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1 Algebry Banacha

Definicja 1.1. Algebrą nazywamy przestrzeń liniową nad C z mnożeniem.
Mnożenie jest rozdzielne względem dodawania (obustronnie) oraz

α(xy) = (αx)y = x(αy), α ∈ C

Definicja 1.2. Algebrą unormowaną nazywamy algebrę z normą spełniającą
warunek podmultiplikatywności

‖xy‖ ¬ ‖x‖ ‖y‖

Jeśli algebra jest zupełna, to nazywamy ją algebrą Banacha.
∗Wykład opracowany na podstawie notatek Wiktora Malinowskiego
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Przykłady

(a) C[0, 1]
‖f‖∞ = max

0¬x¬1
|f(x)|, (fg)(x) = f(x)g(x)

tzn. mnożenie jest punktowe. Przedział [0, 1] można zastąpić zwartą
przestrzenią topologiczną.

(b)
C0(R) = {f ∈ C(R : lim

|x|→∞
f(x) = 0}, ‖f‖∞ = max |f(x)|

(c) B(H) przestrzeń operatorów ograniczonych na przestrzeni Hilberta z
normą operatorową: ‖AB‖ ¬ ‖A‖ ‖B‖

Definicja 1.3. Algebrę nazywamy przemienną, jeśli mnożenie jest przemien-
ne. Element e w algebrze A nazywamy jednością, jeśli

ea = ae = a, a ∈ A

Twierdzenie 1.4. Każdą algebrę unormowaną (algebrę Banacha) można
rozszerzyć do algebry unormowanej (algebry Banacha) z jednością.

Dowód. Niech A będzie algebrą Banacha bez jedności. Określmy mnożenie
w przestrzeni liniowej Ã = A⊕ C wzorem

(a⊕ λ)(b⊕ µ) = (ab+ λb+ µa)⊕ λµ

Określamy normę ‖a⊕λ‖ = ‖a‖+ |λ|. Wtedy element 0⊕ 1 jest jednością w
Ã, bo

(0⊕ 1)(a⊕ λ) = a⊕ λ = (a⊕ λ)(0⊕ 1)

Norma jest podmultiplikatywna, bo

‖(a⊕ λ)(b⊕ µ)‖ =‖ab+ λb+ µa‖+ |λµ|
¬‖a‖ ‖b‖+ |λ| ‖b‖+ |µ| ‖a‖+ |λ| |µ|
=(‖a‖+ |λ|)(‖b‖+ |µ|) = ‖a⊕ λ‖ ‖b⊕ µ‖

Jeśli A jest zupełna, to również Ã jest zupełna.

Przykłady
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(a) c0 - przestrzeń ciągów o wyrazach zespolonych zbieżnych do 0, z normą
‖x‖ = supn |xn|. Wtedy

c̃0 = c = {x : lim
n
xn istnieje}

(b) C0(R). Wtedy

C̃0(R) = {f ∈ C(R) : lim
x→−∞

f(x) = lim
x→∞

f(x)}

W obu przykładach normy w Ã są równoważne normom ‖ ‖∞.
Jeśli A 6= {0} jest algebrą Banacha z jednością e, to e 6= 0 oraz

‖e‖ = ‖e · e‖ ¬ ‖e‖ ‖e‖

zatem ‖e‖ ­ 1.
Odtąd nie będziemy rozważać algebr zerowych A = {0}.

Twierdzenie 1.5. Dla algebry Banacha z jednością istnieje norma na A
równoważna normie wyjściowej, dla której norma jedności wynosi 1.

Dowód. Dla x ∈ A rozważamy odwzorowanie Lx : A→ A określone wzorem
Lxy = xy. Wtedy Lx jest operatorem liniowym na A oraz

‖Lxy‖ = ‖xy‖ ¬ ‖x‖ ‖y‖

Zatem Lx jest operatorem ograniczonym. Mamy

‖x‖ = ‖Lxe‖ ¬ ‖Lx‖ ‖e‖

Zatem ‖Lx‖ ­ ‖e‖−1‖x‖. Tzn.

‖e‖−1‖x‖ ¬ ‖Lx‖ ¬ ‖x‖ (1.1)

Określmy ‖x‖′ := ‖Lx‖. Wzór określa normę. Sprawdzimy podaddytywność
i podmultiplikatywność.

‖x+ y‖′ = ‖Lx+y‖ = ‖Lx + Ly‖ ¬ ‖Lx‖+ ‖Ly‖ = ‖x‖′ + ‖y‖′

‖xy‖′ = ‖Lxy‖ = ‖LxLy‖ ¬ ‖Lx‖ ‖Ly‖ = ‖x‖′‖y‖′

Ponadto ‖e‖′ = ‖Le‖ = ‖I‖ = 1. Na podstawie (1.1) normy ‖ ‖′ oraz ‖ ‖ są
równoważne.
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Przykłady

(a) A = {f ∈ C(D) : f − holomorficzna w intD},

‖f‖ = max{|f(z)| : |z| = 1}

A nazywamy algebrą dyskową. Funkcja stale równa 1 jest jednością.

(b) A = `1(Z). Dla a = {an}∞n=−∞ mamy ‖a‖ =
∞∑

n=−∞
|an|. Określamy

mnożenie (splot) wzorem

c = a ∗ b, cn =
∞∑

k=−∞
akbn−k

Współczynniki cn są dobrze określone bo ciąg bn jest ograniczony. Mno-
żenie jest przemienne. Reguła mnożenia powstała poprzez analogię z
mnożeniem szeregów Laurenta w 0.( ∞∑

n=−∞
anz

n

)( ∞∑
n=−∞

bnz
n

)
=
( ∞∑
n=−∞

cnz
n

)
, cn =

∞∑
k=−∞

akbn−k

Sprawdzamy podmultiplikatywność normy.

‖c‖ =
∞∑

n=−∞

∣∣∣∣∣∣
∞∑

k=−∞
akbn−k

∣∣∣∣∣∣ ¬
∞∑

n=−∞

∞∑
k=−∞

|ak| |bn−k|

=
∞∑

k=−∞
|ak|

∞∑
n=−∞

|bn−k| = ‖a‖ ‖b‖

czyli ‖a ∗ b‖ ¬ ‖a‖ ‖b‖. Ciąg e = δ0(n) jest jednością.

Definicja 1.6. W algebrze A z jednościa e element x nazywamy odwracalnym
jeśli istnieje element y ∈ A spełniający xy = yx = e. Element y nazywamy
odwrotnym do x i oznaczamy symbolem x−1.

Element odwrotny do x, o ile istnieje, jest jedyny.
Symbolem G(A) oznaczamy grupę elementów odwracalnych w algebrze

Banacha A.

Twierdzenie 1.7. Dla algebry Banacha z jednościa G(A) jest otwartym pod-
zbiorem w A. Ponadto odwzorowanie x 7→ x−1 z G(A) w siebie jest ciągłe.



Algebry Banacha 5

Dowód. Dla y 6= 0 określamy y0 = e. Jeśli ‖y‖ < 1, to element e − y jest
odwracalny, bo

(e− y)
∞∑
n=0

yn =
∞∑
n=0

yn (e− y) =
∞∑
n=0

yn −
∞∑
n=1

yn = e

Zatem jeśli ‖e − x‖ < 1 to element x jest odwracalny, bo x = e − y dla
y = e− x.

‖x−1‖ =

∥∥∥∥∥
∞∑
n=0

yn
∥∥∥∥∥ ¬

∞∑
n=0

‖y‖n =
1

1− ‖y‖
=

1
1− ‖e− x‖

Załóżmy, że x0 ∈ G(A). Dla x ∈ A mamy x = x0(x−10 x). Wystarczy pokazać,
że x−10 x jest odwracalny jeśli x jest dostatecznie blisko x0. Mamy

‖e− x−10 x‖ = ‖x−10 (x0 − x)‖ ¬ ‖x−10 ‖ ‖x− x0‖

Jeśli ‖x−x0‖ < ‖x−10 ‖−1, to element x−10 x jest odwracalny, co kończy dowód
otwartości. Ponadto x−1 = (x−10 x)−1x−10 . Przy założeniu ‖x− x0‖ < ‖x−10 ‖−1
otrzymujemy

‖x−1‖ = ‖(x−10 x)−1x−10 ‖ ¬ ‖x−10 ‖ ‖(x−10 x)−1‖

¬ ‖x−10 ‖
1− ‖e− x−10 x‖

¬ ‖x−10 ‖
1− ‖x−10 ‖‖x− x0‖

Sprawdzamy ciągłość. Niech x, x0 ∈ G(A). Wtedy

‖x−1 − x−10 ‖ = ‖x−1(x0 − x)x−10 ‖ ¬ ‖x−1‖ ‖x−10 ‖ ‖x− x0‖

¬ ‖x−10 ‖2

1− ‖x−10 ‖ ‖x− x0‖
‖x− x0‖

Definicja 1.8. Dla elementu x ∈ A określamy spektrum

σ(x) = {λ ∈ C : λe− x jest nieodwracalny}

Zbiorem rezolwenty dla x oznaczamy %(x) = C \ σ(x), czyli

%(x) = {λ ∈ C : λe− x jest odwracalny}
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Przykłady

(a) A = Mn(C)- macierze kwadratowe wymiaru n×n z normą operatorową
na Cn, z normą euklidesową. Wtedy

σ(A) = {λ ∈ C : det(λI − A) = 0}

czyli σ(A) jest zbiorem wartości własnych.

(b) A = C[0, 1]. Dla f ∈ C[0, 1] mamy

%(f) = {λ ∈ C : f(x) 6= λ, 0 ¬ x ¬ 1} = C \ f([0, 1])

(c) Algebra dyskowa A(D). Dla f ∈ A(D) zachodzi σ(f) = f(D).

Twierdzenie 1.9.

(a) Dla elementu x algebry Banacha z jednościa istnieje granica lim
n
‖xn‖1/n

oraz
inf
n
‖xn‖1/n = lim

n
‖xn‖1/n = sup{|λ| : λ ∈ σ(x)}

(b) σ(x) jest zwartym i niepustym podzbiorem w C.

Dowód. Dowód można przeprowadzić podobnie jak dla przestrzeni B(X),
gdzie X jest przestrzenią Banacha.

Zauważmy, że σ(x) ⊂ {λ : |λ| ¬ ‖x‖}. Istotnie dla |λ| > ‖x‖mamy |λ−1x‖ <
1, więc element

λe− x = λ(e− λ−1x)

jest odwracalny.

Twierdzenie 1.10. Dla dowolnych elementów x, y algebry Banacha z jed-
nością mamy

σ(xy) ∪ {0} = σ(yx) ∪ {0}

Uwaga. Wzór σ(xy) = σ(yx) nie musi być spełniony. Na przykład roz-
ważmy operator S : `2(N0)→ `2(N0) określony wzorem

S(x0, x1, . . .) = (x1, x2, . . .)

Wtedy
S∗(x0, x1, . . .) = (0, x0, x1, . . .)

Mamy SS∗ = I ale S∗S jest rzutem na δ⊥0 . Zatem σ(SS∗) = {1}, σ(S∗S) =
{0, 1}.
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Dowód. Rozważmy liczbę niezerową λ /∈ σ(xy). Chcemy pokazać, że λ /∈
σ(yx). Bez straty ogólności możemy przyjąć, że λ = 1. Chcemy znaleźć wzór
na (e− yx)−1 za pomocą (e− xy)−1. Nieformalnie mamy

(e− yx)−1 =
∞∑
n=0

(yx)n = e+ y

[ ∞∑
n=0

(xy)n
]
x = e+ y(e− xy)−1x

Sprawdzimy, że faktycznie element e+ y(e−xy)−1x jest odwrotny do e− yx.

(e− yx)[e+ y(e− xy)−1x] = e− yx+ y(e− xy)−1x− yxy(e− xy)−1x

= e−yx+y
[
(e− xy)−1 − xy(e− xy)−1

]
x = e−yx+x(e−xy)(e−xy)−1x = e

Wniosek 1.11. Nie istnieją elementy x, y ∈ A spełniające xy − yx = e.

Dowód. Załóżmy, że xy − yx = e. Wtedy

σ(xy) = σ(yx+ e) = σ(yx) + 1

Stąd
[σ(yx) + 1] ∪ {0} = σ(xy) ∪ {0} = σ(yx) ∪ {0}

Oznaczmy C = σ(yx). Zbiór C jest niepusty, ograniczony i spełnia (C + 1)∪
{0} = C∪{0}. Otrzymujemy sprzeczność. Rzeczywiście jeśli C zawiera liczbę
niecałkowitą c lub nieujemną liczbę całkowitą, to c + n ∈ C dla wszystkich
n. Zatem C jest skończonym podzbiorem ujemnych liczb całkowitych. Niech
c oznacza najmniejszą z nich. Wtedy najmniejszą liczbą w C + 1 jest liczba
c+ 1, co prowadzi do sprzeczności.

Przykład Dla przestrzeni funkcji różniczkowalnych w przedziale [0, 1]
mamy

d

dt
(tf)− t d

dt
f = f

Zatem operatory (Mf)(t) = tf(t) orazDf = df/dt spełniająDM−MD = I.

Twierdzenie 1.12 (Gelfand-Mazur). Jeśli algebra Banacha A jest pierście-
niem z dzieleniem, tzn. każdy niezerowy element jest odwracalny, to A jest
izomorficzna z C.



Algebry Banacha 8

Dowód. Załóżmy, że A jest ciałem. Dla a ∈ A mamy σ(a) 6= ∅. Niech λ ∈
σ(a). Tzn. element λe− a jest nieodwracalny. Stąd λe− a = 0, czyli a = λe.
Zatem A = Ce.

Uwaga Rozważmy algebrę A, która jest przestrzenią nad ciałem liczb
rzeczywistych. Rozważamy kompleksyfikację Ã = A ⊕ A zadaną poprzez
mnożenie

(x+ yi)(x′ + y′i) = (xx′ − yy′)⊕ (xy′ + x′y)i

Wtedy Ã jest algebrą zespoloną, poprzez określenie

(0⊕ i)(x′ ⊕ y′i) = (−y′)⊕ xi

Dla każdego element x ∈ A jego spektrum w Ã jest niepuste, tzn. element
x− (a+ bi)e jest nieodwracalny dla pewnych a, b ∈ R. Wtedy element

(x− a)2 + b2e = [x− (a+ bi)e] [x+ (a+ bi)e]

jest nieodwracalny. Zatem

(x− a)2 + b2e = 0

Jeśli b = 0, to x = a. W przeciwnym wypadku

x− ae
b

2

+ e = 0

Równanie x2+e = 0 ma dwa rozwiązania. Rzeczywiście, jeśli x2+e = y2+e =
0, to

(x− y)(x+ y) = 0

W ostattnim wzorze wykorzystalismy przemienność algebry. Uzyskujemy x =
y lub x = −y. Oznaczmy symbolem f jedno z tych rozwiązań. Wtedy

x− ae
b

= ±f

stąd x = ae±bf. Zatem A ∼= C, albo A ≡ R, o ile b = 0 dla każdego elementu
x ∈ A.

Definicja 1.13. Podprzestrzeń I w algebrze A nazywamy prawostronnym
(odpowiednio lewostronnym) ideałem, jeśli ab ∈ I (odpowiednio ba ∈ I) dla
wszystkich a ∈ A oraz b ∈ I. Podprzestrzeń nazywamy ideałem dwustronnym,
jeśli jest ideałem zarówno prawo jak i lewostronnym.
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Przykłady

(a) Dla algebry dyskowej podprzestrzeń

I = {f ∈ A(D) : f(0) = 0}

jest ideałem dwustronnym.

