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Abstract

Let u denote a symmetric probability measure on [—1,1] and let
(pn) be the corresponding orthogonal polynomials normalized such
that p,(1) = 1. We prove that the normalized Turdn determinant
An(z)/(1—2?%), where A, = p2 — pp_1Pnt1, is a Turdn determinant of
order n — 1 for orthogonal polynomials with respect to (1 — z2)du(x).
‘We use this to prove lower and upper bounds for the normalized Turén
determinant in the interval —1 <z < 1.
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1 Introduction
In the following we will deal with polynomial sequences (p,) satisfying
xpn(x) = r}/npn+1(~7;) + O‘npnfl(aj): n 2> 0,

an+ =1 a,>0, v, >0 n>1, (1)
po(z) =1, g =0, 0 < < 1.
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Note that (p,) is uniquely determined by (1) from the recurrence coefficients
Qn, v and that p, has a positive leading coefficient. It follows by Favard’s
theorem that the polynomials p,, are orthogonal with respect to a symmetric
probability measure p. From (1) we get for z =1

Bt (1) = pu(D) = (1= 1) (pu(l) = pua(D)s > 1, (2)
hence
Pat(1) > pa(1) > pr(1) = Vi >1, 21, (3)

so that p,(1) = 1 for all n if 79 = 1, and (p,(1)) is strictly increasing if
Yo < 1.

We conclude that all zeros z,,, < ... < 21, of p, belong to the interval
(—1,1), hence supp(p) C [—1,1]. In fact, if there existed an integer n such
that x1, > 1, then by assuming n smallest possible with this property, we
get xa, < 1 < 21, and hence p,(1) < 0, a contradiction. By symmetry this
implies that —1 < 2z, ,,.

Define the Turan determinant of order n by

An(x) = pp(2) = po-1(@)psa(2), n > 1. (4)

In [11] the second author proved non-negativity of the Turdn determi-
nant (4) under certain monotonicity conditions on the recurrence coefficients,
thereby obtaining results for new classes of polynomials and unifying old re-
sults.

If 49 = 1 and hence p,(1) = 1 for all n, the normalized Turdn determinant
A,(z)/(1 — 2?) is a polynomial in z.

We shall prove estimates of the form

A (0) < f"(il <CA0), —1<z<l, (5)
under certain regularity conditions on the recurrence coefficients. We prove,
e.g., an inequality of the left-hand type if () is increasing and concave, see
Theorem 2.5. In Theorem 2.7 we give an inequality of the right-hand type if
(av,) is decreasing and satisfies a condition slightly stronger than convexity.

Our results depend on a simple relationship between the Turdn determi-
nants of order n and n — 1 (Proposition 2.1) and the following observation:
the normalized Turdn determinant is essentially a Turdn determinant of or-
der n — 1 for the polynomials (g,) defined by (17) below, and if u denotes
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the orthogonality measure of (p,), then (g,) are orthogonal with respect to
the measure

(1 = 2)du(a).
See Theorem 2.3 and Remark 2.4 for a precise statement.

In Proposition 2.11 we prove non-negativity of the Turdn determinant
for the normalized polynomials g,(z)/¢,(1) provided the sequence (a,) is
increasing and concave (or under the weaker condition (21)).

Our work is motivated by results about ultraspherical polynomials, which
we describe next.

For o > —1 let R (2) = P{*(2)/PY* (1) denote the symmetric
Jacobi polynomials normalized to be 1 for x = 1, i.e.,

RE(r) = ol (1= )

- 2"(0[ + 1)n (]‘ - m2)n+a7 (6)

cf. [10]. We have used the Pochhammer symbol
(@), =ala+1)...(a+n—1).

The polynomials are orthogonal with respect to the symmetric weight func-
tion ¢ (1 — 22)* on (—1,1). Here 1/c, = B(a + 1,1/2), so the weight is a
probability density. We have R (z) = P (2)/PM(1) with o = A — %
where (PT(LA)) are the ultraspherical polynomials in the notation of [10].

The corresponding Turdn determinant of order n

AP(@) = R (@)’ = R (@) R (@), (7)

n n+1

is clearly a polynomial of degree n in 2 and divisible by 1 — 22 since it
vanishes for © = +1. The following Theorem was proved in [12, pp. 381-382]
and in [14, sect. 6]:

Theorem 1.1. The normalized Turdn determinant
(@) = AP()/(1 - 2?) (8)
18
(i) strictly increasing for 0 < x < oo when a > —1/2.

