uwaga Jesli A ma jedno$c e, to e* = e (zadanie).
Definicja 4.2. Algebre Banacha nazywamy *-algebrg, jesli ||a*|| = ||a]|.
Przyktady

(a) A=/(Z). Dla a € ¢(*(Z) okreslamy a*(n) = a(—n). Np. 6} = 0_,,.

(b) A=C[0,1] lub A = C(K), gdzie K jest zwarta przestrzenia Hausdorf-

fa. Wtedy f*(t) = f(t).
(c) A= B(H) ze sprzezeniem operatorow.
Definicja 4.3. Algebre Banacha z sprzezniem nazywamy C*-algebrg, jesl
la*all = [lal*.

Uwaga 7Z warunku wynika ||2*|] = ||z||. Rzeczywidcie ||z|? = [Jz*z| <
=[]l Stad [lz*]| > [lz]|. Zatem [lz| = [l=*| > [l«"||. Przyktady Al-
gebra ('(Z) nie jest C*-algebra (dlaczego ?). Z kolei C(K) oraz B(H) sa
C*-algebrami, bo [Fflle = |1/l = |fI2. oraz |T°T| = |T|%. Druga
rownos¢ wynika z

IT*T|| > sup (T"Tw,z) = sup ||T|?® =T

Jall=1 Jall=1
oraz || T*T|| < ||| T = IT||*.

Twierdzenie 4.4 (Gelfand-Naimark). Niech A bedzie przemienng C*-algebrg
z jednoscig. Wtedy transformata Gelfanda jest izometrycznym x-izomorfizmem
pomiedzy A oraz C(Sp(A)) z normg || - ||co-

Uwaga Ogoélnie homomorfizm h pomiedzy *-algebrami nazywamy *-homomorfizmem

jesli h(z*) = h(x)*. Izometria oznacza, ze ||Z||c = |||, a *-izomorfizm, ze
T =17.

Dowad. Transformata Gelfanda jest liniowym homomorfizmem. Operacja *
jest ciagta, bo ||z*|| = ||z|. Niech ¢ € Sp(A) oraz a* = a. Pokazemy, ze
o(a) € R. Dla t € R rozwazmy elementy

(ita)™

n!

up = exp(ita) = Y

n=0
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Wtedy uf = exp(—ita) oraz
uju; = exp(—ita) exp(ita) = 1(a) = e
bo exp(—itz) exp(itz) = 1. Dalej
L= lefl = [yl = [lul?
stad ||u]| = 1. Dla ¢ € Sp(A) otrzymujemy

i (itp(a))"

1> |p(ug)| = = |exp(it p(a))| = exp(—t Ranp(a))

Poniewaz t jest dowolng liczba rzeczywista, to Ran ¢(a) = 0. To oznacza, ze
o(a) € R.

Inny dowdd Niech A = z + iy € o(a). Zatem dla t € R mamy X + it €
o(a + ite). Otrzymujemy

A+ it2 < |ja +ite]|2 = ||(a + ite)*(a + ite)|| = ||(a — ite)(a + ite)||
= [la® + %[ < [la]* + ¢
Z drugiej strony
A+t = |z +i(y + )P = 2" + (y +)* = 2% +y* + 2yt +

Zatem
2 +y’ + 2yt < af?, teR
Z dowolnosci t otrzymujemy y = 0.
Dla a € A niech a1 = (a +a*)/2 oraz ay = (a — a*)/(2i). Wtedy a} = ay,
a5 = ay oraz a = aj + tag. Zatem

p(a”) = p(ar —iag) = p(a1) —ip(az) = p(ar) + ip(az) = p(a)

Otrzymalimy a* = @, bo dla ¢ € Sp(A) zachodzi

—~ —_—

a*(p) = p(a*) = pla) = a(p)

Czyli transformata Gelfanda jest x-homomorfizmem.
Chcemy pokazaé, ze |||l = ||a||. Mamy

[alloc = max{[A|] : X € o(a)} = r(a) = lim||a"[|""
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Dla a* = a otrzymujemy ||a?|| = |la*al]| = ||a||*. Poniewaz elementy a* sa
samosprzezone, to przez indukcje otrzymujemy [|a®" || = ||al|?", czyli 7(a) =

l|la||. Zatem |G|/~ = ||a]|. Rozwazmy dowolny element a € A. Wtedy
lall* = lla*all = lla*alle = @@l = [[[a]*]ls = [lall3

Pozostaje do pokazania, ze A = C(Sp(A)). Skorzystamy z twierdzenia
Stone’a-Weierstrassa. Algebra A jest podalgebra funkeji w C(Sp(A)) za-
mknieta na sprzezenie. Algebra A zawiera @ = 1 oraz rozdziela punkty, bo
jesli 1 # o dla 1, o € Sp(A), to pi(a) # pa(a) dla pewnego elementu
a € A T, a(p1) # a(ps). Zatem A jest gesta podalgebra w C(Sp(A)). Z
drugiej strony A jest domknigta jako izometryczny obraz algebry Banacha
A. Stad A = C(Sp(A)). O

Definicja 4.5. Element a w C*-algebrze B z jednosciq (niekoniecznie prze-
miennej) nazywamy normalnym jesli a*a = aa*.

Niech A oznacza C*-algebre generowana przez a oraz e. Tzn. rozwazamy
Ay = {pl(a,a”) : p(z,y) wielomian dwu zmiennych o wspoétczynnikach z C}

Symbolem A oznaczmy domkniecie podalgebry Ay w C*-algebrze B. Wtedy
A jest przemienng C*-algebra z jednoscig.

Whniosek 4.6. Przy powyiszych oznaczeniach otrzymujemy A = C(o(a)),
gdzie o(a) oznacza spektrum elementu a w C*-algebrze B.

Dowdd. 7 zadania 11 listy 5 wynika, ze op(a) = o4(a). Rozwazmy a :
Sp(A) — o(a). Funkcja a jest ciagla oraz a(Sp(A)) = o(a). Ponadto funkcja
a jest roznowartosciowa, bo jesli a(¢1) = a(pq), to p1(a) = @o(a). Zatem

p1(a”) = pi(a) = p2(a) = p2(a”)
Multiplikatywno$¢ pociaga o1 = 9 na Ag. Z kolei z cigglosci charakterow ¢ i
9 wynika ¢ = 9 na A. Reasumujac odwzorowanie a jest homeomorfizmem
pomiedzy Sp(A) i o(a). [zomorfizm pomiedzy A oraz C(o(a)) zadany jest
poprzez
A — C(Sp(4)) = Clo(a))

Odwzorowanie h zadane jest wzorem

h(fYN) = f@'(\), fe€C(Sp(A)), A€ a(a)
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Przykltad A = (*(N) = C(Sp(A)). Mamy N C Sp(A), bo ¢,(a) = a,
jest charakterem. Zawieranie jest wlasciwe (dlaczego 7). Mozna pokazaé, ze

Sp(A) =2 C(K), gdzie K jest uzwarceniem Cecha-Stone’a zbioru N. O

Twierdzenie Gelfanda-Naimarka-Segala méwi, ze C*-algebra z jednoscia
jest izometrycznie izomorficzna z domknietg podalgebra operatorow, zawiera-
jaca I w B(H), dla pewnej przestrzeni, Hilberta. Np. C[0, 1] mozna utozsamié
z algebra operatorow Mg = fg dla g € L*(0,1).