(b) W algebrze B(H) operatory zwarte, operatory Hilberta-Schmidta oraz
operatory śladowe są ideałami dwustronnymi.

(c) Dla algebry A = `1(Z) podprzestrzeń

I =
{

(an) :
∞∑

n=−∞
an = 0

}

jest ideałem dwustronnym. Rzeczywiście, teza wynika ze wzoru
∞∑

n=−∞
(a ∗ b)n =

( ∞∑
n=−∞

an

)( ∞∑
n=−∞

bn

)

Twierdzenie 1.14. Niech A będzie algebrą Banacha (niekoniecznie z jedno-
ścią) oraz I domkniętym ideałem dwustronnym w A. Wtedy algebra ilorazowa
A/I jest algebrą Banacha z normą

‖[a]‖ = inf
u∈I
‖a+ u‖

Jeśli A posiada jedność e oraz I ( A, to [e] jest jednością w A/I oraz ‖[e]‖ =
1 o ile ‖e‖ = 1.

Dowód. Z kursu Analizy Funkcjonalnej 1 wiemy, że A/I jest przestrzenią
Banacha z normą określoną w treści twierdzenia. Z kursy z algebry wiadomo,
że A jest algebrą z działaniami

[a] + [b] = [a+ b], [a] · [b] = [a · b], λ[a] = [λa]

Pozostaje sprawdzić podmultiplikatywność normy. Mamy

‖[a][b]‖ = ‖[ab]‖ = inf
u∈I
‖ab+ u‖ ¬ inf

v,w∈I
‖ab+ aw + bv + vw‖

= inf
v,w∈I

‖(a+ v)(b+ w)‖ ¬ inf
v,w∈I

‖a+ v‖ ‖b+ w‖ = ‖[a]‖ ‖[b]‖

Z kursu algebry wiadomo, że jeśli e jest jednością w A, I ( A, to [e] jest
jednością w A/I oraz [e] 6= 0. Mamy ‖[e]‖ = infu∈I ‖e + v‖ ¬ ‖e‖ = 1. Ale
‖[e]‖ ­ 1, zatem ‖[e]‖ = 1.
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2 Teoria Gelfanda

Definicja 2.1. Ideał I (lewo, prawo-, dwustronny) nazywamy maksymalnym,
jeśli I jest właściwym podzbiorem A oraz nie istnieje ideał J (lewo, prawo-,
dwustronny) taki, że I ( J ( A.

Twierdzenie 2.2. Każdy ideał maksymalny w algebrze Banacha z jednością
jest domknięty.

Dowód. Załóżmy, że I jest ideałem maksymalnym. Wtedy I∩G(A) = ∅, czyli
I ⊂ A \ G(A). Ponieważ drugi zbiór jest domknięty, to I ⊂ I ⊂ A \ G(A).
Zbiór I jest ideałem, więc z maksymalności otrzymujemy I = I.

Definicja 2.3. Funkcję ϕ : A→ C nazywamy homomorfizmem algebry A w
algebrę C jeśli ϕ jest funkcjonałem liniowym oraz ϕ(ab) = ϕ(a)ϕ(b).

Uwaga. Dla homomorfizmu ϕ : A→ C zbiór kerϕ = {a ∈ A : ϕ(a) = 0}
jest ideałem dwustronnym. Rzeczywiście, jeśli ϕ(a) = 0, to

ϕ(ab) = ϕ(a)ϕ(b) = 0, ϕ(ba) = ϕ(b)ϕ(a) = 0

Twierdzenie 2.4. Każdy homomorfizm algebry Banacha w C jest ciągły.
Ponadto norma tego odwzorowania liniowego nie przekracza wartości 1.

Dowód. Załóżmy, że ϕ : A → C jest niezerowym homomorfizmem. Istnieje
element a taki, że ϕ(a) 6= 0. Jeśli A ma jedność e, to ϕ(a) = ϕ(e)ϕ(a). Zatem
ϕ(e) = 1. Jeśli b jest elementem odwracalnym, to

1 = ϕ(e) = ϕ(b−1b) = ϕ(b−1)ϕ(b)

Stąd ϕ(b) 6= 0. Dla dowolnego elementu a ∈ A mamy ϕ[a− ϕ(a)e] = ϕ(a)−
ϕ(a) = 0. Zatem element a− ϕ(a)e nie jest odwracalny. Czyli

ϕ(a) ∈ σ(a) ⊂ {λ ∈ C : |λ| ¬ ‖a‖}

Stąd otrzymujemy |ϕ(a)| ¬ ‖a‖, co pociaga ciągłość ϕ oraz ‖ϕ‖ ¬ 1.
Jeśli A nie ma jedności, to rozważamy Ã = A⊕C oraz ϕ̃(a⊕λ) = ϕ(a)+λ.

Wtedy ϕ̃ jest homomorfizmem dla Ã. Rzeczywiście

ϕ̃[(a⊕ λ)(b⊕ µ)] = ϕ(ab+ λb+ µa) + λµ

= ϕ(a)ϕ(b) + λϕ(b) + µϕ(a) + λµ

= [ϕ(a) + λ] [ϕ(b) + µ] = ϕ̃(a⊕ λ)ϕ̃(b⊕ µ)
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Z pierwszej części dowodu wynika, że ϕ̃ jest ciągły zatem ϕ = ϕ̃ |A⊕{0} też
jest ciągły.

Jeśli A ma jedność, ‖e‖ = 1 oraz ϕ 6= 0 to, ϕ(e) = 1 = ‖e‖. Zatem
‖ϕ‖ = 1.

Definicja 2.5. Niezerowy homomorfizm algebry Banacha w C nazywamy
charakterem.

Twierdzenie 2.6 (Gelfand-Mazur). Istnieje wzajemnie jednoznaczna odpo-
wiedniość pomiędzy charakterami przemiennej algebry Banacha z jednościa a
ideałami maksymalnymi tej algebry, poprzez przyporządkownaie charakterowi
jego jądra.

Dowód. Rozważmy charakter ϕ. Niech J = kerϕ. Wtedy J jest ideałem.
Mamy

a = [a− ϕ(a)e] + ϕ(a)e ⊂ J ⊕ Ce

Zatem A = J ⊕ Ce. Stąd J jest ideałem maksymalnym, bo J jest podprze-
strzenią kowymiaru 1.

Odwrotnie, niech J będzie ideałem maksymalnym. Wtedy A/J jest al-
gebrą Banacha z jednością. Z maksymalności J wynika, że A/J jest ciałem.
Rzeczywiście, załóżmy niewprost, że 0 6= [a] ∈ A/J oraz [a] jest nieodwracal-
ny. Rozważmy J̃ = J + aA. Wtedy J̃ jest ideałem oraz J ( J̃ , bo a ∈ J̃ , ale
a /∈ J. Z maksymalności J otrzymujemy J̃ = A = J + aA. W szczególności
e = j + ab, dla pewnych elementów j ∈ J oraz b ∈ A. Zatem [e] = [a] [b]. To
oznacza, że element [a] jest odwracalny w A/J, co prowadzi do sprzeczności.

Z poprzedniego twierdzenia Gelfanda-Mazura wynika, że A/J = C[e].
Rozważmy odwzorowanie

A
j−→ A/J

ψ−→ C

gdzie j jest odwzorowaniem ilorazowym j(a) = [a] oraz ψ(λ[e]) = λ. Złożenie
j ◦ ϕ : A→ C jest charakterem oraz ker(j ◦ ϕ) = J , (j ◦ ϕ)9e) = 1.

Załóżmy, że istnieją dwa charaktery ϕ1 i ϕ2 takie, że kerϕ1 = kerϕ2.
Element a− ϕ1(a)e leży w kerϕ1 = kerϕ2. Zatem

0 = ϕ2[a− ϕ1(a)e] = ϕ2(a)− ϕ1(a)

Czyli ϕ1 = ϕ2.
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Twierdzenie 2.7. Każda przemienna algebra Banacha z jednością posiada
charakter.

Dowód. Jeśli A jest ciałem, to A = Ce. Wtedy λe→ λ jest charakterem.
Załóżmy, że A nie jest ciałem. Dla niezerowego elementu nieodwracalne-

go a ∈ A zbiór aA jest ideałem właściwym, bo e /∈ aA. Rozważmy rodzinę
wszystkich właściwych ideałów zawierających aA. Rodzina jest niepusta i
uporządkowana przez inkluzję. Rozważmy łańcuch w tej rodzinie. Żaden z
ideałów łańcucha nie zawiera e, zatem suma mnogościowa łańcucha (która
jest ideałem) również nie zawiera e. To oznacza, że każdy łańcuch jest ograni-
czony (przez sumę mnogościową ideałów łańcucha). Z lematu Kuratowskiego-
Zorna wynika, że rodzina zawiera element maksymalny.

Wniosek 2.8. W przemiennej algebrze Banacha z jednością element a jest
odwracalny wtedy i tylko wtedy, gdy ϕ(a) 6= 0 dla każdego charakteru ϕ alge-
bry.

Dowód. (⇐=)
Z dowodu poprzedniego twierdzenia wynika, że dla elementu nieodwra-

calnego a ideał aA jest zawarty w pewnym ideale maksymalnym I. Niech ϕ
oznacza charakter odpowiadajacy ideałowi I, tzn. kerϕ = I.Wtedy ϕ(a) = 0.
( =⇒ )

Jeśli a jest odwracalny, to dla dowolnego charakteru ϕ mamy

1 = ϕ(e) = ϕ(aa−1) = ϕ(a)ϕ(a−1)

Zatem ϕ(a) 6= 0.

Uwaga. Algebra nieprzemienna może nie mieć charakterów. Np. niech
A = Mn(C) tworzy algebrę z naturalnymi działaniami i normą operatorową
‖A‖ = max

‖x‖2=1
‖Ax‖2. Wtedy ‖I‖ = 1. Nich eij oznacza macierz z wyrazem

równym 1 na przecięciu i-tego wiersza i j-tej kolumnie, i zerowymi wyrazami
w pozostałych miejscach. Wtedy

eijeij = 0, eijeji = eii, i 6= j

Dla charakteru ϕ otrzymujemy

0 = ϕ(eijeij) = ϕ(eij)2 =⇒ ϕ(eij) = 0, i 6= j
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Zatem
ϕ(eii) = ϕ(eji)ϕ(eij) = 0, i 6= j = 0

Otrzymujemy

1 = ϕ(I) = ϕ(e11 + e22 + . . .+ enn) = ϕ(e11) + ϕ(e22) + . . .+ ϕ(enn) = 0

co prowadzi do sprzeczności.
Przykład
Rozważmy A = `1(Z) ze splotem. Chcemy wyznaczyć wszystkie charak-

tery dla A. Dla δn(k) = δn,k mamy δn ∗ δm = δn+m, n,m ∈ Z. Rzeczywiście

(δn ∗ δm)(l) =
∞∑

k=−∞
δn(k)δm(l − k) =

0 n 6= l −m
1 n = l −m

=

0 l 6= n+m

1 l = n+m

W szczególności δ∗n1 = δn dla n ∈ N. Element δ0 jest jednością, bo

(a ∗ δ0)(l) =
∞∑

k=−∞
a(k)δ0(l − k) = al

czyli a ∗ δ0 = a. Wzór wynika też z δn ∗ δ0 = δn. Ponieważ δ1 ∗ δ−1 = δ0, to
(δ1)−1 = δ−1. Stąd (δ1)n = δn dla n ∈ Z \ {0}.

Rozważmy charakter ϕ na `1(Z). Wtedy

ϕ(δn) = ϕ((δ1)∗n) = [ϕ(δ1)]n, n 6= 0

Oznaczmy λ = ϕ(δ1). Wtedy ϕ(δn) = λn dla n 6= 0. Wiemy, że ‖ϕ‖ = 1.
Zatem

|λn| ¬ ‖ϕ‖‖δn‖1 = 1, n 6= 0

W szczególności dla n = ±1 otrzymujemy |λ| ¬ 1 oraz |λ|−1 ¬ 1, czyli |λ| =
1. To oznacza, że λ = eit dla pewnej liczby 0 ¬ t < 2π. Inne wyjaśnienie: dla
|λ| 6= 1 element δ1 − λδ0. Rzeczywiście dla λ = 0 mamy δ1 ∗ δ−1 = δ0. Dalej,
dla λ 6= 0 mamy

δ1 − λδ0 = −λ(δ0 − λ−1δ1) = δ1 ∗ (δ0 − λδ−1)

Zatem dla |λ| > 1 z pierwszej równości wynika odwracalność. Z kolei druga
równość pociaga odwracalność dla |λ| < 1. Reasumując ϕ(δn) = eint dla
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n ∈ Z. Dla a ∈ `1(Z) mamy a =
∞∑

n=−∞
anδn, przy czy szereg jest zbieżny w

przestrzeni `1(Z). Ponieważ każdy charakter jest ciągły, to

ϕ(a) =
∞∑

n=−∞
anϕ(δn) =

∞∑
n=−∞

ane
int

Można sprawdzić, że dla każdej wartości 0 ¬ t < 2π

ϕt(a) :=
∞∑

n=−∞
ane

int

jest charakterem. Rzeczywiście ϕt jest ciągłym funkcjonałem liniowym, bo
|ϕt(a)| ¬ ‖a‖1. Mamy

a ∗ b =
∞∑

n=−∞

 ∞∑
k=−∞

akbn−k

 δn
Zatem

ϕt(a ∗ b) =
∞∑

n=−∞

 ∞∑
k=−∞

akbn−k

 eint =
∞∑

n=−∞

 ∞∑
k=−∞

ake
iktbn−ke

i(n−k)t


Ponieważ podwójny szereg jest bezwzględnie zbieżny, to można zmienić ko-
lejność sumowania. Otrzymamy

ϕt(a ∗ b) =
∞∑

k=−∞
ake

ikt

( ∞∑
n=−∞

bn−ke
i(n−k)t

)
= ϕt(a)ϕt(b)

Z twierdzenia Stone’a-Weierstrassa przestrzeń kombinacji liniowych funk-
cji {eint}n∈Z tworzy gęstą podalgebrę A w Cper[0, 2π] w normie jednostajnej.
W szczególności ta przestrzeń jest gęsta w Cper[0, 2π] w normie L2(0, 2π), bo
‖f‖2 ¬ ‖f‖2 dla f ∈ Cper[0, 2π]. Ponieważ Cper[0, 2π] jest gęsta w L2(0, 2π),
to przez przechodniość przestrzeń kombinacji liniowych funkcji {eint}n∈Z jest
gęsta w L2(0, 2π). Układ {eint}n∈Z jest ortonormalny w L2(0, 2π), bo

〈eint, eimt〉 =
1

2π

2π∫
0

einte−imt dt =
1

2π

2π∫
0

ei(n−m)t dt

=


1 n = m

1
2πi(n−m)e

i(n−m)t
∣∣∣∣2π
0

n 6= m
=

1 n = m

0 n 6= m

Zatem układ ten jest bazą ortonormalna w L2(0, 2π).
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Twierdzenie 2.9 (Wiener). Niech f będzie funkcją ciągłą o okresie 2π,

dla której szereg Fouriera, czyli
∞∑

n=−∞
f̂(n)eint jest bezwzględnie zbieżny. Jeśli

f(t) 6= 0 dla wszystkich wartości t, to szereg Fouriera funkcji 1/f jest też
bezwględnie zbieżny.