(i) equal to 1 for x € R when o = —1/2.
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(iii) strictly decreasing for 0 < x < oo when —1 < a < —1/2.

It is easy to evaluate f\*) at z = 0,1 giving

D) (0) = 4@ @ ()~ 1
FE0) = mg iy g S0 (1) = a2 (9)
where we have used the notation from [1]
a Hn
/l; )= m7 (10)
and p, is the normalized binomial mid-coefficient
2 1-3-5-...-(2n—-1
n 2-4-...-(2n)

Corollary 1.2. For —1 <z < 1 we have
FO0)(1 = 2%) < AP (2) < [ () =2?) fora>-1/2,  (12)

while the inequalities are reversed when —1 < a < —1/2. (For a = —1/2 all
three terms are equal to 1 — z?.)

For oo = 0 the inequalities (12) reduce to (=1 <z < 1)

1

Hprjt /2 (1= 2%) < Pa(@)® = Puca(2) Papa(2) < S(1=2%) - (13)

for Legendre polynomials (P,). This result was recently published in [1]
using a SumCracker Package by Manuel Kauers, and it was conjectured that
the monotonicity result remains true for ultraspherical polynomials when
a > —1/2. Clearly the authors have not been aware of the early results
above.! Turdn [13] proved that A;O)(x) > 0 for —1 < & < 1. The proof in
[12] of Theorem 1.1 is based on a formula relating the Turdn determinant

Ana(z) = F\(2) = Focia(@) Fopia(@)

of the normalized ultraspherical polynomials F,, »(z) = Py‘)(@/P,gA)(l) and
the expression

d d d
Dua(w) = [PV (@) = - B (1) - P (2),

IMotivated by this conjecture the present authors found a proof of Theorem 1.1 close
to the old proofs. During the preparation of the paper we found the references [12], [14].

4



namely (see [12, (5.9)])

An,k(aj) _ Dn,k<$) (14)
L—a% 4 20)[PY ]2

See also [3]. Using the well-known formula for differentiation of ultraspherical
polynomials

—PP(x) = 22P2 (@),
we see that
Dae) = @2 ([P @)P - PAD @) P @) . (15)

Except for the factor (2))? this is the Turdn determinant of order n — 1 for
the ultraspherical polynomials corresponding to the parameter A + 1.

We see that this result is generalized in Theorem 2.3.

Since the proof of the monotonicity in Theorem 1.1 depends on the fact
that the ultraspherical polynomials satisfy a differential equation, there is
little hope of extending the result to classes of orthogonal polynomials which
do not satisfy a differential equation. We have instead attempted to find
bounds for normalized Turdn determinants without using monotonicity in
the variable x.

This has also led us to consider the following lower boundedness property,
which may or may not hold for a system of orthonormal polynomials (P,):

(LB) inf{P? |(z) + P*(z) | € R,n € N} > 0. (16)

If property (LB) holds, then necessarily > PZ(z) = oo for all z € R.
Therefore, the orthogonality measure of (P,) is uniquely determined and has
no mass points.

In Proposition 3.1 we prove that (LB) holds for symmetric orthonormal
polynomials if the recurrence coefficients are increasing and bounded. It turns
out that for the orthonormal symmetric Jacobi polynomials the condition
(LB) holds if and only if o > 1/2.

The theory is applied to continuous g-ultraspherical polynomials in Sec-
tion 4.

Concerning the general theory of orthogonal polynomials we refer the
reader to [10],[9],[6].



2 Main results

Proposition 2.1. In addition to (1), assume a, # v, forn =1,2.... For
n>2

An _ (’Yn - an)an—l An—l + Qp — Qp_1

2 2
+ -2 n—1Fn)-
(,Vn—l - an—l)’Yn (’Yn—l - O‘n—l),)/n (pn—l Pn EPn-1p )

Proof. By the recurrence relation we can remove either p,.; or p, 1 from
the formula defining A,,. This leads to two equations

771An = O‘npifl + ’ani — TPn—1Pn;
anA, = O‘npi + “/npiﬂ — TPnPn+1-

We replace n by n—1 in the second equation, multiply both sides by 7, — a,
and subtract the resulting equation from the first one multiplied by ~,,_1 —
Qy,_1. In this way we obtain

(V-1 = Q1) Bn — (Yn — )18,
= (@ Yn-1 = Cn-1%a) (Pp—1 +22) — (Va1 = Vo — Qo1 + Q) TP 1Pn-
Taking into account that ay + v, =1 for £ > 1 gives
(Y1 = n-1) 1m0 = (Yo = ) 180 1 = (= 1) (Ph 1 +D5—22Pn—1Pn)-
O
Proposition 2.1 implies

Corollary 2.2. [11, Thm. 1] In addition to (1), assume that one of the
following conditions holds:

(i) (o) is increasing and o, < y,, n > 1.