5 Operatory nieograniczone na przestrzeni Hil-
berta

Wiele operatoréw okreslonych na podprzestrzeni przestrzeni Hilberta jest nie-
ograniczonych. Podprzestrzen, na ktorej operator jest okreslony nazywamy
jego dziedzing.

Przyklady

(a) Operator (T'f)(z) = xf(x) jest okreslony na D(T) = {f € L*([R) :
zf(x) € L*(R)}, czyli T : D(T) — L*(R). Operator T jest nieograni-
czony, bo

||T]l(n,n+1)||2 = Hx]l(n,n-i-l)H > nH]l(n,n-&-l)HZ
Przestrzenn D(T) jest gesta w L%*(R), bo zawiera wszystkie funkcje o
ograniczonym nosniku.

(b) Dla H = L*(0,1) okreslamy T : C'[0,1] — H wzorem Tf = f.
D(T) jest gesta podprzestrzenia w H. Dla f,(x) = sin(mnz) mamy
(T fn)(x) = mncos(mnz). Otrzymujemy ||Tf,|l2 = mn|| fr]|2-

(¢) H=/(*N), (Ta), = na,, oraz

D(T) = {a € A(N) : i7”42|an|2 < oo}

n=1

Podprzestrzen D(T) jest gesta, bo d,, € D(T') dla wszystkich n. Ponad-
to || 79,2 = nl|dn 2.

Bedziemy rozwazaé operatory A : D(A) — H o gestej dziedzinie.
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Definicja 5.1. Operator A : D(A) — H nazywamy symetrycznym jesli
(Az,y) = (z, Ay), x,y € D(A)

Uwaga 7 tozsamosci polaryzacyjnej wynika, ze symetria jest rGwnowaz-
na warunkowi (Az,x) = (z, Az) dla wszystkich z € D(A), co z kolei jest
réwnowazne (Az,z) € R, dla = € D(A).

Operatory symetryczne o pelnej dziedzinie, tzn. D(A) = H, sa ograni-
czone z twierdzenia Hellingera-Toeplitza.

Dla dwu operatorow A i B zawieranie A C B oznacza, ze D(A) C D(B)
oraz Ar = Bz dla © € D(A). Méwimy wtedy, ze B jest rozszerzeniem ope-
ratora A. Dla operatora A wykresem nazywamy podzbior H x H

Ly ={(z,Az) : x € D(A)}
Zauwazmy, ze A C B wtedy i tylko wtedy, gdy I'y C I'.

Definicja 5.2. Dla operatora A : D(A) — H operatorem sprzezonym A*
nazywamy operator o dziedzinie

DA") ={z eH : (3z€H) (Vy € D(A)) (Ay,z) = (y,2)}
Dla xz € D(A*) okreslamy A*x = z.

Uwaga Element z, o ile istnieje, jest jedyny. Istotnie jesli (y, z) = (y, 2/)
dla wszystkich y € D(A), to z gestosci dziedziny wynika z = 2/

Uwaga Moze sie zdarzy¢, ze D(A*) = {0}. Naturalnym pytaniem jest
kiedy D(A*) jest gesta podprzestrzenia w H 7 Dla operatora symetrycznego
A mamy D(A) C D(A*). Rzeczywiscie, dla x,y € D(A) otrzymujemy

(Ay, z) = (y, Az)

zatem D(A) C D(A*) oraz A*x = Ax. Rolg elementu z pelni Az. Ponadto
warunek A C A* jest rGwnowazny symetrii operatora A.

Uwaga Z twierdzenia Riesza o postaci funkcjonaléw ograniczonych na 'H
wynika, ze warunek = € D(A*) jest réwnowazny temu, ze funkcjonat liniowy

D(A) >y~ (Ay,z) € C
jest ograniczony, tzn. |(Ay, z)| < c||y|| dla pewnej statej ¢ > 0 i wszystkich
y € D(A).
W przestrzeni H x H okreslamy iloczyn skalarny wzorem
((w,0), (W', ) = (u, ) + (v,0)
Niech J(u,v) = (v, —u). Wtedy J jest izometria na H x H oraz J* = —1.
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Lemat 5.3. Dla operatora A : D(A) — H o gestej dziedzinie mamy (z,z) €
[a- wtedy i tylko wtedy, gdy (x,2) L J(Ty4). Ten. Tas = J(Ta)t, w prze-
strzent H x H. W szczegolnosci wykres operatora A* jest domkniety.

Dowdéd. Teza wynika z okreslenia (x, z) € I'a+ wtedy i tylko wtedy, gdy
<$aAy>_<Z7y> :()7 yGD(A)

tzn.

(z,2) L J(y,Ay), ye€ D(A)
0

Definicja 5.4. Operator A : D(A) — H nazywamy domykalnym jesli
L4 jest wykresem operatora, oznaczanego symbolem A. Operator : D(A) —

H nazywamy domknietym, jesli wykres 1"y jest domknietq podprzestrzenig
H x H.

Uwaga Kazdy operator symetryczny jest domykalny, bo wykres A* jest
domkniety oraz A C A*.

Twierdzenie 5.5. Dziedzina operatora A* jest gesta wtedy i tylko wtedy, gdy
A jest operatorem domykalnym.

Dowdéd. Zatézmy, ze v 1. D(A*). Réwnowaznie (v,0) L T'gx = J(T'4)*. Czyli
(v,0) € J(Ta)™" = J(Ta) = J(Ta)

To z kolei jest réwnowazne z warunkiem (0,v) € T4, czyli v = 0. O

Whiosek 5.6. Dia operatora domykalnego A zachodzi réwnosé A** = A.

Dowod. Mamy

Dpee = J(Ta-)t = J(J(TA))

'_

I
=~
~
—
>
'_
<

Przyktady
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(a) H = L*0,1)
Af=if" D(A)={feC'0,1] : f(0)=f(1) =0}
Operator A jest symetryczny, bo dla f,g € D(A)

1 1 1
(Af.g) =i [ fgde=ifg| ~i [ fg'do = (f. Ag)
0 0

(b) (Af)(x) = zf(x), D(A) = {f € L*(R) : 2f(z) € L*(R)}

[e.e]

(Af.g) = (wf.g) = [ wf(@)g(@)de = (f.29) = (f. Ag)

—00

Definicja 5.7. Operator symetryczny A nazywamy samosprzezonym jesli
A* = A, tzn. D(A*) = D(A).