Dowód. Dla funkcji f współczynniki f̂(n) są określone wzorem

f̂(n) =
1

2π

∫ 2π
0

f(t)e−int dt = 〈f, eint〉L2(0,2π)

Z założenia liczby an := f̂(n) spełniają
∞∑

n=−∞
|an| < ∞. Tzn. a = {an}n∈Z

leży w `1(Z). Zatem szereg
∞∑

n=−∞
ane

int

jest jednostajnie zbieżny i jego suma jest funkcją ciągłą o okresie 2π. Otrzy-
mujemy

f(t) =
∞∑

n=−∞
ane

int

przy czym równość jest punktowa (nie tylko w L2(0, 2π)), bo szereg jest
jednostajnie zbieżny a funkcja f jest ciągła o okresie 2π. Założenie f(t) 6= 0,
dla 0 ¬ t < 2π, oznacza, że ϕ(a) 6= 0 dla każdego charakteru algebry `1(Z).
Zatem element a jest odwracalny w `1(Z). Czyli istnieje ciąg b ∈ `1(Z) taki,
że a ∗ b = δ0. Wtedy

1 = ϕt(a ∗ b) = ϕt(a)ϕt(b) =
( ∞∑
n=−∞

ane
int

)( ∞∑
n=−∞

bne
int

)
= f(t)g(t)

gdzie g(t) =
∞∑

n=−∞
bne

int. Z jednostajnej zbieżności szeregu wnioskujemy, że

ĝ(n) = bn.

Twierdzenie Banacha-Alaoglu mówi, że kula jednostkowa przestrzeni A∗

(sprzężonej do A) jest zwarta w ∗-słabej topologii. Jeśli przestrzeń A jest
ośrodkowa, to ∗-słaba topologia na kuli jednostkowej jest metryzowalna. Wte-
dy zwartość oznacza, że każdy ciąg zawiera podciąg ∗-słabo zbieżny.
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Definicja 2.10. Spektrum algebry Banacha A nazywamy zbiór wszystkich
charakterów algebry A i oznaczamy symbolem Sp(A).

Twierdzenie 2.11. Dla algebry Banacha z jednością Sp(A) jest domknię-
tym podzbiorem kuli jednostkowej w ∗-słabej topologii (sfery jednostkowej jeśli
‖e‖ = 1). W szczególności spektrum Sp(A) jest zwarte w ∗-słabej topologii.

Dowód. Charaktery są funkcjonałami liniowymi o normie nie przekraczają-
cej 1. Stąd Sp(A) ⊂ A∗1. Sprawdzamy domkniętość. Użyjemy ciągów uogól-
nionych. Niech ϕα ∈ Sp(A) będzie ciągiem uogólnionym zbieżnym ∗-słabo
do ϕ. To oznacza z definicji, że dla dowolnego elementu x ∈ A mamy
ϕα(x) −→

α
ϕ(x). Wiemy, że wtedy ϕ ∈ A∗1. Trzeba sprawdzić, że ϕ jest

charakterem. Dla x, y ∈ A mamy

ϕ(xy)←−
α

ϕα(xy) = ϕα(x)ϕα(y) −→
α

ϕ(x)ϕ(y)

czyli ϕ(xy) = ϕ(x)ϕ(y). Skorzystaliśmy z faktu, że jeśli ciągi uogólnione
liczb tα oraz sα są zbieżne do t i s, to ciąg uogólniony tαsα jest zbieżny do
ts (zadanie). Ponadto ϕ(e) = limα ϕα(e) = 1. Zatem ϕ 6= 0.

Następujący dowód nie korzysta z ciągów uogólnionych . Niech ϕ ∈
A∗1 \ Sp(A). Tzn. ϕ = 0 lub ϕ nie jest funkcjonałem multiplikatywnym.
Rozważmy drugi przypadek. Wtedy istnieją elementy a, b ∈ A takie, że
ϕ(ab) 6= ϕ(a)ϕ(b). Dla liczby ε > 0 zbiór

Uε = {ψ ∈ A∗ : |ψ(a)− ϕ(a)| < ε, |ψ(b)− ϕ(b)| < ε, |ψ(ab)− ϕ(ab)| < ε}

jest otoczeniem funkcjonału ϕ w A∗ w ∗-słabej topologii. Wtedy Uε∩A∗1 jest
otoczeniem ϕ w A∗1. Jeśli ε > 0 jest dostatecznie małe, to ψ(ab) 6= ψ(a)ψ(b).
Zatem [Uε ∩ (A∗)1] ∩ Sp(A) = ∅.

Dla ϕ = 0 rozważamy

V =
{
ψ ∈ A∗1 : |ψ(e)| < 1

2

}
Zbiór V jest otoczeniem ϕ = 0. Otrzymujemy ψ(e) 6= 1, zatem V ∩ Sp(A) =
∅.

Uwaga. Zbiór Sp(A) jest przestrzenią Hausdorffa w ∗-słabej topologii na
A∗1, bo A∗1 jest przestrzenią Hausdorffa w tej topologii.

Niech C(Sp(A)) oznacza algebrę ciągłych zespolonych funkcji na Sp(A).
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Twierdzenie 2.12. Niech A będzie przemienną algebrą Banacha z jednością.
Dla elementu x ∈ A określamy funkcję x̂ : Sp(A)→ C wzorem x̂(ϕ) = ϕ(x).
Wtedy x̂(Sp(A)) = σ(x). Ponadto funkcja x̂ jest ciągła oraz odwzorowaniê : A → C(Sp(A)) jest homomorfizmem algebr Banacha oraz ‖x̂‖∞ ¬ ‖x‖.
Odwzorowanie ̂ nazywamy transformatą Gelfanda.

Dowód. Niech ϕ ∈ Sp(A). Wtedy ϕ(x) ∈ σ(x), bo ϕ(x − ϕ(x)e) = 0, czyli
element x − ϕ(x)e = x − x̂(ϕ)e nie jest odwracalny. Zatem x̂(ϕ) ∈ σ(x) co
pociąga x̂(Sp(A)) ⊆ σ(x). Dla dowodu odwrotnego zawierania, niech λ ∈
σ(x), tzn. element x− λe nie jest odwracalny. Wtedy istnieje charakter ϕ ∈
Sp(A), dla którego ϕ(x−λe) = 0. Tzn. λ = ϕ(x) = x̂(ϕ), czyli λ ∈ x̂(Sp(A)).
Otrzymujemy więc σ(x) ⊆ x̂(Sp(A)).

Odwzorowanie ̂: x 7→ x̂ jest liniowe z określenia ̂ . Ponadto

x̂y(ϕ) = ϕ(xy) = ϕ(x)ϕ(y) = x̂(ϕ)ŷ(ϕ)

czyli ̂ jest homomorfizmem.
Pozostaje uzasadnić ciągłość funkcji

x̂ : Sp(A)→ C

Własność wynika z określenia topologii na Sp(A). Niech ϕα −→
α

ϕ ∗-słabo,
gdzie ϕα, ϕ ∈ Sp(A). Zatem

x̂(ϕα) = ϕα(x) −→
α

ϕ(x) = x̂(ϕ), x ∈ A

To oznacza ciągłość funkcji x̂ na Sp(A).
Bez użycia ciagów uogólnionych: ustalmy x ∈ A. Sprawdzamy ciagłość x̂

w punkcie ϕ ∈ Sp(A). Dla ε > 0 określamy

Uε = {ψ ∈ Sp(A) : |ψ(x)− ϕ(x)| < ε}

Wtedy Uε jest otoczeniem punktu ϕ w ∗-słabej topologii na Sp(A). Dla
ψ ∈ Uε mamy

|x̂(ψ)− x̂(ϕ)| = |ψ(x)− ϕ(x)| < ε

Przykład Rozważmy A = `1(Z). Charaktery mają postać

{an}∞n=−∞ 7−→
∞∑

n=−∞
ane

int, 0 ¬ t < 2π
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Oznaczmy λ = eit. Tzn.

{an}∞n=−∞
ϕλ7−→

∞∑
n=−∞

anλ
n, |λ| = 1

Zatem Sp(A) = T jako zbiory. Pokażemy, że Sp(A) = T jako przestrzenie
topologiczne. Rozważmy δ1. Wtedy δ̂1 : Sp(A) na−→ T, bo δ̂1(ϕλ) = ϕλ(δ1) =
λ. Funkcja δ̂1 jest ciągłym różnowartościowym odwzorowaniem z Sp(A) na
T. Zatem δ̂1 jest homeomorfizmem. Dla ustalonego ciągu a = {an}∞n=−∞
odwzorowanie â(λ) =

∞∑
n=−∞

anλ
n jest transformatą Gelfanda elementu a.

3 Rachunek symboliczny w algebrze Banacha

Twierdzenie Wienera można zinterpretować w nastepujący sposób: w prze-
miennej algebrze Banacha jeśli dla x ∈ A funkcja x̂ nie zeruje się, to element
x jest odwracalny. Tzn. na element x możemy nałożyć funkcję z 7→ z−1. Na-
szym celem jest określenie działania na elementach algebry większej klasy
funkcji ciągłych

Rozważmy funkcję ciągłą α : [a, b] → A tzn. dla a ¬ t0 ¬ b i ε > 0
istnieje liczba δ > 0 taka, że jeśli |t − t0| < δ, to ‖α(t) − α(t0)‖ < ε. Można
udowodnić, że każda funkcja ciągła jest jednostajnie ciągła (zadanie). Dla
podziału P = {t0, t1, . . . , tn} przedziału [a, b] wybieramy punkty pośrednie
tj−1 ¬ sj ¬ tj i określamy sumy

S(P , f) =
n∑
j=1

∆tj f(sj)

gdzie f : [a, b]→ A. Celem jest określenie całki
b∫
a
f(t) dt. Symbolem d(P) =

max1¬j¬n ∆tj oznaczamy średnicę podziału.

Lemat 3.1. Dla dwu podziałów P1 i P2 spełniających d(P1) < δ oraz d(P2) <
δ mamy

‖S(P1, f)− S(P2, f)‖ ¬ 2(b− a) sup
|t−s|<δ

‖f(t)− f(s)|

Dowód. Niech P3 = P1 ∪ P2, z punktami pośrednimi typu prawy koniec.
Wtedy

‖S(P1)− S(P2)‖ ¬ ‖S(P1)− S(P3)‖+ ‖S(P3 − S(P2‖



Rachunek symboliczny w algebrze Banacha 19

Pokażemy, że

‖S(P1)− S(P3)‖ ¬ (b− a) sup
|t−s|<δ

‖f(t)− f(s)‖

Punkty {tj,k}
kj
k=0 oznaczają punkty podziału P3 stanowiące podział przedzia-

łu [tj−1, tj]. Mamy

S(P1)− S(P3) =
n∑
j=1

∆tj f(sj)−
n∑
j=1

kj∑
k=1

∆tj,kf(tj,k)

=
n∑
j=1

kj∑
k=1

∆tj,k[f(sj)− f(tj,k)]

bo
kj∑
k=1

∆tj,k = ∆tj. Ponieważ sj, tj,k ∈ [tj−1, tj], to

‖f(sj)− f(tj,k)‖ ¬ sup
|t−s|<δ

‖f(t)− f(s)‖

Stąd wynika oszacowanie. Podobnie otrzymujemy

‖S(P3)− S(P2)‖ ¬ (b− a) sup
|t−s|<δ

‖f(t)− f(s)‖

Wniosek 3.2. Załóżmy, że funkcja f : [a, b] → A jest ciągła. Niech Pn
oznacza ciąg podziałów takich, że d(Pn)→ 0. Wtedy ciąg S(Pn) jest zbieżny.

Dowód. Z lematu ciąg S(Pn) spełnia warunek Cauchy’ego, bo

‖S(Pn, f)− S(Pm, f)‖ ¬ 2(b− a) sup
|t−s|¬max{d(Pn),d(Pm)}

‖f(t)− f(s)‖

Definicja 3.3. Dla funkcji ciągłej f : [a, b]→ A określamy

b∫
a

f(t) dt = lim
n
S(Pn, f), d(Pn)→ 0
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Całka spełnia:

(a)
b∫
a

[f(t) + g(t)] dt =
b∫
a

f(t) dt+
b∫
a

g(t) dt

(b)
b∫
a

[λf(t)] dt = λ

b∫
a

f(t) dt

(c)
b∫
a

f(t) dt =
c∫
a

f(t) dt+
b∫
c

f(t) dt, a < c < b.

(d)

∥∥∥∥∥∥
b∫
a

f(t) dt

∥∥∥∥∥∥ ¬
b∫
a

‖f(t)‖ dt

Lemat 3.4. Dla ϕ ∈ A∗ mamy

ϕ

 b∫
a

f(t) dt

 =
b∫
a

ϕ(f(t)) dt

Dowód. Dla ciągu podziałów Pn takich, że d(Pn)→ 0 otrzymujemy

ϕ

 b∫
a

f(t) dt

 = lim
n
ϕ(S(Pn, f)) = lim

n
S(Pn, ϕ ◦ f) =

b∫
a

ϕ(f(t)) dt

Dla krzywej zorientowanej C klasy C1 w płaszczyźnie C i funkcji ciągłej
f : C → A określamy

∫
C

f(z) dz =
b∫
a

f(γ(t))γ′(t) dt, γ : [a, b]→ C ⊂ C

Całka nie zależy od wyboru parametryzacji γ(t), bo po nałożeniu funkcjonału
ϕ ∈ A∗ tak jest (zadanie). Ponadto (zadanie)

ϕ

∫
C

f(z) dz

 =
∫
C

ϕ(f(z)) dz

Całkę wzdłuż krzywej C możemy określić, gdy krzywa C jest ciągła, kawał-
kami klasy C1, poprzez sumę całek wzdłuż fragmentów krzywej.
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Definicja 3.5. Niech f(z) będzie funkcją o wartościach w algebrze Banacha
A, określoną na otwartym obszarze U ⊂ C. Mówimy, że funkcja f jest holo-
morficzna jeśli f(z) posiada pochodną zespoloną w każdym punkcie obszaru
U, tzn. istnieją granice

f ′(z) := lim
h→0

f(z + h)− f(z)
h

= lim
w→z

f(w)− f(z)
w − z

, z ∈ U

Przykład Rozważmy algebrę Banacha A z jednością. Ustalmy a ∈ A.
wtedy funkcja z 7→ (ze− a)−1 dla z /∈ σ(a) jest holomorficzna. Rzeczywiście,
gdy w → z, to (we− a)−1 → (ze− a)−1 oraz

(we− a)−1 − (ze− a)−1 = −(w − z)(we− a)−1(ze− a)−1

Stąd
(we− a)−1 − (ze− a)−1

w − z
= −(we− a)−1(ze− a)−1

zatem
d

dz
(ze− a)−1 = −(ze− a)−2

Skorzystaliśmy z ciągłości funkcji w 7→ (we − e)−1. Ta własność wynika ze
złożenia funkcji ciągłych

w 7→ we− a 7→ (we− a)−1

Twierdzenie 3.6. Niech C będzie prostą krzywą zamkniętą w C. Załóżmy,
że funkcja f(z) o wartościach w A jest określona i holomorficzna w obszarze
otwartym U zawierającym krzywą C oraz obszar ograniczony przez tę krzywą.
Wtedy ∫

C

f(z) dz = 0

Dowód. Dla ϕ ∈ A∗ mamy

ϕ

∫
C

f(z) dz

 =
∫
C

ϕ(f(z)) dz = 0

Ponieważ ϕ jest dowolnym funkcjonałem na A, to
∫
C

f(z) dz = 0.
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Wniosek 3.7. Niech U ⊂ C będzie spójnym obszarem ograniczonym, które-
go brzeg składa się ze skończonej liczby prostych krzywych zamkniętych. Dla
funkcji f(z) holomorficznej w obszarze V zawierajacym U mamy∫

∂U

f(z) dz = 0

Dowód. Obszar U możemy podzielić na skończoną liczbę obszarów jedno-
spójnych U1, U2, . . . , Un. Wtedy∫

∂U

f(z) dz =
∫
∂U1

f(z) dz +
∫
∂U2

f(z) dz + . . .+
∫
∂Un

f(z) dz = 0

Dla algebry Banacha z jednością możemy określić p(a), gdzie p(z) jest wie-
lomianem. Wtedy (p1p2)(a) = p1(a)p2(a). Można rozważyć funkcję całkowitą

f(z) =
∞∑
n=0

cnz
n i zdefiniować f(a) =

∞∑
n=0

cna
n. Szereg jest absolutnie zbieżny,

bo limn |cn|1/n = 0. Zatem ‖cnan‖ ¬ |cn|‖a‖n. Więc
∑∞
n=0 |cn| ‖a‖n < ∞.