(i) (o) is decreasing and oy, > yn, n > 1. Furthermore, assume vy = 1
ory <m/(1—m).

Then Ay(x) >0 for =1 < < 1.



Proof. Assume first the additional condition «,, # -, for all n > 0. Since for
—-l<z<l1
PE1(2) + 1 (2) — 2P 1 (2)palz) > O,

it suffices in view of Proposition 2.1 to show A;(z) > 0 for —1 <z < 1. We
have
a1y + (n — )2’

%
hence Ay > 0if v > 9. If 73 < v and —1 < z < 1, we have

Nl (2) = a1p§ + Y1p} — zpopr =

)

ai(1 —90)(yi/a1 =)

% '
The right-hand side is clearly non-negative in case (i) because v;/a; > 1,
but also non-negative in case (ii) because of the assumptions on 7.

Assume next in case (i) that there is an n such that o, = ,,. Let ng > 1
be the smallest n with this property. Denoting o = lim «,, then clearly
o, < a<1—a < v, for all n and hence o, = 7, = 1/2 for n > ny.
Therefore,

1AL(7) > NnA(1) =

An(x) = p} 1 (x) + () — 2xpn— 1 (2)pn(z) > 0

for n > ng, —1 < < 1. The formula of Proposition 2.1 can be applied for
2 < n < ng and the proof of the first case carries over. Equality in case (ii)
is treated similarly. O

From now on we will assume additionally that 7o = 1. In this case the
polynomials p,, are normalized at = = 1 so that p,(1) = 1. Since p,(—z) =
(=1)"pp(x), we conclude that p,(—1) = (—1)". Therefore, the polynomial
Pnya — Pp is divisible by 22 — 1 and

Qn(m) _ pn+2([E2) pn(I)7 n Z 07 (17)
%=1
is a polynomial of degree n. Moreover, an easy calculation shows that the
polynomials ¢, are orthogonal with respect to the probability measure dv(x) =
%(1 — 2?)dp(z). By the recurrence relation (1) with 79 = 1 we obtain that
the polynomials g, satisfy

an(x) = '7n+2(Zn+l(I) + an‘]n—l(x)v n2>0,q = 1/'Y1~ (18)

The following theorem contains a fundamental formula relating the Turdn
determinants of the polynomials p, and g,.
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Theorem 2.3. Forn > 1
A, (z)

1—22

= O‘n"/nqu—l(I) - an—l’Yn+IQn—2(x)Q7l(I)' (19)
Proof. By (1)

Prs1 — 2P = o (Prar — pre1) = ap(z® = 1)gr,

TPk — Ph-1 = We(Dra1 — Pe-1) = (@ — 1) g1

Therefore,

(1_2 - 1)2[0471%,(]72171 - an717n+1Qn72qn]
= (pn+1 - xpn)(xpn - pnfl) - (pn - -Tpnfl)(xp'rwl - pn)
= (1 - xQ)(pi - pnflanrl)-
|:|

Remark 2.4. Defining ¢o = 7190 = 1 and

Qn:MQTH nZL
Ay ...0,

we have

An(z) o <a1...an

1—22 o \ 71T

) [0(0) — deo@i@] . (20)

showing that the normalized Turédn determinant (19) is proportional to the
Turén determinant of order n—1 of the renormalized polynomials (G,). They
satisfy the recurrence relation (G := 0)

Zqn = Qny1Gni1 + Vnt1Gn-1, 1 2 0.
Theorem 2.5. Assume that (p,) satisfies (1) with o = 1. Let (cv,) be in-
creasing, o, < 1/2 and

Qn

O — Qg > o (1 — ap), n > 1. (21)
Then Ap(x) defined by (4) satisfies

An(x)

1_I220A"(0), —l<z<l1l, n>1,

where ¢ = 2aq7yy /1. (Note that (21) holds if (av,) is concave.)
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Proof. Observe that (21) is equivalent to («,7y,41) being increasing. Let

Dn(x) = ’anyzl,l(x) - 7n+1Q7172(1‘)Qn(x)'

Since a,, > a,_1, Theorem 2.3 implies

> ap_1Dp(). (22)

By (18) we can remove g, or g,_» from the expression defining D,,. In this
way we obtain