Przyktady
(a) Jak wyzej. Wtedy D(A) € C[0,1] € D(A*). Mozna pokazad, ze
D(A*) = {f € L*(0,1) : f absolutnie ciaggta, f' € L*(0,1)}
(b) Jak wyzej. Pokazemy, ze A* = A. Wystarczy udowodnié¢, ze D(A*) C
D(A). Niech f € D(A*). Mamy
D(A*) = {f € L*(R) : |{Ag, )| < c||g|l2, dla pewnej statejcig € D(A)}

Niech gn(z) = 2 f(2)1(_, ) (x). Wtedy g, € D(A), bo xg,(x) jest ogra-
niczona. Zatézmy, ze f € D(A*). Wtedy

[(2gn, )] = [{(Agn, 1) < cllgnll2

Zatem

n n 1/2
2l @)Pdr < ( / :r2|f(w)|2dw>

—-n —"

czyli

/:zc2|f(x)|2dx < neN

—-n

Poniewaz n jest dowolne, to xf € L*(R).
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Lemat 5.8. Jesli A C B, to B* C A*.

Dowod. Mamy

D(AY) = {reH: (3:eM) (WyeDA) (Ay,z)=(y,2)}
D(B*) = {z€eH:(Fz€H) Vye D(B)) (By,z) =(y,2)}

Dla y € D(A) mamy Ay = By. Zatem D(B*) C D(A*). Ponadto dla x €
D(B*) odpowiadajacy element z = B*z jest réwny A*x.
Inne wyjasnienie:

I = J([g)" D J([a)" =Ta-

Uwaga Zalézmy, ze A C B oraz A i B s symetryczne. Wtedy
ACBCB"C A

Zatem jesli A jest samosprzezony, to A = B = B* = A*. Tzn. operator
samosprzezony nie posiada nietrywialnych symetrycznych rozszerzen.

Lemat 5.9. Dla operatora symetryczneqo A operator A jest réwnies syme-
tryczny.

Dowdéd. Jesli x € D(A), to istnieje ciag x, € D(A) taki, ze x, — x oraz
Az, — Az. Wtedy
(Az,z) = lim(Az,, z,,) € R

O
Lemat 5.10. Jesli A jest domykalny, to (A)* = A*.
Dowdéd. Wiemy, ze podprzestrzen D(A*) jest gesta. Dalej
7J_ _
L= J(Ca)t = J(Ta) = J(Ta)" = J([z)" =i
[

Lemat 5.11. Wartosci wlasne operatora symetrycznego sq liczbami rzeczy-
wistyms.
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Dowéd. Niech A C A* oraz Av = \v, v # 0. Wtedy R 3 (Av,v) = |v||?,
czyli A € R. O]

Definicja 5.12. Operator symetryczny nazywamy tstotnie samosprzezo-
nym jesli jego domkniecie jest operatorem samosprzezonym.

Uwaga Dla operatora symetrycznego, jesli A* jest symetryczny, to A jest
istotnie samosprzezony. Rzeczywiscie

ACA* cA*=A
Stad A= A*=4".

Twierdzenie 5.13. Operator symetryczny A jest istotnie samosprzeiony
wtedy i tylko wtedy, gdy dla dowolnej (réwnowaznie pewnej) liczby z € C\ R
przestrzenie Ran (A — zI) oraz Ran (A — ZI) sq geste w 'H.

Uwaga Gdy A jest ograniczony (niekoniecznie symetryczny), to D(A) =
H (zadanie). Wtedy A jest operatorem ograniczonym okreslonym na H. Jesli
A jest symetryczny, to A jest samosprzezony. Zatem A — 21 jest odwracalny.

Stad Ran (A — zI) = H. To oznacza, ze Ran (A — zI) jest gesta podprzestrze-
nia w H.

Lemat 5.14. Dla operatora symetrycznego przestrzen Ran (A—zI) jest gesta
wtedy 1 tylko wtedy, gdy liczba Z nie jest warto$cig wlasng operatora A*.

Dowdd. Warunek Ran (A — zI) nie jest gesta jest rownowazny istnieniu 0 #
v L Ran (A — 2I), tzn. (Aw — zw,v) = 0 dla w € D(A). Réwnowaznie

(Aw,v) = z(w,v) = (w,zv), w € D(A)
Ostatnia réwnos$¢ oznacza, ze v € D(A*) oraz A*v = Zv. O
Przechodzimy do dowodu twierdzenia.

Dowdd. ( = ) Niech A bedzie istotnie samosprzezony. Zalézmy, ze v L
Ran (A—zI). Z dowodu lematu otrzymujemy A*v = zv. Z zalozenia operator
A* jest symetryczny, bo A* = (A)* = A. Zatem v = 0.

( <) Zalbézmy, ze przestrzenie Ran (A — zI) oraz Ran (A — ZI) sa geste

w H dla pewnej liczby z ¢ R. Pokazemy, ze Ran (A — zI) = H. Mamy

Ran(A —z2I) CRan(A—z2I) CH
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Wystarczy udowodnié, ze przestrzenn Ran (A — zI) jest domknieta. Dla v €
D(A) mamy
(A= zDv,v) = (Av,v) — z(v,v)

Zatem B
Im (A — zI)v,v)| = [Im 2| [[o]* (%)

Zalozmy, ze ciag w, = (A — zI)v,, v, € D(A) jest zbiezny. Oznaczmy w =
lim,, w,,. Pokazemy, ze w € Ran(A—zI). Ciag v, spelia warunek Cauchy’ego
na podstawie réwnosci () zastosowanej do v := v, — v,,,. Rzeczywiscie

[tm 2] [Jv, — v |* = [Tm (A = 20) (vn — Vi), U — V)]

= [Im (wy, — Wi, Uy — V)| < |[wn — W] [[Un — V3|

Otrzymujemy ||v,, — vy || < |Im 2|7 |w, — wp,||. Oznaczmy v = lim, v,. Ze
zbieznosci w, wynika zbieznoéé¢ Av, = w, + zv, — w + zv. Z domknietosci
wykresu dostajemy v € D(A) oraz Av = w + zv, czyli (A — zI)v = w. To
konczy dow6d réwnosci Ran(A — 21) = ‘H.

Pokazemy, ze A* = A. Wystarczy udowodnié¢, ze A* C A. Niech v €
D(A*). Z whasnosci Ran(A — zI) = H istnieje wektor w € D(A) C D(A*)
taki, ze

(A" — 2o = (A — z)w = (A" — 21w
Zatem (A* — zI)(v —w) = 0. Tzn. v — w jest wektorem wlasnym operatora
A* 7z wartoscia wlasna z. Jesli v # w to z lematu podprzestrzen Ran(A —zI)

nie jest gesta. Zatem v = w, czyli v € D(A). O
Przyklady
(a) H = L2(0,1).
Af=if', D(A)={feC'0,1] : f(0) = f(1) =0}

Zauwazmy, ze C1[0,1] C D(A*) oraz A*g = ig’ dla g € C''[0, 1]. Chcemy
sprawdzi¢, czy A jest istotnie samosprzezony. W tym celu rozwigzujemy
rownanie (A* — zI)g = 0 dla g € D(A*). Zalézmy, ze g € C*0,1].
Otrzymujemy réownanie ig’ = zg, ktérego rozwiazaniem jest g(z) =
e~ ¢ O, Stad A nie jest istotnie samosprzezony.