Wystarczy, aby

lim sup |cn|1/n <
1
‖a‖

Jeśli f(z) i g(z) są holomorficzne w obszarza otwartym U zawierającym koło
{z : |z| ¬ ‖a‖} to (fg)(a) = f(a)g(a) w oparciu o mnożenie Cauchy’ego
szeregów potegowych.

Przykład. Niech A ∈ Mn(C). Załóżmy, że A sprowadza się do postaci
diagonalnej, tzn. A = CDC−1, gdzie D jest macierzą diagonalną z wyrazami
{dk}nk=1 na przekątnej. Dla f : C → C możemy określić f(D) jako macierz
diagonalną z wyrazami {f(dk)}nk=1 na przekątnej. Niech f(A) = Cf(D)C−1.
Wtedy (fg)(A) = f(A)g(A), bo

f(A)g(A) = Cf(D)C−1Cg(D)C−1 = Cf(D)g(D)C−1 = C(fg)(D)C−1 = (fg)(A)

Dla f ≡ 1 mamy f(A) = Cf(D)C−1 = CC−1 = I. Z kolei dla f(z) = z
zachodzi f(A) = CDC−1 = A. Funkcja f nie musi być określona na C.
Wystarczy, że znamy jej wartości na {dk}nk=1, czyli na σ(A).

Twierdzenie 3.8. Niech C będzie prostą krzywą zamkniętą, kawałkami C1,
obiegającą w kierunku dodatnim σ(a) dla elementu a ∈ A, lub skończoną sumą
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takich krzywych, przy czym obszary otoczone przez te krzywe są rozłączne.
Wtedy

e =
1

2πi

∫
C

(ze− a)−1 dz

Uwaga Wzór jest podobny do wzoru Cauchy’ego

1 =
1

2πi

∫
C

dz

z − z0
dz

gdzie liczba z0 leży wewnątrz C.

Dowód. Rozważmy przypadek C = C1 ∪ C2. Tzn. σ(a) jest zawarte w dwu
obszarach otwartych otoczonych przez te krzywe. Niech CR oznacza okrąg
o środku w 0 i promieniu tak dużym, że krzywa C leży wewnątrz koła o
promieniu R. W obszarze otwartym U zawartym pomiędzy C i CR funkcja
z 7→ (ze− a)−1 jest holomorficzna, bo obszar jest oddzielony od σ(a). Zatem

1
2πi

∫
∂U

(ze− a)−1 dz = 0

Stąd
1

2πi

∫
C

(ze− a)−1 dz =
1

2πi

∫
CR

(ze− a)−1 dz

Można przyjąć, że R > ‖a‖. Wtedy

1
2πi

∫
CR

(ze− a)−1 dz =
1

2πi

∫
CR

∞∑
n=0

z−n−1an dz

Szereg jest zbieżny jednostajnie na CR zatem w drugiej całce można zmienić
kolejność całki z sumowaniem. Otrzymamy

∞∑
n=0

 1
2πi

∫
CR

z−n−1 dz

 an = e

Skorzystaliśmy z faktu, że jeśli fn(z)→→f(z) dla z ∈ C, to∫
C

fn(z) dz −→
∫
C

f(z) dz

dla funkcji ciągłych fn, f : C → A.
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Wniosek 3.9. Przy założeniach poprzedniego twierdzenia, dla funkcji całko-

witej f(z) =
∞∑
n=0

cnz
n spełniony jest wzór

f(a) =
1

2πi

∫
C

f(z)(ze− a)−1 dz

gdzie f(a) =
∞∑
n=0

cna
n.

Dowód. Wystarczy udowodnić wzór dla wielomianu pN(z) =
N∑
n=0

cnz
n i tezę

uzyskać przez przejście graniczne, gdy N →∞. Mamy

1
2πi

∫
C

pN(z)(ze− a)−1 dz =
1

2πi

∫
C

[pN(z)e− pN(a)](ze− a)−1 dz

+ pN(a)
1

2πi

∫
C

(ze− a)−1 dz

Funkcja [pN(z)e−pN(a)](ze−a)−1 jest wielomianem zmiennej z ze współczyn-

nikami z algebry A, związaną z wielomianem z 7→ pN(z)− pN(w)
z − w

. Zatem po

uproszczeniu, pierwsza całka jest równa 0.

Definicja 3.10. Niech f(z) będzie funkcją holomorficzną w obszarze otwar-
tym U , złożonym ze skończonej liczby obszarów jednospójnych, zawierającym
σ(a). Dla C prostej krzywej zamkniętej, kawałkami C1 (lub skończonej sumy
takich krzywych) obiegającej w kierunku dodatnim zbiór σ(a) i dla elementu
a ∈ A określmy

f(a) =
1

2πi

∫
C

f(z)(ze− a)−1 dz

Uwaga. Definicja f(a) nie zależy od wyboru krzywej C. Rzeczywiście
niech CR będzie okręgiem o promieniu R takim, że krzywa C leży w otwartym
kole o promieniu R. Wtedy funkcja f(z)(ze − a)−1 jest holomorficzna w
obszarze pomiędzy C i CR. Zatem całka wzdłuż brzegu obszaru wynosi 0,
czyli całki wzdłuż C i CR są równe.
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Uwaga. Można określić f(a), gdy U składa się ze skończonej liczby ob-
szarów spójnych, ale niekoniecznie jednospójnych. Np. wzór

1
2πi

∫
C

(ze− a)−1 dz = e

jest spełniony. Rzeczywiście jeśli krzywa C nie zawiera wewnątrz punktów
z σ(a), to całka wzdłuż C jest równa 0, bo funkcja z 7→ (ze − a)−1 jest
holomorficzna w obszarze otwartym ograniczonym przez C.

Twierdzenie 3.11. Jeśli funkcje f(z) i g(z) są holomorficzne w otoczeniu
σ(a), to

f(a)g(a) = (fg)(a)

Dowód. Dowód przeprowadzimy dla przypadku, gdy f i g są holomorficzne
w otwartym obszarze jednospójnym zawierającym σ(a).

Wybierzmy krzywe (być może skończone sumy krzywych) C1 i C2 ota-
czające σ(a) takie, że C1 leży w obszarze otwartym ograniczonym przez C2.
Wtedy

f(a)g(a) = − 1
4π2

∫
C1

f(z)(ze− a)−1 dz ·
∫
C2

g(w)(we− a)−1 dw

= − 1
4π2

∫
C1

f(z)

∫
C2

g(w)(ze− a)−1(we− a)−1] dw

 dz
= − 1

4π2

∫
C1

f(z)

∫
C2

g(w)
z − w

[(we− a)−1 − (ze− a)−1 dw

 dz
= − 1

4π2

∫
C1

f(z)(ze− a)−1

∫
C2

g(w)
w − z

dw

 dz
− 1

4π2

∫
C2

g(w)(we− a)−1

∫
C1

f(z)
z − w

dz

 dw
=

1
2πi

∫
C1

f(z)g(z)(ze− a)−1 dz = (fg)(a)
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bo
∫
C1

f(z)(z − w)−1 dz = 0. Zmianę kolejności całkowania można uzasadnić

poprzez nałożenie funkcjonału ϕ ∈ A∗. Otrzymujemy wtedy całki z funkcji o
wartościach w C.

Niech H(a) oznacza rodzinę funkcji holomorficznych w otoczeniu σ(a).
Wtedy H(a) tworzy algebrę. Odwzorowanie H(a) 3 f 7→ f(a) ∈ A jest
homomorfizmem algebr. Ponadto 1 7→ e oraz z 7→ a.

Lemat 3.12. Niech A będzie przemienną algebrą Banacha z jednością. Dla
a ∈ A, ϕ ∈ Sp(A) oraz f ∈ H(a) mamy ϕ(f(a)) = f(ϕ(a)). To oznacza, że

f̂(a) = f ◦ â

Dowód. Mamy

ϕ(f(a)) = ϕ

 1
2πi

∫
C

f(z)(ze− a)−1 dz


=

1
2πi

∫
C

f(z)ϕ((ze− a)−1) dz =
1

2πi

∫
C

f(z)
z − ϕ(a)

dz = f(ϕ(a))

bo ϕ(ze− a) = z − ϕ(a) oraz z multiplikatywności otrzymujemy

ϕ((ze− a)−1) =
1

z − ϕ(a)
z ∈ C

Z lematu otrzymujemy

Twierdzenie 3.13. Dla a ∈ A oraz f ∈ H(a) mamy σ(f(a)) = f(σ(a)).

Twierdzenie 3.14 (Wiener-Lévy). Załóżmy, że funkcja o okresie 2π ma

absolutnie zbieżny szereg Fouriera, tzn. f(x) =
∞∑
−∞

cne
inx oraz

∞∑
−∞
|cn| < ∞.

Niech h(z) będzie funkcją holomorficzną w otwartym otoczniu zbioru wartości
funkcji f. Wtedy szereg Fouriera funkcji h(f(x)) jest absolutnie zbieżny.
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Dowód. Dla ciągu c = {cn}∞n=−∞ ∈ `1(Z) zbadamy σ(c) w algebrze `1(Z).
Funkcjonały multiplikatywne mają postać

ϕx(c) =
∞∑

n=−∞
cne

inx = f(x)

Zatem σ(c) = f([0, 2π)) = f(R). Z założenia h ∈ H(c), skąd wynika, że

d := h(c) ∈ `1(z). To oznacza, że h(x) =
∞∑

n=−∞
dne

inx oraz
∞∑
−∞
|dn| < ∞.

Dalej
∞∑

n=−∞
dne

inx = ϕx(d) = ϕx(h(c)) = h(ϕx(c)) = h(f(x))

Twierdzenie 3.15. Niech f(z) będzie funkcją holomorficzną w obszarze otwar-
tym zawierającym σ(a). Wtedy dla dowolnej funkcji całkowitej g(w) mamy

g(f(a)) = (g ◦ f)(a)

Dowód. Niech g(z) =
∞∑
n=0

gnz
n. Wtedy

g(f(a)) =
∞∑
n=0

gnf(a)n =
∞∑
n=0

gn(fn)(a) =
( ∞∑
n=0

gnf
n

)
(a) = (g ◦ f)(a)

4 C∗-algebry

Definicja 4.1. Operację ∗ : A→ A w algebrze Banacha nazywamy sprzęże-
niem jeśli

(a) (a+ b)∗ = a∗ + b∗

(b) (λa)∗ = λa∗

(c) (ab)∗ = b∗a∗

(d) (a∗)∗ = a
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Uwaga Jeśli A ma jedność e, to e∗ = e (zadanie).

Definicja 4.2. Algebrę Banacha nazywamy ∗-algebrą, jeśli ‖a∗‖ = ‖a‖.

Przykłady

(a) A = `1(Z). Dla a ∈ `1(Z) określamy a∗(n) = a(−n). Np. δ∗n = δ−n.

(b) A = C[0, 1] lub A = C(K), gdzie K jest zwartą przestrzenią Hausdorf-
fa. Wtedy f ∗(t) = f(t).

(c) A = B(H) ze sprzężeniem operatorów.

Definicja 4.3. Algebrę Banacha z sprzężniem nazywamy C∗-algebrą, jeśli
‖a∗a‖ = ‖a‖2.

Uwaga Z warunku wynika ‖x∗‖ = ‖x‖. Rzeczywiście ‖x‖2 = ‖x∗x‖ ¬
‖x∗‖ ‖x‖. Stąd ‖x∗‖ ­ ‖x‖. Zatem ‖x‖ = ‖x∗∗‖ ­ ‖x∗‖. Przykłady Al-
gebra `1(Z) nie jest C∗-algebrą (dlaczego ?). Z kolei C(K) oraz B(H) są
C∗-algebrami, bo ‖ff‖∞ = ‖|f |2‖∞ = ‖f‖2∞ oraz ‖T ∗T‖ = ‖T‖2. Druga
równość wynika z

‖T ∗T‖ ­ sup
‖x‖=1

〈T ∗Tx, x〉 = sup
‖x‖=1

‖Tx‖2 = ‖T‖2

oraz ‖T ∗T‖ ¬ ‖T ∗‖ ‖T‖ = ‖T‖2.

Twierdzenie 4.4 (Gelfand-Naimark). Niech A będzie przemienną C∗-algebrą
z jednością. Wtedy transformata Gelfanda jest izometrycznym ∗-izomorfizmem
pomiędzy A oraz C(Sp(A)) z normą ‖ · ‖∞.

Uwaga Ogólnie homomorfizm h pomiędzy ∗-algebrami nazywamy ∗-homomorfizmem
jeśli h(x∗) = h(x)∗. Izometria oznacza, że ‖x̂‖∞ = ‖x‖A, a ∗-izomorfizm, że
x̂∗ = x̂.

Dowód. Transformata Gelfanda jest liniowym homomorfizmem. Operacja ∗
jest ciągła, bo ‖x∗‖ = ‖x‖. Niech ϕ ∈ Sp(A) oraz a∗ = a. Pokażemy, że
ϕ(a) ∈ R. Dla t ∈ R rozważmy elementy

ut = exp(ita) =
∞∑
n=0

(ita)n

n!
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Wtedy u∗t = exp(−ita) oraz

u∗tut = exp(−ita) exp(ita) = 1(a) = e

bo exp(−itz) exp(itz) = 1. Dalej

1 = ‖e‖ = ‖u∗tut‖ = ‖ut‖2

stąd ‖ut‖ = 1. Dla ϕ ∈ Sp(A) otrzymujemy

1 ­ |ϕ(ut)| =
∣∣∣∣∣
∞∑
n=0

(itϕ(a))n

n!

∣∣∣∣∣ = |exp(it ϕ(a))| = exp(−tRanϕ(a))

Ponieważ t jest dowolną liczbą rzeczywistą, to Ranϕ(a) = 0. To oznacza, że
ϕ(a) ∈ R.