(b) H = L2(0,1).
Af=if', D(A)={feC'0,1] : f(0)= f(1)}
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Pokazemy, ze A jest istotnie samosprzezony. Wystarczy udowodnié, ze
podprzestrzenie Ran(A=+il) sa geste. Sprawdzimy gestos¢é Ran(A—iTl).
Zatézmy, ze f L Ran(A —il). Tzn.

(A—il)g, f) =0, g€ D(A)
Otrzymujemy warunek

(9. /) =(d. 1), g€ D(A) (xx)

Funkcja F(z) = ff(t) dt jest ciggla. Zatem
0

(9. ) = [ 9(@) (@) do = g(x)F@)|, ~ [ ¢ (@)F (&) dw = g(1)F(1)~{g', F)

Podstawiajac g = 1 do (xx) dostajemy F'(1) = 0. Czyli

9. == F)

Zbiér {g' : g € D(A)} sktada sie ze wszystkich funkeji ciagtych o calce
0. Ten zbior jest gesty (zadanie) w

L2(0,1) == {h e 12(0,1) : /h(x) dz = o} —1t

Zatem f + F L L2(0,1). Czyli f(z) + F(z) = C prawie wszedzie,
dla pewnej statej C. Uzyskujemy f(z) = —F(x) + C prawie wszedzie.
Funkcja F'(x) jest ciagla. Mozemy przyjaé, ze f(x) = —F(x) + C dla
0 < x < 1. Stad f jest ciggla, czyli F jest klasy C. Zatem f jest réwniez
klasy C'. Rozniczkujac otrzymujemy f' = —f. Zatem f(x) = de . Z
warunku [, f(x)dx = 0 uzyskujemy d = 0, czyli f = 0.

Dla operatora symetrycznego A oraz z ¢ R operator A — zI jest réznowarto-
Sciowy ze wzoru (x). Jesli A jest samosprzezony, to podprzestrzenn Ran(A—z1)
jest gesta oraz domknigta, co wynika z dowodu Twierdzenia 5.13. Zatem
Ran(A — zI) = H. Reasumujac

A—2I, A—%zI: D(A) ™ H

1-1
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Definicja 5.15. Dla z ¢ R i operatora samosprzezonego A okreslamy trans-
formate Cayleya wzorem

U =—(A—2)(A-z)" H X H

Twierdzenie 5.16. Dla operatora samosprzezonego A transformata Cayleya
jest operatorem unitarnym.

Dowdd. Dla v € D(A) mamy
I(A = 2D)v||* = | Av]|* + |2 [|v]* — 2({Av,v) — 2(v, Av)
= [[Av]]* + [z[*[lv]]* — 2Re(z) (Av, v)

Poniewaz wynik nie zalezy od Im z, to ||(A — zI)v|| = ||(A — zI)v||. Mamy
U, : (A—=zl)v — —(A — zI)v. Poniewaz kazdy wektor w € H ma postaé
w = (A —ZI)v dla pewnego v € H, to U, jest izometrig z H na siebie. [

Naszym celem jest wyrazenie operatora A za pomoca Us.

Twierdzenie 5.17. Dla z ¢ R operator I + U, jest réznowartoSciowy oraz
Ran(I 4+ U,) = D(A).

Dowdd. Dla v € D(A) mamy U,(A —Zl)v = —(A — zI)v. Oznaczmy w =
(A —zI)v. Wtedy

(I4+U ) w=(A-zhv—(A—=z[lv=(2—Z)v#0, v#0

Zatem Ran(l + U,) 2 D(A). Z drugiej strony kazdy wektor w € H ma
posta¢ (A — zI)v dla pewnego v € D(A). Czyli Ran({ + U,) C D(A). Ze

wzoru wynika réoznowarto$ciowosé. O]
Okreslmy U := U; = —(A — i) (A +il)~L.

Twierdzenie 5.18.
A=i(Il-U)I+U)"!

Dowdéd. Obie strony sa okreslone na D(A), z poprzedniego twierdzenia. Ma-
my

T+U=(A+i)(A+il) ™' —(A—di)(A+4iD) ™ =2i(A+4iD)" (%)
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Dowdd jest tatwy, gdy A jest ograniczonym operatorem samosprzezonym, bo
nie musimy dbaé¢ o dziedziny. Wtedy I + U jest odwracalnyf] Otrzymujemy

A=2(I+U)" ' =il =2i(I+U) ' —i(I+U)I+U) ' =i(I-U)I+U)™*
W przypadku ogélnym mamy
A+l : D(A) %H’ I+U:H%D(A)

Dalej
I—U=(A+i)(A+i) " + (A—iD)(A+il)" =24(A+il)”"

Ponadto z (*) na przestrzeni D(A) zachodzi wzér (I +U)™' = —2(A+4l).
Otrzymujemy
i1 = U)I +U)™" = 2A(A + i)~ (—;) (A+il)= A
[

6 Rozklad spektralny operatora unitarnego

Dla operatora unitarnego U niech D oznacza rodzine nieujemnych funkcji
ciagtych bedacymi wstepujacymi granicami funkeji cigglych i nieujemnych

na o(U).
Dla liczb rzeczywistych 0 < A — p < 27 niech
; 1 p<t<A
Ly (e") = {0
poza tym

Wtedy 1,5 € D. Dla liczby —7 < A < 7 okreslamy funkcje
fWEL f/\:]l(—w,)\)u —T <AL

Dla ustalonego operatora unitarnego niech FE(A) = f\(U). Operatory
E(X) sa nieujemne. Ponadto dla g < A mamy

EWER) = [u(U)HU) = (fuf\)U) = [u(U) = E(n)

aGdy I + U jest odwracalny, to —1 ¢ o(U). Zatem o(U) C {e : —m+6 <t <m— 4}
dla pewnej liczby 0 < § < .
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W szcezegolnosci E(A)? = E(M), czyli E()\) jest rzutem ortogonalnym. Po-
nadto
EQN) = E(p) = EQ)I = E(n)] > 0

Nieréwno$¢ wynika réwniez z faktu, ze 0 < f,(e") < fi(e"), czyli
EQN) = E(p) = (fx=fwU) >0

Lemat 6.1. Dia —m < p < A <7 mamy

> ]l(/w\)<U)
EN) —E(p) < 1usnU), p—0>-m A<m

< ]l(u—5,7r+6)(U)7 lj'_6> _7T77T+57 (71'—}—5)—(”—5) <27
Dowdd. Pierwsza nieréwno$¢ wynika z f, + L, x) < fi. Z kolei dla A <

mamy f, + 1,55 > fi. Ostatnia nieréwnos¢ wynika z 1 < f, + L(y—s5745)-
H

Twierdzenie 6.2. Dia —m < A < 7 zachodzi lim,,_, - E(u)v = E(AN)v dla
wszystkich v € H. Réwnowaznie rodzina E(X) jest mocno lewostronnie ciggla
dla —m < A < .

Dowdd. Niech u,, / A. Istnieje rosnacy ciag g, funkcji ciggtych na T, zbiezny
punktowo do f\ spetiajacy 0 < g, < f,,,. Wtedy

0 < 9u(U) < [, (U) < /5(U)

Poniewaz f\(U) jest mocng granica operatoréw g,(U), to f, (U) — fr(U)
mocno, czyli E(u,) — E(X) mocno. W tym miejscu korzystamy z

Lemat 6.3. Niech 0 < A, < B, oraz B,, — 0 mocno. Wtedy B,, — 0 mocno.