Inny dowód Niech λ = x + iy ∈ σ(a). Zatem dla t ∈ R mamy λ + it ∈
σ(a+ ite). Otrzymujemy

|λ+ it|2 ¬ ‖a+ ite‖2 = ‖(a+ ite)∗(a+ ite)‖ = ‖(a− ite)(a+ ite)‖
= ‖a2 + t2e‖ ¬ ‖a‖2 + t2

Z drugiej strony

|λ+ it|2 = |x+ i(y + t)|2 = x2 + (y + t)2 = x2 + y2 + 2yt+ t2

Zatem
x2 + y2 + 2yt ¬ ‖a‖2, t ∈ R

Z dowolności t otrzymujemy y = 0.
Dla a ∈ A niech a1 = (a+ a∗)/2 oraz a2 = (a− a∗)/(2i). Wtedy a∗1 = a1,

a∗2 = a2 oraz a = a1 + ia2. Zatem

ϕ(a∗) = ϕ(a1 − ia2) = ϕ(a1)− iϕ(a2) = ϕ(a1) + iϕ(a2) = ϕ(a)

Otrzymaliśmy â∗ = â, bo dla ϕ ∈ Sp(A) zachodzi

â∗(ϕ) = ϕ(a∗) = ϕ(a) = â(ϕ)

Czyli transformata Gelfanda jest ∗-homomorfizmem.
Chcemy pokazać, że ‖â‖∞ = ‖a‖. Mamy

‖â‖∞ = max{|λ| : λ ∈ σ(a)} = r(a) = lim
n
‖an‖1/n
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Dla a∗ = a otrzymujemy ‖a2‖ = ‖a∗a‖ = ‖a‖2. Ponieważ elementy ak są
samosprzężone, to przez indukcję otrzymujemy ‖a2n‖ = ‖a‖2n , czyli r(a) =
‖a‖. Zatem ‖â‖∞ = ‖a‖. Rozważmy dowolny element a ∈ A. Wtedy

‖a‖2 = ‖a∗a‖ = ‖â∗a‖∞ = ‖ââ‖∞ = ‖|â|2‖∞ = ‖â‖2∞

Pozostaje do pokazania, że Â = C(Sp(A)). Skorzystamy z twierdzenia
Stone’a-Weierstrassa. Algebra Â jest podalgebrą funkcji w C(Sp(A)) za-
mkniętą na sprzężenie. Algebra Â zawiera ê = 1 oraz rozdziela punkty, bo
jeśli ϕ1 6= ϕ2 dla ϕ1, ϕ2 ∈ Sp(A), to ϕ1(a) 6= ϕ2(a) dla pewnego elementu
a ∈ A. Tzn. â(ϕ1) 6= â(ϕ2). Zatem Â jest gęstą podalgebrą w C(Sp(A)). Z
drugiej strony Â jest domknięta jako izometryczny obraz algebry Banacha
A. Stąd Â ∼= C(Sp(A)).

Definicja 4.5. Element a w C∗-algebrze B z jednością (niekoniecznie prze-
miennej) nazywamy normalnym jeśli a∗a = aa∗.

Niech A oznacza C∗-algebrę generowaną przez a oraz e. Tzn. rozważamy

A0 = {p(a, a∗) : p(x, y) wielomian dwu zmiennych o współczynnikach z C}

Symbolem A oznaczmy domknięcie podalgebry A0 w C∗-algebrze B. Wtedy
A jest przemienną C∗-algebrą z jednością.

Wniosek 4.6. Przy powyższych oznaczeniach otrzymujemy A ∼= C(σ(a)),
gdzie σ(a) oznacza spektrum elementu a w C∗-algebrze B.

Dowód. Z zadania 11 listy 5 wynika, że σB(a) = σA(a). Rozważmy â :
Sp(A)→ σ(a). Funkcja â jest ciągła oraz â(Sp(A)) = σ(a). Ponadto funkcja
â jest różnowartościowa, bo jeśli â(ϕ1) = â(ϕ2), to ϕ1(a) = ϕ2(a). Zatem

ϕ1(a∗) = ϕ1(a) = ϕ2(a) = ϕ2(a∗)

Multiplikatywność pociąga ϕ1 = ϕ2 naA0. Z kolei z ciągłości charakterów ϕ1 i
ϕ2 wynika ϕ1 = ϕ2 na A. Reasumując odwzorowanie â jest homeomorfizmem
pomiędzy Sp(A) i σ(a). Izomorfizm pomiędzy A oraz C(σ(a)) zadany jest
poprzez

A −̂→ C(Sp(A)) h−→ C(σ(a))

Odwzorowanie h zadane jest wzorem

h(f)(λ) = f(â−1(λ)), f ∈ C(Sp(A)), λ ∈ σ(a)



Operatory nieograniczone na przestrzeni Hilberta 31

Przykład A = `∞(N) ∼= C(Sp(A)). Mamy N ⊂ Sp(A), bo ϕn(a) = an
jest charakterem. Zawieranie jest właściwe (dlaczego ?). Można pokazać, że
Sp(A) ∼= C(K), gdzie K jest uzwarceniem Čecha-Stone’a zbioru N.

Twierdzenie Gelfanda-Naimarka-Segala mówi, że C∗-algebra z jednością
jest izometrycznie izomorficzna z domkniętą podalgebrą operatorów, zawiera-
jącą I w B(H), dla pewnej przestrzeni, Hilberta. Np. C[0, 1] można utożsamić
z algebrą operatorów Mfg = fg dla g ∈ L2(0, 1).

5 Operatory nieograniczone na przestrzeni Hil-
berta

Wiele operatorów określonych na podprzestrzeni przestrzeni Hilberta jest nie-
ograniczonych. Podprzestrzeń, na której operator jest określony nazywamy
jego dziedziną.

Przykłady

(a) Operator (Tf)(x) = xf(x) jest określony na D(T ) = {f ∈ L2(R) :
xf(x) ∈ L2(R)}, czyli T : D(T ) → L2(R). Operator T jest nieograni-
czony, bo

‖T1(n,n+1)‖2 = ‖x1(n,n+1)‖ ­ n‖1(n,n+1)‖2
Przestrzeń D(T ) jest gęsta w L2(R), bo zawiera wszystkie funkcje o
ograniczonym nośniku.

(b) Dla H = L2(0, 1) określamy T : C1[0, 1] → H wzorem Tf = f ′.
D(T ) jest gęstą podprzestrzenią w H. Dla fn(x) = sin(πnx) mamy
(Tfn)(x) = πn cos(πnx). Otrzymujemy ‖Tfn‖2 = πn‖fn‖2.

(c) H = `2(N), (Ta)n = nan oraz

D(T ) =
{
a ∈ `2(N) :

∞∑
n=1

n2|an|2 <∞
}

Podprzestrzeń D(T ) jest gęsta, bo δn ∈ D(T ) dla wszystkich n. Ponad-
to ‖Tδn‖2 = n‖δn‖2.

Będziemy rozważać operatory A : D(A)→ H o gęstej dziedzinie.
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Definicja 5.1. Operator A : D(A)→ H nazywamy symetrycznym jesli

〈Ax, y〉 = 〈x,Ay〉, x, y ∈ D(A)

Uwaga Z tożsamości polaryzacyjnej wynika, że symetria jest równoważ-
na warunkowi 〈Ax, x〉 = 〈x,Ax〉 dla wszystkich x ∈ D(A), co z kolei jest
równoważne 〈Ax, x〉 ∈ R, dla x ∈ D(A).

Operatory symetryczne o pełnej dziedzinie, tzn. D(A) = H, są ograni-
czone z twierdzenia Hellingera-Toeplitza.

Dla dwu operatorów A i B zawieranie A ⊆ B oznacza, że D(A) ⊆ D(B)
oraz Ax = Bx dla x ∈ D(A). Mówimy wtedy, że B jest rozszerzeniem ope-
ratora A. Dla operatora A wykresem nazywamy podzbiór H×H

ΓA = {(x,Ax) : x ∈ D(A)}

Zauważmy, że A ⊆ B wtedy i tylko wtedy, gdy ΓA ⊆ ΓB.

Definicja 5.2. Dla operatora A : D(A) → H operatorem sprzężonym A∗

nazywamy operator o dziedzinie

D(A∗) = {x ∈ H : (∃z ∈ H) (∀y ∈ D(A)) 〈Ay, x〉 = 〈y, z〉}

Dla x ∈ D(A∗) określamy A∗x = z.

Uwaga Element z, o ile istnieje, jest jedyny. Istotnie jeśli 〈y, z〉 = 〈y, z′〉
dla wszystkich y ∈ D(A), to z gęstości dziedziny wynika z = z′.

Uwaga Może się zdarzyć, że D(A∗) = {0}. Naturalnym pytaniem jest
kiedy D(A∗) jest gęstą podprzestrzenią w H ? Dla operatora symetrycznego
A mamy D(A) ⊆ D(A∗). Rzeczywiście, dla x, y ∈ D(A) otrzymujemy

〈Ay, x〉 = 〈y, Ax〉

zatem D(A) ⊂ D(A∗) oraz A∗x = Ax. Rolę elementu z pełni Ax. Ponadto
warunek A ⊆ A∗ jest równoważny symetrii operatora A.

Uwaga Z twierdzenia Riesza o postaci funkcjonałów ograniczonych na H
wynika, że warunek x ∈ D(A∗) jest równoważny temu, że funkcjonał liniowy

D(A) 3 y 7→ 〈Ay, x〉 ∈ C

jest ograniczony, tzn. |〈Ay, x〉| ¬ c‖y‖ dla pewnej stałej c ­ 0 i wszystkich
y ∈ D(A).

W przestrzeni H×H określamy iloczyn skalarny wzorem

〈(u, v), (u′, v′)〉 = 〈u, u′〉+ 〈v, v′〉

Niech J(u, v) = (v,−u). Wtedy J jest izometrią na H×H oraz J2 = −I.
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Lemat 5.3. Dla operatora A : D(A)→ H o gęstej dziedzinie mamy (x, z) ∈
ΓA∗ wtedy i tylko wtedy, gdy (x, z) ⊥ J(ΓA). Tzn. ΓA∗ = J(ΓA)⊥, w prze-
strzeni H×H. W szczególności wykres operatora A∗ jest domknięty.

Dowód. Teza wynika z określenia (x, z) ∈ ΓA∗ wtedy i tylko wtedy, gdy

〈x,Ay〉 − 〈z, y〉 = 0, y ∈ D(A)

tzn.
(x, z) ⊥ J(y, Ay), y ∈ D(A)

Definicja 5.4. Operator A : D(A) → H nazywamy domykalnym jeśli
ΓA jest wykresem operatora, oznaczanego symbolem A. Operator : D(A) →
H nazywamy domkniętym, jeśli wykres ΓA jest domkniętą podprzestrzenią
H×H.

Uwaga Każdy operator symetryczny jest domykalny, bo wykres A∗ jest
domknięty oraz A ⊂ A∗.

Twierdzenie 5.5. Dziedzina operatora A∗ jest gęsta wtedy i tylko wtedy, gdy
A jest operatorem domykalnym.

Dowód. Załóżmy, że v ⊥ D(A∗). Równoważnie (v, 0) ⊥ ΓA∗ = J(ΓA)⊥. Czyli

(v, 0) ∈ J(ΓA)⊥⊥ = J(ΓA) = J(ΓA)

To z kolei jest równoważne z warunkiem (0, v) ∈ ΓA, czyli v = 0.

Wniosek 5.6. Dla operatora domykalnego A zachodzi równość A∗∗ = A.

Dowód. Mamy

ΓA∗∗ = J(ΓA∗)⊥ = J(J(ΓA)⊥)⊥ = J(J(ΓA)⊥⊥)

= J(J(ΓA)) = J2(Γ(A)) = −ΓA = ΓA = ΓA

Przykłady
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(a) H = L2(0, 1)

Af = if ′ D(A) = {f ∈ C1[0, 1] : f(0) = f(1) = 0}

Operator A jest symetryczny, bo dla f, g ∈ D(A)

〈Af, g〉 = i

1∫
0

f ′g dx = ifg

∣∣∣∣1
0
− i

1∫
0

fg′ dx = 〈f, Ag〉

(b) (Af)(x) = xf(x), D(A) = {f ∈ L2(R) : xf(x) ∈ L2(R)}

〈Af, g〉 = 〈xf, g〉 =
∞∫
−∞

xf(x)g(x) dx = 〈f, xg〉 = 〈f, Ag〉

Definicja 5.7. Operator symetryczny A nazywamy samosprzężonym jeśli
A∗ = A, tzn. D(A∗) = D(A).

Przykłady

(a) Jak wyżej. Wtedy D(A) ( C1[0, 1] ⊆ D(A∗). Można pokazać, że

D(A∗) = {f ∈ L2(0, 1) : f absolutnie ciągła, f ′ ∈ L2(0, 1)}

(b) Jak wyżej. Pokażemy, że A∗ = A. Wystarczy udowodnić, że D(A∗) ⊆
D(A). Niech f ∈ D(A∗). Mamy

D(A∗) = {f ∈ L2(R) : |〈Ag, f〉| ¬ c‖g‖2, dla pewnej stałej c i g ∈ D(A)}

Niech gn(x) = xf(x)1(−n,n)(x). Wtedy gn ∈ D(A), bo xgn(x) jest ogra-
niczona. Załóżmy, że f ∈ D(A∗). Wtedy

|〈xgn, f〉| = |〈Agn, f〉| ¬ c‖gn‖2

Zatem
n∫
−n

x2|f(x)|2 dx ¬ c

 n∫
−n

x2|f(x)|2 dx

1/2

czyli
n∫
−n

x2|f(x)|2 dx ¬ c2, n ∈ N

Ponieważ n jest dowolne, to xf ∈ L2(R).
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Lemat 5.8. Jeśli A ⊆ B, to B∗ ⊆ A∗.

Dowód. Mamy

D(A∗) = {x ∈ H : (∃z ∈ H) (∀y ∈ D(A)) 〈Ay, x〉 = 〈y, z〉}
D(B∗) = {x ∈ H : (∃z ∈ H) (∀y ∈ D(B)) 〈By, x〉 = 〈y, z〉}

Dla y ∈ D(A) mamy Ay = By. Zatem D(B∗) ⊆ D(A∗). Ponadto dla x ∈
D(B∗) odpowiadający element z = B∗x jest równy A∗x.

Inne wyjaśnienie:

ΓB∗ = J(ΓB)⊥ ⊃ J(ΓA)⊥ = ΓA∗

Uwaga Załóżmy, że A ⊆ B oraz A i B są symetryczne. Wtedy

A ⊆ B ⊆ B∗ ⊆ A∗

Zatem jeśli A jest samosprzężony, to A = B = B∗ = A∗. Tzn. operator
samosprzężony nie posiada nietrywialnych symetrycznych rozszerzeń.

Lemat 5.9. Dla operatora symetrycznego A operator A jest również syme-
tryczny.

Dowód. Jeśli x ∈ D(A), to istnieje ciąg xn ∈ D(A) taki, że xn → x oraz
Axn → Ax. Wtedy

〈Ax, x〉 = lim
n
〈Axn, xn〉 ∈ R

Lemat 5.10. Jeśli A jest domykalny, to (A)∗ = A∗.

Dowód. Wiemy, że podprzestrzeń D(A∗) jest gęsta. Dalej

ΓA∗ = J(ΓA)⊥ = J(ΓA)
⊥

= J(ΓA)⊥ = J(ΓA)⊥ = Γ(A)∗

Lemat 5.11. Wartości własne operatora symetrycznego są liczbami rzeczy-
wistymi.
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Dowód. Niech A ⊆ A∗ oraz Av = λv, v 6= 0. Wtedy R 3 〈Av, v〉 = λ‖v‖2,
czyli λ ∈ R.

Definicja 5.12. Operator symetryczny nazywamy istotnie samosprzężo-
nym jeśli jego domknięcie jest operatorem samosprzężonym.

Uwaga Dla operatora symetrycznego, jeśli A∗ jest symetryczny, to A jest
istotnie samosprzężony. Rzeczywiście

A ⊂ A∗ ⊂ A∗∗ = A

Stąd A = A∗ = A
∗
.

Twierdzenie 5.13. Operator symetryczny A jest istotnie samosprzężony
wtedy i tylko wtedy, gdy dla dowolnej (równoważnie pewnej) liczby z ∈ C \R
przestrzenie Ran (A− zI) oraz Ran (A− zI) są gęste w H.

Uwaga Gdy A jest ograniczony (niekoniecznie symetryczny), to D(A) =
H (zadanie). Wtedy A jest operatorem ograniczonym określonym na H. Jeśli
A jest symetryczny, to A jest samosprzężony. Zatem A− zI jest odwracalny.
Stąd Ran (A−zI) = H. To oznacza, że Ran (A−zI) jest gęstą podprzestrze-
nią w H.

Lemat 5.14. Dla operatora symetrycznego przestrzeń Ran (A−zI) jest gęsta
wtedy i tylko wtedy, gdy liczba z nie jest wartością własną operatora A∗.

Dowód. Warunek Ran (A− zI) nie jest gęsta jest równoważny istnieniu 0 6=
v ⊥ Ran (A− zI), tzn. 〈Aw − zw, v〉 = 0 dla w ∈ D(A). Równoważnie

〈Aw, v〉 = z〈w, v〉 = 〈w, zv〉, w ∈ D(A)

Ostatnia równość oznacza, że v ∈ D(A∗) oraz A∗v = zv.

Przechodzimy do dowodu twierdzenia.

Dowód. ( =⇒ ) Niech A będzie istotnie samosprzężony. Załóżmy, że v ⊥
Ran (A−zI). Z dowodu lematu otrzymujemy A∗v = zv. Z założenia operator
A∗ jest symetryczny, bo A∗ = (A)∗ = A. Zatem v = 0.

(⇐= ) Załóżmy, że przestrzenie Ran (A− zI) oraz Ran (A− zI) są gęste
w H dla pewnej liczby z /∈ R. Pokażemy, że Ran (A− zI) = H. Mamy

Ran (A− zI) ⊆ Ran (A− zI) ⊆ H
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Wystarczy udowodnić, że przestrzeń Ran (A − zI) jest domknięta. Dla v ∈
D(A) mamy

〈(A− zI)v, v〉 = 〈Av, v〉 − z〈v, v〉
Zatem

|Im 〈(A− zI)v, v〉| = |Im z| ‖v‖2 (∗)
Załóżmy, że ciąg wn = (A − zI)vn, vn ∈ D(A) jest zbieżny. Oznaczmy w =
limnwn. Pokażemy, że w ∈ Ran(A−zI). Ciąg vn spełnia warunek Cauchy’ego
na podstawie równości (∗) zastosowanej do v := vn − vm. Rzeczywiście

|Im z| ‖vn − vm‖2 = ‖Im 〈(A− zI)(vn − vm), vn − vm〉|
= |Im 〈wn − wm, vn − vm〉| ¬ ‖wn − wm‖ ‖vn − vm‖

Otrzymujemy ‖vn − vm‖ ¬ |Im z|−1‖wn − wm‖. Oznaczmy v = limn vn. Ze
zbieżności wn wynika zbieżność Avn = wn + zvn → w + zv. Z domkniętości
wykresu dostajemy v ∈ D(A) oraz Av = w + zv, czyli (A − zI)v = w. To
kończy dowód równości Ran(A− zI) = H.

Pokażemy, że A∗ = A. Wystarczy udowodnić, że A∗ ⊂ A. Niech v ∈
D(A∗). Z własności Ran(A − zI) = H istnieje wektor w ∈ D(A) ⊂ D(A∗)
taki, że

(A∗ − zI)v = (A− zI)w = (A∗ − zI)w

Zatem (A∗ − zI)(v − w) = 0. Tzn. v − w jest wektorem własnym operatora
A∗ z wartością własną z. Jeśli v 6= w to z lematu podprzestrzeń Ran(A− zI)
nie jest gęsta. Zatem v = w, czyli v ∈ D(A).

Przykłady

(a) H = L2(0, 1).

Af = if ′, D(A) = {f ∈ C1[0, 1] : f(0) = f(1) = 0}

Zauważmy, że C1[0, 1] ⊂ D(A∗) oraz A∗g = ig′ dla g ∈ C1[0, 1]. Chcemy
sprawdzić, czy A jest istotnie samosprzężony. W tym celu rozwiązujemy
równanie (A∗ − zI)g = 0 dla g ∈ D(A∗). Załóżmy, że g ∈ C1[0, 1].
Otrzymujemy równanie ig′ = zg, którego rozwiązaniem jest g(x) =
e−izx ∈ C1. Stąd A nie jest istotnie samosprzężony.

(b) H = L2(0, 1).

Af = if ′, D(A) = {f ∈ C1[0, 1] : f(0) = f(1)}
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Pokażemy, że A jest istotnie samosprzężony. Wystarczy udowodnić, że
podprzestrzenie Ran(A±iI) są gęste. Sprawdzimy gęstość Ran(A−iI).
Załóżmy, że f ⊥ Ran(A− iI). Tzn.

〈(A− iI)g, f〉 = 0, g ∈ D(A)

Otrzymujemy warunek

〈g, f〉 = 〈g′, f〉, g ∈ D(A) (∗∗)

Funkcja F (x) =
x∫
0
f(t) dt jest ciągła. Zatem

〈g, f〉 =
1∫
0

g(x)f(x) dx = g(x)F (x)
∣∣∣1
0
−
1∫
0

g′(x)F (x) dx = g(1)F (1)−〈g′, F 〉

Podstawiając g ≡ 1 do (∗∗) dostajemy F (1) = 0. Czyli

〈g′, f〉 = 〈g, f〉 = −〈g′, F 〉

Zbiór {g′ : g ∈ D(A)} składa się ze wszystkich funkcji ciagłych o całce
0. Ten zbiór jest gęsty (zadanie) w

L20(0, 1) :=

h ∈ L2(0, 1) :
1∫
0

h(x) dx = 0

 = 1⊥

Zatem f + F ⊥ L20(0, 1). Czyli f(x) + F (x) = C prawie wszędzie,
dla pewnej stałej C. Uzyskujemy f(x) = −F (x) + C prawie wszędzie.
Funkcja F (x) jest ciągła. Możemy przyjąć, że f(x) = −F (x) + C dla
0 ¬ x ¬ 1. Stąd f jest ciągła, czyli F jest klasy C1. Zatem f jest również
klasy C1. Różniczkując otrzymujemy f ′ = −f. Zatem f(x) = de−x. Z
warunku

∫ 1
0 f(x) dx = 0 uzyskujemy d = 0, czyli f = 0.

Dla operatora symetrycznego A oraz z /∈ R operator A− zI jest różnowarto-
ściowy ze wzoru (∗). Jeśli A jest samosprzężony, to podprzestrzeń Ran(A−zI)
jest gęsta oraz domknięta, co wynika z dowodu Twierdzenia 5.13. Zatem
Ran(A− zI) = H. Reasumując

A− zI, A− zI : D(A) na−−→
1−1
H
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Definicja 5.15. Dla z /∈ R i operatora samosprzężonego A określamy trans-
formatę Cayleya wzorem

Uz = −(A− zI)(A− zI)−1 : H na−−→
1−1
H

Twierdzenie 5.16. Dla operatora samosprzężonego A transformata Cayleya
jest operatorem unitarnym.

Dowód. Dla v ∈ D(A) mamy

‖(A− zI)v‖2 = ‖Av‖2 + |z|2‖v‖2 − z〈Av, v〉 − z〈v, Av〉
= ‖Av‖2 + |z|2‖v‖2 − 2Re(z) 〈Av, v〉

Ponieważ wynik nie zależy od Im z, to ‖(A − zI)v‖ = ‖(A − zI)v‖. Mamy
Uz : (A − zI)v 7→ −(A − zI)v. Ponieważ każdy wektor w ∈ H ma postać
w = (A− zI)v dla pewnego v ∈ H, to Uz jest izometrią z H na siebie.

Naszym celem jest wyrażenie operatora A za pomocą Ui.

Twierdzenie 5.17. Dla z /∈ R operator I + Uz jest różnowartościowy oraz
Ran(I + Uz) = D(A).

Dowód. Dla v ∈ D(A) mamy Uz(A − zI)v = −(A − zI)v. Oznaczmy w =
(A− zI)v. Wtedy

(I + Uz)w = (A− zI)v − (A− zI)v = (z − z)v 6= 0, v 6= 0

Zatem Ran(I + Uz) ⊇ D(A). Z drugiej strony każdy wektor w ∈ H ma
postać (A − zI)v dla pewnego v ∈ D(A). Czyli Ran(I + Uz) ⊆ D(A). Ze
wzoru wynika różnowartościowość.

Określmy U := Ui = −(A− iI)(A+ iI)−1.

Twierdzenie 5.18.
A = i(I − U)(I + U)−1

Dowód. Obie strony są określone na D(A), z poprzedniego twierdzenia. Ma-
my

I + U = (A+ iI)(A+ iI)−1 − (A− iI)(A+ iI)−1 = 2i(A+ iI)−1 (∗)
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Dowód jest łatwy, gdy A jest ograniczonym operatorem samosprzężonym, bo
nie musimy dbać o dziedziny. Wtedy I + U jest odwracalnya. Otrzymujemy

A = 2i(I +U)−1− iI = 2i(I +U)−1− i(I +U)(I +U)−1 = i(I −U)(I +U)−1

W przypadku ogólnym mamy

A+ iI : D(A) na−−→
1−1
H, I + U : H na−−→

1−1
D(A)

Dalej

I − U = (A+ iI)(A+ iI)−1 + (A− iI)(A+ iI)−1 = 2A(A+ iI)−1

Ponadto z (∗) na przestrzeni D(A) zachodzi wzór (I + U)−1 = − i
2(A + iI).

Otrzymujemy

i(I − U)(I + U)−1 = 2iA(A+ iI)−1
(
− i

2

)
(A+ iI) = A

6 Rozkład spektralny operatora unitarnego

Dla operatora unitarnego U niech D oznacza rodzinę nieujemnych funkcji
ciągłych będacymi wstępującymi granicami funkcji ciągłych i nieujemnych
na σ(U).

Dla liczb rzeczywistych 0 < λ− µ < 2π niech

1(µ,λ)(eit) =

1 µ < t < λ

0 poza tym

Wtedy 1(µ,λ) ∈ D. Dla liczby −π < λ ¬ π określamy funkcje

fπ ≡ 1, fλ = 1(−π,λ), −π < λ < π

Dla ustalonego operatora unitarnego niech E(λ) = fλ(U). Operatory
E(λ) są nieujemne. Ponadto dla µ ¬ λ mamy

E(µ)E(λ) = fµ(U)fλ(U) = (fµfλ)(U) = fµ(U) = E(µ)

aGdy I + U jest odwracalny, to −1 /∈ σ(U). Zatem σ(U) ⊂ {eit : −π + δ ¬ t ¬ π − δ}
dla pewnej liczby 0 < δ < π.
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W szczególności E(λ)2 = E(λ), czyli E(λ) jest rzutem ortogonalnym. Po-
nadto

E(λ)− E(µ) = E(λ)[I − E(µ)] ­ 0

Nierówność wynika również z faktu, że 0 ¬ fµ(eit) ¬ fλ(eit), czyli

E(λ)− E(µ) = (fλ − fµ)(U) ­ 0

Lemat 6.1. Dla −π < µ < λ ¬ π mamy

E(λ)− E(µ) ­ 1(µ,λ)(U)
E(λ)− E(µ) ¬ 1(µ−δ,λ)(U), µ− δ > −π, λ < π

E(π)− E(µ) ¬ 1(µ−δ,π+δ)(U), µ− δ > −π, π + δ, (π + δ)− (µ− δ) < 2π

Dowód. Pierwsza nierówność wynika z fµ + 1(µ,λ) ¬ fλ. Z kolei dla λ < π
mamy fµ + 1(µ−δ,λ) ­ fλ. Ostatnia nierówność wynika z 1 ¬ fµ + 1(µ−δ,π+δ).

Twierdzenie 6.2. Dla −π < λ < π zachodzi limµ→λ− E(µ)v = E(λ)v dla
wszystkich v ∈ H. Równoważnie rodzina E(λ) jest mocno lewostronnie ciągła
dla −π < λ < π.

Dowód. Niech µn ↗ λ. Istnieje rosnący ciąg gn funkcji ciągłych na T, zbieżny
punktowo do fλ spełniający 0 ¬ gn ¬ fµn . Wtedy

0 ¬ gn(U) ¬ fµn(U) ¬ fλ(U)

Ponieważ fλ(U) jest mocną granicą operatorów gn(U), to fµn(U) → fλ(U)
mocno, czyli E(µn)→ E(λ) mocno. W tym miejscu korzystamy z

Lemat 6.3. Niech 0 ¬ An ¬ Bn oraz Bn → 0 mocno. Wtedy Bn → 0 mocno.

Dowód. Mamy
0 ¬ 〈Anv, v〉 ¬ 〈Bnv, v〉

Zatem 〈Anv, v〉 → 0. Ciąg norm ‖An‖ jest ograniczony. Z nierówności

‖Anv‖2 ¬ ‖An‖〈Anv, v〉

otrzymujemy tezę.

Lemat stosujemy do Bn = fλ(U)− gn(U) oraz An = fλ(U)− fµn(U).
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Twierdzenie 6.4. lim
λ→−π+

E(λ)v = 0 dla v ∈ H.

Dowód. Niech λn ↘ −π. Wtedy ciąg E(λn) jest malejącym ciągiem ope-
ratorów nieujemnych, więc jest mocno zbieżny do pewnego rzutu E. Dla
ustalonej liczby −π < λ < π istnieje niemalejący ciąg funkcji ciągłych gn
zbieżny punktowo do fλ taki, że g(eit) = 0 dla −π < t < λn. Wtedy

gn(U)E(λn) = gn(U)fλn(U) = (gnfλn)(U) = 0

Z drugiej strony

0 = gn(U)E(λn)→ E(λ)E ­ E ­ 0

Czyli E = 0.

Określmy E(−π) = 0.

Lemat 6.5. Operatory B,C ∈ B(H) są przemienne oraz C ­ B ­ 0. Wtedy
‖BA‖ ¬ ‖CA‖ dla dowolnego operatora A ∈ B(H).