Dowdd. Mamy
0 < (4A,v,v) < (Bpo,v)

Zatem (A,v,v) — 0. Ciag norm ||A,]|| jest ograniczony. Z nieréwnosci
14w ]1* < | Al {Anv, v)
otrzymujemy teze.

Lemat stosujemy do B,, = fA(U) — ¢,(U) oraz A, = fA(U) — f,..(U). O
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Twierdzenie 6.4. lim E(M\v =0 dlav € H.

A——7

Dowdéd. Niech A\, \, —m. Wtedy ciag E()\,) jest malejacym ciagiem ope-
ratoréow nieujemnych, wiec jest mocno zbiezny do pewnego rzutu E. Dla
ustalonej liczby —m < A < 7 istnieje niemalejacy ciag funkcji ciagtych g,
zbiezny punktowo do fy taki, ze g(e”) = 0 dla —w < t < \,. Wtedy

gn(U)EAn) = ga(U) 2, (U) = (gnf,)(U) =0
7, drugiej strony
0=g,(U)E(N\,) > E(NE>E >0
Coyli E = 0. O
Okre$lmy E(—m) = 0.

Lemat 6.5. Operatory B,C € B(H) sq przemienne oraz C > B > 0. Wtedy
|BA|| < ||CA]l dla dowolnego operatora A € B(H).

Dowod. Mamy
0 < (BA)"(BA) = A"B?A < A*C*A = (CA)*(CA)

Zatem
IBA|? = [(BA)*(BA)|| < [[(CA)*((CA)|| = |CA|?
O

Twierdzenie 6.6. Niech f € C(T) oraz € > 0. Istnieje liczba § > 0 taka,
Ze dla kaZdego podziatu P = {tg,t1,...,t,} przedzialu [—m, 7| o $rednicy
mniejszej niz § 1 dowolnego wyboru punktow posrednich t;_; < s; < t; mamy

<ég, AE(t]) = E(t]> — E(t]‘_l

if(e“f') AE(t) - F(U)

Stosujemy wtedy zapis

W szczegélnosci



Rozklad spektralny operatora unitarnego 43

Dowdd. Wystarczy rozwazaé funkcje o wartosciach rzeczywistych. Rozwazmy
podzial P = {tg, %1, ...,t,} o Srednicy mniejszej niz 6. Poniewaz >°7_ AE(t;) =
I, to

fjlﬂ ¢) AB(t;) - f<U>:§":1[f<e“j>f—f<U>J AE(L))
Otrzymujemy

ILf (™) = O AE)] = (™) = fF(U)| AE(t il
< MAENT = ULy -st4 (Ul < max |f(ef ") = fe)] =t Ms
Z lematu kazdy sktadnik jest operatorem samosprzezonym i ma norme nie-
wieksza niz My, zatem miesci sie pomiedzy —Ms [ i Ms I. Stad po pomnoze-
niu przez AE(t;) miesci sie pomiedzy —Ms AE(t;) a Ms AE(t;). Po zsumo-
waniu otrzymujemy
—M(;[ = M(; Z AE Z 8] AE f(U) < M5 Z AE(ij) < M(;[

j=1 k=1 j=1

Stad
32 7(E) AB() = )

[]

Uwaga Spektrum operatora 7, f(e*/) AE(t;) jest skoficzone i sktada

sie z wartosci wasnych {f(e*7)}7_,, dla ktérych AE(t;) # 0. Ponadto

< s ()

Twierdzenie 6.7.

(a) Dlia —m < p < jesli E(u—0) = E(u+96), dla pewnej liczby 0 < 6 <
min{u, 7 — pu}, to e ¢ o(U). Jesli E(—7 +6) =0 oraz E(m —§) = 1
dla pewnej liczby 0 < § < 7/2, to —1 ¢ o(U)

(b) Dla —7 < p <, jesli e ¢ o(U), to E(u—06) = E(n+0) dla pewnej
liczby 0 < § < min{p, 7 — p}. Jesli —1 ¢ o(U), to E(—m + ) =0 oraz
E(r—0) =1 dla pewnej liczby 0 < § < w/2.
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Dowdéd. (a) Zatézmy, ze —m < p < w. Rozwazmy podzial P zawieracy pu — ¢
oraz {1 + 0. Wtedy spektrum kazdej sumy cze$ciowej dla U, czyli f(2) = =z,
nie zawiera liczb e dla p — § < t < pu + 6. Zatem odlegtosé liczby e od
spektrum sumy czesciowej jest wieksze niz ¢ dla pewnej liczby dodatniej ¢.
To samo dotyczy granicy, gdy $rednica P dazy do zera, czyli operatora U .
W szczegolnosei e ¢ o(U). Podobnie jesli E(r —6) =i E(—7+46) =0, to
—1¢ o(U). W tym wypadku rozwazamy podzial zawierajacy liczby —m + ¢
im—0.

(b) Zaltézmy, ze e ¢ o(U) dla — < pu < 7. Rozwazmy podzial zawiera-
jacy p = tj, taki, ze sj, = 5,41 = p. Wtedy spektrum

Z Gisj AE(t])
j=1

zawiera e jesli AE(t;,) # 0 lub AE(tj,11) # 0. Poniewaz sumy czesciowe sa
zbiezne do U, to istnieje podzial P, ktérego spektrum nie zawiera e'*. Zatem
AE(tj,) = 0 oraz AE(t,+1) = 0. Podobnie jesli —1 ¢ o(U), to wybieramy
s$1 = —m oraz s, = m. Podobne rozumowanie daje, ze dla pewnego podziatu
AE(ty) =0 oraz AE(t,) = 0.

O

Dla —7m < A < 7 okreslamy

Py = lim [EA+6) — E\)], Pr= lim [I — E(x — )]

5—0+ 0—07t
Wtedy P, sa rzutami jako mocne granice przemiennych rzutow.

Twierdzenie 6.8. Operator Py jest rzutem na podprzestrzen wektorow wia-
snych operatora U odpowiadajgcych wartosci wlasnej e .

Dowadd. Bedziemy korzystaé z

U= /ﬂe” dE(t)

Rozwazmy —m < A < 7. Niech Py\v = v, dla v # 0. Poniewaz
Py<EMN+0)—EMN<EA+6), 6>0

to E(A+9)v =v i E(A\)v = 0. Stad wynika, ze funkcja t — E(t)v jest stata
na przedziatach (—m, Al i (A, 7]. Rozwazmy podzial P, typu lewy koniec,
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zawierajacy —m < A = t;, < 7. Z wczesniejszej uwagi przyrosty AE(t;)v sa
zerowe dla j < jg oraz dla j > jg + 2. Zatem

e AE(t)v = €0 AE(ty41)v = € [E(tj41)v — E(A)v] = ev

j=1
Poniewaz sumy daza do U, to Uv = e™v.