Dowód. Mamy

0 ¬ (BA)∗(BA) = A∗B2A ¬ A∗C2A = (CA)∗(CA)

Zatem
‖BA‖2 = ‖(BA)∗(BA)‖ ¬ ‖(CA)∗((CA)‖ = ‖CA‖2

Twierdzenie 6.6. Niech f ∈ C(T) oraz ε > 0. Istnieje liczba δ > 0 taka,
że dla każdego podziału P = {t0, t1, . . . , tn} przedziału [−π, π] o średnicy
mniejszej niż δ i dowolnego wyboru punktów pośrednich tj−1 ¬ sj ¬ tj mamy∥∥∥∥∥∥

n∑
j=1

f(eisj) ∆E(tj)− f(U)

∥∥∥∥∥∥ < ε, ∆E(tj) = E(tj)− E(tj−1

Stosujemy wtedy zapis

f(U) =
π∫
−π

f(eit) dE(t)

W szczególności

U =
π∫
−π

eit dE(t)
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Dowód. Wystarczy rozważać funkcje o wartościach rzeczywistych. Rozważmy
podział P = {t0, t1, . . . , tn} o średnicy mniejszej niż δ. Ponieważ

∑n
j=1∆E(tj) =

I, to
n∑
j=1

f(eisj) ∆E(tj)− f(U) =
n∑
j=1

[f(eisj)I − f(U)] ∆E(tj)

Otrzymujemy

‖[f(eisj)I − f(U)] ∆E(tj)‖ = ‖|f(eisj)I − f(U)|∆E(tj)‖
¬ ‖|f(eisj)I − f(U)|1(tj−1−δ,tj+δ)(U)‖ ¬ max

|t−s|¬2δ
|f(eit)− f(eis)| =: Mδ

Z lematu każdy składnik jest operatorem samosprzężonym i ma normę nie-
większą niż Mδ, zatem mieści się pomiędzy −Mδ I i Mδ I. Stąd po pomnoże-
niu przez ∆E(tj) mieści się pomiedzy −Mδ ∆E(tj) a Mδ ∆E(tj). Po zsumo-
waniu otrzymujemy

−MδI = Mδ

n∑
j=1

∆E(tj) ¬
n∑
k=1

f(sj) ∆E(tj)− f(U) ¬Mδ

n∑
j=1

∆E(tj) ¬MδI

Stąd ∥∥∥∥∥∥
n∑
j=1

f(eisj) ∆E(tj)− f(U)

∥∥∥∥∥∥ ¬Mδ

Uwaga Spektrum operatora
∑n
j=1 f(eisj) ∆E(tj) jest skończone i składa

sie z wartości własnych {f(eisj)}nj=1, dla których ∆E(tj) 6= 0. Ponadto∥∥∥∥∥∥
n∑
j=1

f(eisj) ∆E(tj)

∥∥∥∥∥∥ ¬ max
1¬j¬n

|f(eisj)|

Twierdzenie 6.7.

(a) Dla −π < µ < π jeśli E(µ− δ) = E(µ + δ), dla pewnej liczby 0 < δ <
min{µ, π − µ}, to eiµ /∈ σ(U). Jeśli E(−π + δ) = 0 oraz E(π − δ) = I
dla pewnej liczby 0 < δ < π/2, to −1 /∈ σ(U)

(b) Dla −π < µ < π, jeśli eiµ /∈ σ(U), to E(µ− δ) = E(µ + δ) dla pewnej
liczby 0 < δ < min{µ, π − µ}. Jeśli −1 /∈ σ(U), to E(−π + δ) = 0 oraz
E(π − δ) = I dla pewnej liczby 0 < δ < π/2.
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Dowód. (a) Załóżmy, że −π < µ < π. Rozważmy podział P zawierący µ− δ
oraz µ + δ. Wtedy spektrum każdej sumy częściowej dla U, czyli f(z) = z,
nie zawiera liczb eit dla µ − δ < t < µ + δ. Zatem odległość liczby eiµ od
spektrum sumy częściowej jest większe niż ε dla pewnej liczby dodatniej ε.
To samo dotyczy granicy, gdy średnica P dąży do zera, czyli operatora U .
W szczególności eiµ /∈ σ(U). Podobnie jeśli E(π− δ) = I i E(−π+ δ) = 0, to
−1 /∈ σ(U). W tym wypadku rozważamy podział zawierający liczby −π + δ
i π − δ.

(b) Załóżmy, że eiµ /∈ σ(U) dla −π < µ < π. Rozważmy podział zawiera-
jący µ = tj0 taki, że sj0 = sj0+1 = µ. Wtedy spektrum

n∑
j=1

eisj ∆E(tj)

zawiera eiµ, jeśli ∆E(tj0) 6= 0 lub ∆E(tj0+1) 6= 0. Ponieważ sumy częściowe są
zbieżne do U , to istnieje podział P , którego spektrum nie zawiera eiµ. Zatem
∆E(tj0) = 0 oraz ∆E(tj0+1) = 0. Podobnie jeśli −1 /∈ σ(U), to wybieramy
s1 = −π oraz sn = π. Podobne rozumowanie daje, że dla pewnego podziału
∆E(t1) = 0 oraz ∆E(tn) = 0.

Dla −π < λ < π określamy

Pλ = lim
δ→0+

[E(λ+ δ)− E(λ)], Pπ = lim
δ→0+

[I − E(π − δ)]

Wtedy Pλ są rzutami jako mocne granice przemiennych rzutów.

Twierdzenie 6.8. Operator Pλ jest rzutem na podprzestrzeń wektorów wła-
snych operatora U odpowiadających wartości własnej eiλ.

Dowód. Będziemy korzystać z

U =
π∫
−π

eit dE(t)

Rozważmy −π < λ < π. Niech Pλv = v, dla v 6= 0. Ponieważ

Pλ ¬ E(λ+ δ)− E(λ) ¬ E(λ+ δ), δ > 0

to E(λ + δ)v = v i E(λ)v = 0. Stąd wynika, że funkcja t 7→ E(t)v jest stała
na przedziałach (−π, λ] i (λ, π]. Rozważmy podział P , typu lewy koniec,
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zawierający −π < λ = tj0 < π. Z wcześniejszej uwagi przyrosty ∆E(tj)v są
zerowe dla j ¬ j0 oraz dla j ­ j0 + 2. Zatem

n∑
j=1

eitj−1 ∆E(tj)v = eitj0∆E(tj0+1)v = eiλ[E(tj0+1)v − E(λ)v] = eiλv

Ponieważ sumy dążą do U, to Uv = eiλv.
Jeśli Pπv = v, to E(λ)v = 0 dla −π < λ < π. Rozważmy podział typu

prawy koniec. Wtedy ∆E(tj)v = 0 dla j < n.

n∑
j=1

eitj ∆E(tj)v = eitn∆E(tn)v = −∆E(tn)v = −[I − E(tn−1)]v

Po przejściu do granicy uzyskujemy Uv = −v.
Załóżmy, że Uv = eiλv dla −π < λ < π. Wtedy dla w = E(µ)v mamy

Uw = UE(µ)v = E(µ)Uv = eiλE(µ)v = eiλw

Załóżmy, że −π < µ < λ. Mamy ∆E(tj)E(µ) = 0 dla tj−1 ­ µ, zatem n∑
j=1

eitj−1∆E(tj)

 E(µ) =
n∑

j, tj−1<µ

eitj−1∆E(tj)

Zatem odległość liczby eiλ od spektrum każdej sumy jest większa niż pewna
liczba 0 < ε < 1. To samo dotyczy granicy UE(µ). Zatem E(µ)v = w = 0 dla
µ < λ. Ze względu na lewostronną mocną ciągłość otrzymujemy E(λ)v = 0.
Podobnie dla µ > λ mamy U [I − E(µ)]v = eiλ[I − E(µ)]v. Odległość liczby
eiλ od spektrum każdej sumy n∑

j=1

eitj∆E(tj)

 [I − E(µ)] =
n∑

j, tj−1­µ
eitj∆E(tj)

jest większa niż pewna liczba 0 < ε < 1. To samo dotyczy granicy U [I−E(µ)].
Zatem [I−E(µ)]v = 0, czyli E(µ)v = v dla µ > λ. Stąd [E(λ+δ)−E(λ)]v =
v, czyli Pλv = v. Podobne rozumowanie daje, że jeśli Uv = eiπv = −v, to
E(µ)v = 0 dla µ < π. Zatem [I − E(λ)]v = v, czyli Pπv = v.

Twierdzenie 6.9. Dla −π < λ < π oraz funkcji ciągłej h na T mamy

〈h(U)E(λ)v, v〉 =
λ∫
−π

h(eit) d〈E(t)v, v〉
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Dowód. Niech gn(eit) będzie rosnącym ciągiem funkcji nieujemnych zbieżnym
punktowo do fλ(eit), zatem gn(U)→ E(λ) mocno. Otrzymujemy

〈h(U)E(λ)v, v〉 = lim
n
〈h(U)gn(U)v, v〉 = lim

n
〈(hgn)(U)v, v〉

= lim
n

π∫
−π

h(eit)gn(eit) d〈E(t)v, v〉

= lim
n

λ∫
−π

h(eit)gn(eit) d〈E(t)v, v〉 =
λ∫
−π

h(eit) d〈E(t)v, v〉

Pierwsz równość wynika z faktu, że gn(eit) = 0 dla t ­ λ. Dla dowodu
przejścia graniczngo możemy przyjąć, że dla ustalonej liczby 0 < δ < 1

2(π−λ)
mamy gn(eit) = 1 dla −π + δ < t < λ− δ. Wtedy

π∫
−π

h(eit)gn(eit) d〈E(t)v, v〉 =
−π+δ∫
−π

h(eit)gn(eit) d〈E(t)v, v〉

+
λ−δ∫
−π+δ

h(eit) d〈E(t)v, v〉+
λ∫

λ−δ

h(eit)gn(eit) d〈E(t)v, v〉

Skrajne całki można oszacować przez

‖h‖∞〈E(−π + δ)v, v〉, ‖h‖∞[〈E(λ)v, v〉 − 〈E(λ− δ)v, v〉] (∗)

Ponadto
λ∫
−π

h(eit) d〈E(t)v, v〉 =
−π+δ∫
−π

h(eit) d〈E(t)v, v〉

+
λ−δ∫
−π+δ

h(eit) d〈E(t)v, v〉+
λ∫

λ−δ

h(eit) d〈E(t)v, v〉

Znowu skrajne całki można oszacować tak jak w (∗). Korzystając z moc-
nej lewostronnej ciągłości t 7→ E(t) dla −π < t < π oraz z faktu, że
limt→−π+ E(t)v = 0 otrzymujemy tezę.

Uwaga. Załóżmy, że h = |g|2 dla funkcji ciągłej g. Wzór oznacza, że

〈E(λ)g(U)v, g(U)v〉 = 〈g(U)∗g(U)E(λ)v, v〉 =
λ∫
−π

|g(eit)|2 d〈E(t)v, v〉 −π ¬ λ ¬ π
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czyli
d〈E(λ)g(U)v, g(U)v〉 = |g(eiλ)|2 d〈E(λ)v, v〉

Zatem całki Riemanna-Stieltjesa funkcji ciągłych względem obu stron są ta-
kie same.

Definicja 6.10. Rodzinę {E(λ)}−π¬λ¬π nazywamy rozkładem spektralnym
operatora U.

Uwaga Wzór

U =
π∫
−π

eit dE(t)

przypomina rozkład diagonalny macierzy. Symbol dE(t) jest infinitezymal-
nym rzutem ortogonalnym na podprzestrzeń związaną z wartością eit. Rzuty
dE(t) i dE(s) są do siebie ortogonalne dla t 6= s oraz

I =
π∫
−π

dE(t)

Przykład

(a) H = L2(−π, π), (Uh)(eit) = eith(eit).Wtedy [f(U)h](eit) = f(eit)h(eit).
Jeśli fn(eit) jest rosnącym ciągiem funkcji ciągłych zbieżnym punktowo
do 1(−π,λ)(eit), dla −π < λ < π, to ciąg operatorów fn(U) jest zbieżny
mocno do operatora

[E(λ)f ](eit) = 1(−π,λ)(eit)f(eit)

Ponadto limλ→π− E(λ) = I oraz E(−π) = 0.

(b) Niech H = Cn oraz (Uδk) = eitkδk dla −π < t1 < t2 < . . . < tn ¬ π.
Tzn. U jest macierzą diagonalną o wartościach własnych eitk . Funkcje
1(−π,λ)(eit) są ciągłe poza punktami {tk}nk=1. Zatem

E(λ)δk = 1(−π,λ)(eit)δk, λ 6= tk, −π < λ < π

Z lewostronnej ciągłości wzór jest spełniony dla −π < λ < π. Za-
uważmy, że E(λ) jest rzutem ortogonalnym na podprzestrzeń wektorów
własnych o wartościach własnych eit, dla −π < t < λ, dla −π < λ < π.
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7 Rozkład spektralny operatora samosprzę-
żonego

Dla operatora samosprzężonego A rozważamy transformatę Cayleya A =
i(I−U)(I+U)−1. Niech {E(λ)}−π¬λ¬π będzie rozkładem jedności związanym
z operatorem U. Ponieważ liczba −1 nie jest wartością własną operatora U,
to funkcja λ 7→ E(λ) jest lewostronnie ciągła również w punkcie π. Funkcję

(−π, π) 3 λ 7→ i
1− eiλ

1 + eiλ
= tan(λ/2) ∈ R

Ze wzoru h jest ciągła i ściśle rosnąca. Dla x ∈ R określmy F (x) = E(2 arctan x).
Wtedy

F (tg(t/2)) = E(t), lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = I

Ponadto F (x) jest niemalejącą lewostronnie mocno ciągła rodziną rzutów
ortogonalnych.

Lemat 7.1. Zachodzi równość

Ran (I + U) =
{
v ∈ H :

∫ π

−π

1
|1 + eit|2

d〈E(t)v, v〉 <∞
}

przy czym całka niewłaściwa jest traktowana jako granica lub supremum wła-
ściwych całek Riemanna-Stieltjesa

lim
n

∫ π− 1
n

−π+ 1
n

1
|1 + eit|2

d〈E(t)v, v〉

Dowód. Całka niewłaściwa jest dobrze określona, bo miara d〈E(t)v, v〉 nie
ma atomu w punkcie π. Niech v = Ran (I + U). Wtedy v = (I + U)w dla
pewnego w ∈ H. Zatem z uwagi na temat równości całek Riemanna-Stieltjesa
orzymujemy

∫ π

−π

1
|1 + eit|2

d〈E(t)v, v〉 =
π∫
−π

1
1 + eit|2

d〈(E(t)(I + U)w, (I + U)w〉

=
π∫
−π

1
|1 + eit|2

|1 + eit|2 d〈E(t)w,w〉 =
π∫
−π

d〈E(t)v, v〉 = 〈w,w〉
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To dowodzi zawierania ” ⊆ ”.
Załóżmy, że ∫ π

−π

1
|1 + eit|2

d〈E(t)v, v〉 <∞

Niech an = −π + 1
n

oraz bn = π − 1
n
. Oznaczmy

fn(eit) =
1

1 + eit
[1(−π,bn)(e

it)−1(−π,an)(eit)], gn(eit) = 1(−π,bn)(e
it)−1(−π,an)(eit)

oraz wn = fn(U)v. Pokażemy, że ciąg wn jest zbieżny. Dla n > m mamy

‖wn −wm‖2 = 〈fn(U)v− fm(U)v, fn(U)v− fm(U)v〉 = 〈|fn − fm|2(U)v, v〉

=
π∫
−π

|fn(eit)−fm(eit)|2 d〈E(t)v, v〉 =
π∫
−π

1
|1 + eit|2

[gn(eit)−gm(eit)] d〈E(t)v, v〉

=
π∫
−π

1
|1 + eit|2

gn(eit) d〈E(t)v, v〉 −
π∫
−π

1
|1 + eit|2

gm(eit) d〈E(t)v, v〉

¬
bn+1∫
−an+1

1
|1 + eit|2

d〈E(t)v, v〉 −
bm−1∫
−am−1

1
|1 + eit|2

d〈E(t)v, v〉

Oba odejmowane składniki są zbieżne do∫ π

−π

1
|1 + eit|2

d〈E(t)v, v〉

gdy m→∞.
Niech w = limnwn. Otrzymujemy

(I + U)wn = (I + U)fn(U)v
= (1 + z)(U)fn(U)v = [(1 + z)fn](U)v = gn(U)v → v

Zatem (I + U)w = v, czyli v ∈ Ran (I + U).