Jesli Prv = v, to E(A\)v = 0 dla =7 < A < 7. Rozwazmy podzial typu
prawy koniec. Wtedy AE(t;)v =0 dla j < n.

et AE(t)v = e AE(t,)v = —AE(t,)v = —[I — E(t,—1)]v
j=1
Po przejsciu do granicy uzyskujemy Uv = —wv.
Zatormy, ze Uv = v dla —1 < A < m. Wtedy dla w = E(u)v mamy
Uw = UE(p)v = E(p)Uv = e*E(p)v = ¢™w
Zatézmy, ze —m < p < A\. Mamy AE(t;) E(p) =0 dla t;_; > p, zatem

n

Ey= Y AR

Jiti—1<p

[f: e AE(t)

j=1

Zatem odleglogé liczby e od spektrum kazdej sumy jest wicksza niz pewna
liczba 0 < € < 1. To samo dotyczy granicy U E (). Zatem E(p)v = w = 0 dla
i < A. Ze wzgledu na lewostronna mocna ciggto$é otrzymujemy E(A)v = 0.
Podobnie dla i > XA mamy U[l — E(u)]v = eI — E(u)]v. Odleglosé liczby
e od spektrum kazdej sumy

[i eitj AE(t])

Jj=1

n

I-EW]= ) €¢YAB()

j?tj—l 2/’1‘

jest wieksza niz pewna liczba 0 < & < 1. To samo dotyczy granicy U[I—E(u)].
Zatem [ — E(p)]v =0, czyli E(p)v = v dla pu > A Stad [E(A+6) —E(X\)]v =
v, czyli Pyv = v. Podobne rozumowanie daje, ze jesli Uv = e™v = —v, to
E(p)v=0dla p < m. Zatem [I — E(\)]v = v, czyli Prv = v. O

Twierdzenie 6.9. Dia —7 < \ < 7 oraz funkcji ciggtej h na T mamy

(RUYE(\)v, v) = / h(e") d(E(t)v, v)
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Dowéd. Niech g,(e) bedzie rosnacym ciggiem funkcji nieujemnych zbieznym
punktowo do fy(e™), zatem g, (U) — E(\) mocno. Otrzymujemy

(B(U) B0, 0) = lm(h(U)gn( )0, 0) = T (hg) V), )

= ligl/h(eit)gn(eit) d(E(t)v,v)

n

= lim/h(e“)gn(eit) d{E(t)v,v) = /h(eit)d<E(t)v,v>

Pierwsz réwno$é wynika z faktu, ze g,(e”) = 0 dla t > \. Dla dowodu
przejscia graniczngo mozemy przyjac, ze dla ustalonej liczby 0 < § < L (w—)
mamy g, (") =1dla —7 + 6 <t < XA — 4. Wtedy

—7+0

[ rEga(e) dB @) = [ h(e)gale®) dE(,v)

—Tr

+ / h(e') d(E(t)o, v) +

h(e")gn(e") d{E(t)v, v)

L

Skrajne catki mozna oszacowaé przez

[Plloc(E(=m + d)v,v), [Pl (E(N)v,v) = (E(X = d)v,0)]  (¥)

Ponadto
A -7+
/ h(e") d(E(t)v, v) = / h(e") d{E(t)v, v)

)
¥ / (et d(E(t)v,v) + [ h(e") d(E(t)v,v)

L~

—7+0

A
Znowu skrajne calki mozna oszacowaé tak jak w (x). Korzystajac z moc-
nej lewostronnej ciagtosci t — E(t) dla —m < t < 7 oraz z faktu, ze
lim; , .+ E(t)v = 0 otrzymujemy teze. ]

Uwaga. Zaloézmy, ze h = |g|* dla funkcji ciaglej g. Wzor oznacza, ze

(EN)g(U)v,g(U)v) = (g(U)"g(U)E(N)v,v) = / lg(eN* d(E(t)v,v) -7 <A<



Rozklad spektralny operatora unitarnego 47

czyli '
dEN)g(U)v, g(U)v) = |g(e™)]* d(E(\)v,v)
Zatem catki Riemanna-Stieltjesa funkcji ciagltych wzgledem obu stron sg ta-
kie same.

Definicja 6.10. Rodzing {E(\)}_r<a<r nazywamy rozkladem spektralnym
operatora U.

Uwaga Wzor

U:/&M@
przypomina rozktad diagonalny macierzy. Symbol dE(t) jest infinitezymal-
nym rzutem ortogonalnym na podprzestrzen zwigzang z wartodcig . Rzuty
dE(t) i dE(s) sa do siebie ortogonalne dla ¢t # s oraz

fz/dE@

—T

Przyktad
(a) H = L*(—m,m), (Uh)(e") = e"h(e"). Wtedy [f(U)h](e") = f(e")h(e").

Jesli f,(e") jest rosngcym ciggiem funkcji ciagtych zbieznym punktowo
do T(_r ("), dla =7 < X < m, to ciag operatoréw f,(U) jest zbiezny
mocno do operatora

Ponadto limy_.,- E(\) = I oraz E(—7) = 0.

(b) Niech H = C" oraz (Udy) = ), dla —m < t; < ty < ... < t, < 7.
Tzn. U jest macierza diagonalng o wartosciach wlasnych e®*. Funkcje
L(—x (") sa ciggte poza punktami {tx}}_,. Zatem

E()\)(Sk = ]1(_7“)\)(6#)5]{, A % tp, —m < AT

7 lewostronnej ciggtosci wzor jest spetniony dla —7 < A < 7. Za-
uwazmy, ze F(\) jest rzutem ortogonalnym na podprzestrzen wektorow
wlasnych o wartoéciach wlasnych e, dla —7 <t < A\, dla —7m < A < 7.
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7 Rozklad spektralny operatora samosprze-
zonego

Dla operatora samosprzezonego A rozwazamy transformate Cayleya A =
i(I-U)(I+U) . Niech { E(A\)} _r<)<r bedzie rozktadem jednosci zwiazanym
z operatorem U. Poniewaz liczba —1 nie jest wartoscig wtasng operatora U,
to funkcja A +— FE(\) jest lewostronnie ciagta réwniez w punkcie 7. Funkcje
) 1— ei)\
(—m,m) 2> A i = tan(A/2) € R

Ze wzoru h jest ciggta i scile rosnaca. Dla x € R okreslmy F'(x) = F(2arctan ).
Wtedy

F(tg(t/2)) = E(t), lim F(z)=0, lim F(z)=1

r——00 T—00

Ponadto F'(x) jest niemalejaca lewostronnie mocno ciagla rodzina rzutéow
ortogonalnych.