Uwaga Dla −π < a < b < π i g(eit) = 1(a,b)(eit) mamy

g(U) = E(b)− lim
δ→0+

E(a+ δ)

Rzeczywiście
1(−π,b) = lim

δ→0+
1(−π,a+δ) + 1(a,b)



Rozkład spektralny operatora samosprzężonego 50

Twierdzenie 7.2. Dla operatora samosprzężonego mamy

D(A) =

v ∈ H :
∞∫
−∞

x2 d〈F (x)v, v〉 <∞


Dowód. Niech v ∈ D(A). Z lematu dostajemy

π∫
−π

1
|1 + eit|2

d〈E(t)v, v〉 <∞

Zatem stosując podstawienie x = tan(t/2) = i
1− eit

1 + eit
otrzymamy

∞∫
−∞

x2 d〈F (x)v, v〉 =
π∫
−π

|1− eit|2

|1 + eit|2
d〈E(t)v, v〉 ¬ 4

π∫
−π

1
|1 + eit|2

d〈E(t)v, v〉 <∞

Dla dowodu przeciwnego zawierania załóżmy, że
∞∫
−∞

x2 d〈F (x)v, v〉 < ∞.

Wtedy

π∫
−π

4
|1 + eit|2

d〈E(t)v, v〉 =
π∫
−π

(
1 +
|1− eit|2

|1 + eit|2

)
d〈E(t)v, v〉 =

∞∫
−∞

(1+x2) d〈F (x)v, v〉 <∞

Zatem v ∈ D(A).

Twierdzenie 7.3. Dla operatora samosprzężonego A mamy

A =
∞∫
−∞

x dF (x),

który z definicji oznacza, że dla v ∈ D(A) zachodzi

〈Av, v〉 =
∞∫
−∞

x d〈F (x)v, v〉

Uwaga. Całka jest bezwzględnie zbieżna, bo |x| ¬ (1 + x2)/2.
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Dowód. Dla an = −π + 1
n
, bn = π + 1

n
określmy cn = tan(an/2), dn =

tan(bn/2). Niech hn(x) = 1(−∞,dn)(x)− 1(−∞,cn)(x). Wtedy

∞∫
−∞

hn(x)x d〈F (x)v, v〉 =
π∫
−π

gn(eit) i
1− eit

1 + eit
d〈E(t)v, v〉

Wiemy, że v = (I + U)w dla pewnego w ∈ H oraz

d〈E(t)(I + U)w, (I + U)w〉 = |1 + eit|2 d〈E(t)w,w〉

Zatem ostatnia całka jest równa (wg oznaczeń z dowodu poprzedniego twier-
dzenia 7.1)

π∫
−π

gn(eit) i (1− eit)(1 + e−it) d〈E(t)v, v〉

W granicy otrzymujemy ( limt→π− E(t)v = v = E(π)v)

π∫
−π

i (1− eit)(1 + e−it) d 〈E(t)v, v〉 = i 〈(I −U)(I +U∗)w,w〉 = i 〈(I −U)w, v〉

Ale
Av = A(I + U)w = i(I − U)w

Zatem w wyniku dostajemy 〈Av, v〉.

Określmy Hn = [F (n)−F (−n)]H, gdzie n ∈ N. Wtedy Hn jest domknię-
tą podprzestrzenią w H jako obraz H pod działaniem rzutu ortogonalnego.
Ponadto Hn ⊂ Hn+1 oraz

∞⋃
n=1

Hn = H

bo
lim
n

[F (n)− F (−n)]v = v

Lemat 7.4. Mamy Hn ⊂ D(A) oraz A(Hn) ⊂ Hn.

Dowód. Niech v ∈ Hn. Określmy Pn = F (n)− F (−n). Wtedy

∞∫
−∞

x2 d〈F (x)v, v〉 =
∞∫
−∞

x2 d〈PnF (x)Pnv, v〉
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Przyrosty funkcji x 7→ 〈PnF (x)Pnv, Pnv〉 są zerowe dla |x| ­ n, bo

F (x)Pn = F (x)[F (n)− F (−n)] = F (n)− F (−n), x ­ n

F (x)Pn = F (x)[F (n)− F (−n)] = F (x)− F (x) = 0, x ¬ −n

Zatem całka jest ograniczona z góry przez n2‖Pnv‖2 = n2‖v‖2, bo dla |x| ¬ n
mamy

0 = PnF (−n)Pn ¬ PnF (n)Pn = Pn

Dla v ∈ D(A) mamy v = (I + U)w dla pewnego w ∈ H. Zatem

APnv = APn(I + U)w = A(I + U)Pnw = i(I − U)Pnw = iPn(I − U)w

Stąd wynika, że jeśli v ∈ Hn, to Av ∈ Hn.

Twierdzenie 7.5. Operator A : Hn → Hn jest ograniczony oraz ‖A‖Hn→Hn ¬
n.

Dowód. Niech v ∈ Hn. Wtedy

〈Av, v〉 =
∞∫
−∞

x d〈F (x)v, v〉 =
∞∫
−∞

x d〈F (x)Pnv, Pnv〉

Ponieważ przyrosty są zerowe dla |x| > n, to

|〈Av, v〉| ¬ n

∞∫
−∞

d〈F (x)v, v〉 = n‖v‖2

Ze wzoru polaryzacyjnego otrzymujemy

Re 〈Av,w〉 =
1
4

[〈A(v + w), v + w〉 − 〈A(v − w), v − w〉]

¬ n

4
[‖v + w‖2 + ‖v − w‖2] =

n

2
[‖v‖2 + ‖w‖2]

Dla liczby s > 0 otrzymujemy zatem

Re 〈Av,w〉 = Re 〈A(sv), s−1w〉 ¬ n

2
[s2‖v‖2 + s−2‖w‖2]

Przyjmując s2 = ‖w‖/‖v‖ dostajemy

Re 〈Av,w〉 ¬ n‖v‖ ‖w‖
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Mamy 〈Av,w〉 = eiθ|〈Av,w〉|. Wtedy

|〈Av,w〉| = Re 〈A(v, eiθw〉 ¬ n‖v‖ ‖eiθw‖ = n‖v‖ ‖w‖

Zatem ‖A‖ ¬ n na Hn.

Załóżmy, że A jest ograniczonym operatorem samosprzężonym. Ze wzoru
A = i(I − U)(I + U)−1 wynika

(I + U)−1 = − i
2

(A+ iI)

Zatem operator I + U jest odwracalny, czyli −1 /∈ σ(U). To oznacza, że

σ(U) ⊂ {eit : 2arctg (a) < t < 2arctg (b)}

dla pewnych liczb rzeczywistych a < b. Wiemy, że F (a) = E(2arctg (a)) = 0
oraz F (b) = E(2arctg (b)) = I. Niech f będzie funkcją ciągłą na R.Oznaczmy
ϕ(t) = i(1 − eit)(1 + eit)−1 = tg(t/2). Funkcja ϕ(t) jest ciągła na [a, b] oraz
A = ϕ(U). Zatem

σ(A) = σ(ϕ(U)) = ϕ(σ(U)) ⊂ (a, b)

Funkcja f ◦ ϕ jest ciągła i ograniczona na σ(U). Otrzymujemy więc

f(A) = f(ϕ(U)) = (f ◦ ϕ)(U) =
2arctg (b)∫
2arctg (a)

(f ◦ ϕ)(t) dE(t) =
b∫
a

f(x) dF (x)

W szczególności

A =
b∫
a

f(x) dF (x)

Wiemy, że sumy całkowe pierwszej całki są zbieżne w normie. To samo do-
tyczy więc drugiej całki, która otrzymana jest przez ciągłe podstawienie
x = arctg (t/2). Niech c = minσ(A) oraz d = maxσ(A). Ze wzoru na A
otrzymujemy, że F (x) = 0 dla x < c oraz F (x) = I dla x > d. Funkcja F (x)
jest mocno lewostronnie ciągła. Zatem F (c) = 0 oraz limδ→0+ F (d+ δ) = I.

Określając F (d) = I otrzymamy

f(A) =
d∫
c

f(x) dF (x)
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bo sumy całkowe są takie same jak dla całki po przedziale [a, b] jeśli przyj-
miemy, że podział całki względem [a, b] zawiera c i nie zawiera d.

Ze wzoru wynika, że jeśli ciąg funkcji ciągłych fn → f jest zbieżny jed-
nostajnie na [c, d], to fn(A)→ f(A) w normie.

Poprzez podstawienie x = tg(t/2) lub poprzez zastosowanie podobnego
dowodu do Twierdzenia 6.8 uzyskamy

Twierdzenie 7.6.

(a) Dla c ¬ x ¬ d jeśli F (x − δ) = F (x + δ), dla pewnej liczby δ > 0, to
x /∈ σ(A).

(b) Dla c ¬ x ¬ d, jeśli x /∈ σ(A), to F (x− δ) = F (x+ δ) dla pewnej liczby
δ > 0.

Dla c ¬ x < d określamy

Px = lim
δ→0+

[F (x+ δ)− F (x)], Pd = lim
δ→0+

[I − F (d− δ)]

Wtedy Px są rzutami jako mocne granice przemiennych rzutów.

Twierdzenie 7.7. Operator Px jest rzutem na podprzestrzeń wektorów wła-
snych operatora A odpowiadających wartości własnej x.

Dla wektora v rozważamy lewostronnie ciągłą funkcję niemalejącą
[c, d] 3 x 7→ 〈F (x)v, v〉. Z teorii miary wiemy, że ta funkcja wyznacza miarę
borelowską na przedziale [c, d]. Z poprzedniego twierdzenia wynika, że miara
miara zeruje się na przedziałach otwartych rozłącznych z σ(A). Wtedy

〈f(A)v, v〉 =
∫

σ(A)

f(x) d〈F (x)v, v〉

Dlatego stosuje się zapis

f(A) =
∫

σ(A)

f(x) dF (x)

Dla u,w ∈ H mamy

〈f(A)v, w〉 =
1
4

4∑
k=1

ik〈f(A)(v + ikw), v + ikw〉

=
1
4

4∑
k=1

ik
b∫
a

f(x) d〈F (x)(v + ikw), v + ikw〉
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To oznacza, że prawa strona jest ograniczoną formą półtoraliniową. Dla ogra-
niczonej funkcji borelowskiej g(x) na [a, b] istnieje ciąg wspólnie ograniczo-
nych funkcji ciągłych fn(x) zbieżny prawie wszędzie do g(x). Wtedy prawa
strona jest zbieżna, więc lewa też. Czyli ciąg operatorów fn(A) jest ∗-słabo
zbieżny do pewnego operatora g(A). Wtedy

〈g(A)v, w〉 =
1
4

4∑
k=1

ik
b∫
a

g(x) d〈F (x)(v + ikw), v + ikw〉

Ze wzoru wynika, że prawa strona jest formą półtoraliniową. Otrzymujemy

〈g(A)v, v〉 =
1
4

4∑
k=1

ik
b∫
a

g(x) d〈F (x)(v + ikv), v + ikv〉 =
b∫
a

g(x) d〈F (x)v, v〉

Stosujemy wtedy zapis

g(A) =
b∫
a

g(x) dF (x)

Lemat 7.8.

(a) Dla operatora unitarnego U, ograniczonego operatora T oraz funkcji f ∈
C(T)) jeśli TU = UT , to Tf(U) = f(U)T Ponadto TE(λ) = E(λ)T.

(b) Dla ograniczonego operatora samosprzężonego A, σ(T ) ⊂ [c, d], funkcji
f ∈ C[c, d] oraz ograniczonego operatora T, jeśli TA = AT , to Tf(A) =
f(A)T oraz TF (x) = F (x)T.

Rozważmy ograniczony operator normalny T. Wtedy T = A + iB, gdzie
A = 1

2(T + T ∗) oraz B = 1
2i(T − T

∗). Operatory A i B są samosprzężone i
przemienne. Wiemy, że jeśli z = x + iy ∈ σ(T ), to x ∈ σ(A) oraz y ∈ σ(B).
Zawieranie odwrotne nie musi być spełnione.

Niech {FA(x)}dAx=cA oraz {FB(y)}dBy=cB będą rodzinami rzutów związanych
z A i B, odpowiednio. Ponieważ B jest przemienny z A, to również z FA(x).
Zatem FB(y) jest przemienny z FA(x). Dla funkcji ciągłych f(x) i g(y) na
[cA, dA] oraz [cB, dB], odpowiednio, otrzymujemy

f(A) =
dA∫
cA

f(x) dFA(x) =
dA∫
cA

f(x) dFA(x)·
dB∫
cB

dFB(y) =
∫∫

[cA,dA]×[cB ,dB ]

f(x) dFA(x) dFB(y)
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przy czym całkę podwójną traktujemy jako granicę sum całkowych względem
prostokątów [xk−1, xk]× [yl−1, yl]. Sumy całkowe są wtedy zbieżne w normie
do f(A). Podobnie

g(B) =
∫∫

[cA,dA]×[cB ,dB ]

f(x) dFA(x) dFB(y)

Przez pomnożenie (rozważając zbieżność sum całkowych) otrzymujemy

f(A)g(B) =
∫∫

[cA,dA]×[cB ,dB ]

f(x)g(y) dFA(x) dFB(y)

Dla funkcji h(x, y) =
∑n
k=1

∑m
l=1 an,mx

nym dostajemy

h(A,B) =
∫∫

[cA,dA]×[cB ,dB ]

h(x, y) dFA(x) dFB(y)

Z liniowości uzyskujemy

T n = (A+ iB)n =
∫∫

[cA,dA]×[cB ,dB ]

(x+ iy)n dFA(x) dFB(y)

(T ∗)n = (A− iB)n =
∫∫

[cA,dA]×[cB ,dB ]

(x− iy)n dFA(x) dFB(y)

Jeśli p(z, z) jest wielomianem zmiennej z, to

p(T, T ∗) =
∫∫

[cA,dA]×[cB ,dB ]

p(z, z) dFA(x) dFB(y)

Z kolei jeśli funkcja f(z) określona na [ca, dA] × [cB, dB] jest granicą jedno-
stajną wielomianów postaci p(z, z) to

f(T ) =
∫∫

[cA,dA]×[cB ,dB ]

f(z) dFA(x) dFB(y)

W szczególności

T =
∫∫

[cA,dA]×[cB ,dB ]

(x+ iy) dFA(x) dFB(y)

Rozważając sumy częściowe można udowodnić
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Twierdzenie 7.9. Dla cA ¬ x ¬ dA, cB ¬ y ¬ dB

(a) Jeśli FA(x−δ) = FA(x+δ) lub FB(y−δ) = FB(y+δ) dla pewnej liczby
δ > 0, to x+ iy /∈ σ(T ).

(b) Jeśli x+ iy /∈ σ(T ), to FA(x−δ) = FA(x+δ) lub FB(y−δ) = FB(y+δ)
dla pewnej liczby δ > 0.
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