Lemat 7.1. Zachodzi réownosé
m 1
RaH(I+U):{U€H/_ﬂ|1_+_eZt|2d<E(t)U,U><OO}

przy czym catka niewta$ciwa jest traktowana jako granica lub supremum wita-
Sciwych catek Riemanna-Stieltjesa

1
. ™ 1
1171;11 /_ﬂ—+711 m d<E(t)U, U>
Dowdd. Catka niewlasciwa jest dobrze okreslona, bo miara d(E(t)v,v) nie
ma atomu w punkcie 7. Niech v = Ran (I +U). Wtedy v = (I + U)w dla

pewnego w € H. Zatem z uwagi na temat rownosci catek Riemanna-Stieltjesa
orzymujemy

/_7; |1+16t|2 d(E(t)v,v) = / Hleitpd((E(t)(] + Dw, (I +U)w)

-/ Mu + A, w) = [ d(Eb,v) = (w,w)
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To dowodzi zawierania ” C 7.
Zatoézmy, ze

/7T ;d(E(t)v,w < 0

—r |1+ €2
Niech a,, = —7 + % oraz b, = m — % Oznaczmy
i 1 i i i i i
fn(e t) = I:]l(_ﬂ—7bn)<€ t)_]l(—ﬂ,an)<e t)]7 gn(e t) = ]l(—mbn)(e t)_]l(—man)<€ t)

1+ et

oraz w, = f,(U)v. Pokazemy, ze ciag w, jest zbiezny. Dla n > m mamy
[wn = win|* = (fu(U)0 = fir(U)v, fu(U)0 = frn(U)0) = (| fo = [l (U)v,0)
—/u;“ )~ Fnle) d( {H+éwgn ) =gnle)] d(E(H),v)

_/ 1 g 90 () A0 1) / e () (B0,

bn+1 bmfl

B - [ B

—Qn+1 —Am-—1

Oba odejmowane sktadniki sg zbiezne do

7r 1
/ﬂu+wp“E@“”

gdy m — oo.
Niech w = lim,, w,,. Otrzymujemy

(L +U)w, = +U)fu(U)v
=(14+2)O)fu(Uv=[142)f](U)v = g, (U)v — v

Zatem (I + U)w = v, czyli v € Ran (I 4+ U).
[l

Uwaga Dla —7m < a < b < 71ig(e") =1 (e") mamy

9(U) = B(b) ~ lim, Ba+9)

Rzeczywiscie
Ty = 51i%1+ T rars) + Liap
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Twierdzenie 7.2. Dla operatora samosprzezonego mamy

D(A) = {v cH: 7x2 d(F(z)v,v) < oo}
Dowdd. Niech v € D(A). Z lematu dostajemy

T
/’1—|—elt|2d<E(t)v’,U> < 0

1— it
Zatem stosujac podstawienie x = tan(t/2) = 2'1 n e't otrzymamy
e’l,
[ arnn - [E0F apoug <4 [ L a@o <
T ), v) = [ —— v, _— v,v) < 00
E ’ . 11+ eit|? VLTS . 1+ et ?

o0

Dla dowodu przeciwnego zawierania zaltézmy, ze / 2* d(F(z)v,v) < oo.

Wtedy -

[ asnn = [ (14 208 awen - [ ara.) <
J |1+eit’2 v, v _771- ‘1"’6#‘2 v,V _700 X T)v,v )
Zatem v € D(A). O

Twierdzenie 7.3. Dla operatora samosprzezonego A mamy
A= / v dF (),

ktory z definicji oznacza, Ze dla v € D(A) zachodzi

[e.0]

(Av,v) = /xd(F(x)v,v)

—00

Uwaga. Calka jest bezwzglednie zbiezna, bo |z| < (1 + 2?)/2.
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Dowdéd. Dla a,, = —7m + %, b, = m +% okreslmy ¢, = tan(a,/2), d, =
tan(b,/2). Niech hy,(z) = 1(—0.4,) () — L(—oo,en) (). Wtedy
0o - - T ) 1 —eit .
/ ho(2) 2 d{F (20, v) = /gn(e it dE(@.v)

Wiemy, ze v = (I + U)w dla pewnego w € ‘H oraz
d(Et)(I + U)w, (I +U)w) = |1+ *|? d{E(t)w, w)

Zatem ostatnia caltka jest réwna (wg oznaczen z dowodu poprzedniego twier-
dzenia 7.1)

/ gn(€M) i (1 = €)1+ eit) d(E(t)v, v)

W granicy otrzymujemy ( lim; .- E(t)v = v = E(m)v)
/z' (1—eM(1+e ™) d(E{t)v,v) =i (I -U)I+U"w,w) =i ((I—-U)w,v)

Ale
Av=AI+V)w =il —U)w

Zatem w wyniku dostajemy (Av,v). O

Okreslmy H,, = [F'(n) — F(—n)|H, gdzie n € N. Wtedy H,, jest domknie-
ta podprzestrzenia w ‘H jako obraz H pod dziataniem rzutu ortogonalnego.
Ponadto H,, C 'H, 1 oraz

3

H,=H

n=1

bo
117:511[F(n) — F(—n)lv=wv

Lemat 7.4. Mamy H,, C D(A) oraz A(H,) C H.,.
Dowdd. Niech v € H,,. Okreslmy P, = F(n) — F(—n). Wtedy

o0 o0

/x2d(F(x)v,v> = /x2d<PnF(x)an,’u>

—00 —00
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Przyrosty funkcji o — (P, F(z)P,v, P,v) sa zerowe dla || > n, bo

F(z)P, = F(x)[F(n)—F(—n)] = F(n)— F(—n), r=n

F(z)P, = F(z)[F(n)—F(—n)]=F(z)—F(z)=0, z<-n

Zatem calka jest ograniczona z gory przez n?||P,v||* = n?||v||?, bo dla |z] < n
mamy
0 = PyF(—n)P, < P,F(n)P, = P,

Dla v € D(A) mamy v = (I + U)w dla pewnego w € H. Zatem
AP,w=AP,(I+U)w=Al+U)P,w =1l —-U)P,w =iP,(I —U)w
Stad wynika, ze jesli v € H,,, to Av € H,,. O

Twierdzenie 7.5. Operator A : 'H,, — H,, jest ograniczony oraz || A||x, -, <
n.

Dowdd. Niech v € H,,. Wtedy

(Av,v) = 7O$d<F(JJ>U,U> = 7;Ud<F(x)an,an>

Poniewaz przyrosty sa zerowe dla |z| > n, to

(4v,0)| <n [ d(F(z)v,v) = nlol?

— 00

Ze wzoru polaryzacyjnego otrzymujemy
Re (Av,w) = i[(A(v +w), v+ w) — (A(v —w),v — w)]
< v+ wl? + llo = wlP’] = S{lol? + el
Dla liczby s > 0 otrzymujemy zatem
Re (Av, w) = Re (A(sv), s™'w) < g[SQHUH2 + 577 |w])?]

Przyjmujac s = ||w]|/||v|| dostajemy

Re (Av, w) < nljo] {jw]]
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Mamy (Av, w) = e?|{Av, w)|. Wtedy
[(Av, w)| = Re (A(v, e"w) < nlv]| [le”w]| = nljv]| [w]
Zatem ||A]| < n na H,. O

Zatézmy, ze A jest ograniczonym operatorem samosprzezonym. Ze wzoru

A=i(I-U)(I+U)™" wynika
(I+U)" = —%(A +il)
Zatem operator I 4+ U jest odwracalny, czyli —1 ¢ o(U). To oznacza, ze
o(U) C {e" : 2arctg (a) < t < 2arctg (b)}

dla pewnych liczb rzeczywistych a < b. Wiemy, ze F'(a) = F(2arctg (a)) =0
oraz F'(b) = FE(2arctg (b)) = I. Niech f bedzie funkcja ciagta na R. Oznaczmy
o(t) = i(1 — e®)(1 + )™t = tg(t/2). Funkcja o(t) jest ciggta na [a,b] oraz
A = p(U). Zatem

o(A) = o(p(U)) = ¢(a(U)) C (a,b)

Funkcja f o ¢ jest ciagta i ograniczona na o(U). Otrzymujemy wiec

2arctg (b) b
FA) = f@@) = (Fop)U) = [ (foR)®)dB(t) = [ f(z)dF ()
2arctg (a) a

W szczegdlnoscei
b
A= [ f(x)dF ()

Wiemy, ze sumy catkowe pierwszej catki sa zbiezne w normie. To samo do-

tyczy wiec drugiej catki, ktora otrzymana jest przez ciagte podstawienie

x = arctg (t/2). Niech ¢ = mino(A) oraz d = maxo(A). Ze wzoru na A

otrzymujemy, ze F(z) =0 dla x < ¢ oraz F(z) = I dla > d. Funkcja F(z)

jest mocno lewostronnie ciagla. Zatem F(c) = 0 oraz lims_,o+ F'(d +0) = 1.
Okreslajac F(d) = I otrzymamy
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bo sumy catkowe sa takie same jak dla calki po przedziale [a,b] jesli przyj-
miemy, ze podziat calki wzgledem [a, b] zawiera c i nie zawiera d.

Ze wzoru wynika, ze jesli ciag funkcji ciagtych f,, — f jest zbiezny jed-
nostajnie na [c,d], to f,(A) — f(A) w normie.

Poprzez podstawienie z = tg(¢/2) lub poprzez zastosowanie podobnego
dowodu do Twierdzenia 6.8 uzyskamy

Twierdzenie 7.6.
(a) Dla ¢ < x < d jesli F(x —§) = F(x +9), dla pewnej liczby § > 0, to
x ¢ o(A).
(b) Diac<x<d, jeSlix & o(A), to F(x—9) = F(x+0) dla pewnej liczby
6> 0.
Dla ¢ < z < d okreslamy

Py = lim [F(a+06) = F(a)], Pi= lim[l—F(d—0)]

§—0t

Wtedy P, sa rzutami jako mocne granice przemiennych rzutéw.

Twierdzenie 7.7. Operator P, jest rzutem na podprzestrzen wektorow wta-
snych operatora A odpowiadajgcych wartos$ci wlasnej x.

Dla wektora v rozwazamy lewostronnie ciggta funkcje niemalejaca
[c,d] 2 x — (F(z)v,v). Z teorii miary wiemy, ze ta funkcja wyznacza miare
borelowska na przedziale [c, d]. Z poprzedniego twierdzenia wynika, ze miara
miara zeruje sie na przedziatach otwartych roztacznych z o(A). Wtedy

(FAw,0) = [ @) dP),o)

a(A)

Dlatego stosuje sie zapis

Dla u,w € 'H mamy

(F(A)o, w) = i ]; FOF(A) 0+ iPw), v+ P
- iz / F(2) d{F (@) (0 + i*w), v + i*w)
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To oznacza, ze prawa strona jest ograniczona forma pottoraliniowa. Dla ogra-
niczonej funkcji borelowskiej g(x) na [a, b] istnieje ciag wspolnie ograniczo-
nych funkeji ciagtych f,(z) zbiezny prawie wszedzie do g(z). Wtedy prawa
strona jest zbiezna, wiec lewa tez. Czyli ciag operatoréw f,(A) jest x-stabo
zbiezny do pewnego operatora g(A). Wtedy
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Lemat 7.8.

(a) Dla operatora unitarnego U, ograniczonego operatora T oraz funkcji f €
C(T)) jesli TU = UT, to Tf(U) = f(U)T Ponadto TE(\) = E(\)T.

(b) Dla ograniczonego operatora samosprzezonego A, o(T) C |[c,d], funkcji
f € Cle,d] oraz ograniczonego operatora T, jesli TA = AT, to T f(A) =
fA)T oraz TF(x) = F(x)T.

Rozwazmy ograniczony operator normalny 7. Wtedy T' = A + 1B, gdzie
A= 3(T+T*) oraz B = (T — T*). Operatory A i B sg samosprzezone i
przemienne. Wiemy, ze jesli z = x + iy € o(T), to x € o(A) oraz y € o(B).
Zawieranie odwrotne nie musi by¢ spetnione.

Niech {F4(x)}{a,, oraz {Fg(y)}iE,, beda rodzinami rzutéw zwiazanych
z A1 B, odpowiednio. Poniewaz B jest przemienny z A, to rowniez z Fa(z).
Zatem Fp(y) jest przemienny z F4(z). Dla funkcji ciagtych f(z) i g(y) na
[ca, da] oraz [cp, dp|, odpowiednio, otrzymujemy

f<A>:7Af<x>dFA<x>= [ @ ara@) [ aFsty) = [ f@)dFa@) aFs(y)

CA cB [CA,dA}X[chB]
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przy czym catke podwojng traktujemy jako granice sum catkowych wzgledem
prostokatéw [zx_1, k] X [yi—1, yi]. Sumy catkowe sa wtedy zbiezne w normie
do f(A). Podobnie

9B) = [[ 1) dFa(@) dFs(y)
[ca,da]x[cp,dB]
Przez pomnozenie (rozwazajac zbiezno$é sum catkowych) otrzymujemy
rAeB) = || F@)gly) dFa(x) dF(y)
[CA,dA]X[CB,dB]
Dla funkeji h(z,y) = Y5 202 tnmz™y™ dostajemy
MAB) = [ hla.y)dFa(e) dFp(y)
[ca,dalx[ep,dB]

Z liniowosci uzyskujemy

T" = (A+iB)" = / / ( + iy)" dFa(z) dFp(y)
[ca,da]lXx[cB,dB]
Ty =(A=iBy' = [[ (@ iy)"dFa@)dFs(y)

[CA,dA]X[CB,dB]
Jesli p(z,%) jest wielomianem zmiennej z, to
s = [ ez dFa@) dFs(y)
[CA,dA}X[CB,dB}
Z kolei jesli funkcja f(z) okre$lona na [c,,da] X [cp,dp] jest granica jedno-
stajna wielomianéw postaci p(z,Zz) to
fry =[] e AR dFs(y)
[CA,dA]X[CB,dB}
W szczegdlnosci
T= [ (e+iydFa() dFa(y)
[CA,dA]X[CB,dB]

Rozwazajac sumy czesciowe mozna udowodnié¢
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Twierdzenie 7.9. Diacy < x < dy, cg <y <dp

(a) Jesli Fa(x—0) = Fa(x+0) lub Fp(y—0) = Fp(y+9) dla pewnej liczby
d>0, tox+iy ¢ o(T).

(b) Jesli x+iy & o(T), to Fa(x—09) = Fa(x+6) lub Fg(y—9) = Fp(y+9)
dla pewnej liczby 6 > 0.
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