Dn = an—lqi—2 + ’an'?z—l — Tqn—2Gn—1, (23)
Q1 Ap—17n

D, = ——2@ |+ W = Tn-1Gn-
Yn+1 Tn+1

Replacing n by n—1 in the second equation and subtracting it from the first,
we find

Qp—2 Qp—-1Tn — Opn—2Yn—-1 o

Dn - Dn—l = An—2 > 0.
In Tn
By iterating the above inequality between D,, and D,,_1, we obtain
D, > M- Qn2 D,. (24)
Y3 In

From (23) we get

2 2
[e%1 Yo x aq
Dy = ongy + 7247 — 2qoq1 = —5 + - =, (25)
0 ' noos e it
so (22) implies
A, (z) S Y Qn e QO 20172
1*I2_71-~-7n04n71_71-~-7n 71 ’
and the conclusion follows from the next lemma. O

Lemma 2.6. Under the assumptions of Theorem 2.5

A (0) < L TUA (0), n>1.

Y1 Tn aq



Proof. Denote

By (1) we have
103 ... 09n_1

a(0) = (=1)" ,
Pon(0) = (-1)"

hence

- o
A2n<0)h2n=p§n(0>h2nzﬂ e 1H Bk

Qo 3 T2k—1
On the other hand
A2n+1(0)h2n+1 = _p2n(0)p2n+2(0)h2n+1
T ] 22— A O, < 1
Wil Qg Pt Y2k—-1
Moreover,
o 5 2n o 2n ~ ary a
Ao (Vo — 2k—1 2k> k-1 B Qe Q1
20 (0)hzn kl_[1 H%k 1 H Qg H% 1 Y12 T M

|
Theorem 2.5 has the following counterpart and the proof is very similar:

Theorem 2.7. Assume that (p,) satisfies (1) with vo = 1. Let a,,n > 1 be
decreasing, oy, > % and

Qi
Ap — Qpq S 1

(i1 — @), N> 2. (26)

n

Then A (x) defined by (4) satisfies

A, ()
< — >
1_$2_CA() l<z<l, n>1,

where C' = 2,. (Note that (26) implies convezity of ap,n > 1.)
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Remark 2.8. The normalized symmetric Jacobi polynomials p,(z) = R (z)
given by (6) satisfy (1) with

n+2a+1 n

_predar. - " 4 2
m+2a+1 T my2a+1 (27)

Tn
(In the case of & = —1/2, i.e., Chebyshev polynomials of the first kind, these
formulas shall be interpreted for n =0 as 7 = 1,a9 = 0.)

For @ > —1/2 the sequence («,) is increasing and concave. Furthermore,
c=1.

For —1 < o < —1/2 the sequence («,) is decreasing, (26) holds and
C=1.

The statement about the constants ¢ and C follows from Corollary 1.2.
However, we cannot expect ¢ = 1 in general, because it is easy to construct
an example, where the normalized Turédn determinant (19) is not monotone
for0 <z < 1.

Consider the sequence (a,) = (0,1/2=3¢e,1/2—2¢,1/2—¢,1/2,1/2,...),
which is increasing and concave for 0 < & < 1/8. In this case the Turdn
determinant ¢ — §,qs is proportional to f(z) = 2* + A(e)a? + B(e), where

Ae) =4e* +3e — 1/2, B(e) = (1/2 = 32)*(1/2 — &)(1/2 + 2¢)*/e.
Clearly, f is not monotone for 0 < z < 1, when ¢ is small.

Corollary 2.9. Under the assumptions of Theorem 2.5 and the additional
hypothesis lim «,, = 1/2, the orthogonality measure p is absolutely continuous
on (—1,1) with a strictly positive and continuous density g(x) = du(x)/dx
satisfying

C

V1—a2

Proof. The corresponding orthonormal polynomials (P,) satisfy

g(z) <

IPTL = )\nPn+1 + )\n—IPn—la (28)
where A\, = \/ay,17,. We also have P, = d,p,, where

5, = M7 n>1, & =1,
A1 ...0,
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and lim A, = 1/2. Since

_ /\ _ Oén+2(’7n+1 - ’Yn) + r\/n(anJrQ - an+1)
" \/a7z+2,7n+1 + \/an-‘—l,yn

)\n+1

)

the monotonicity of (a,,), (7,) implies

oo
D nst = Al < 0.
n=1

By the theorem in [8] we conclude that the orthogonality measure p has a
positive continuous density g(x) for —1 < z < 1. Furthermore, it is known
from this theorem that

lin (P2(2) — Pos () P (2)] =

uniformly on compact subsets of (—1,1). For another proof of this result
see [5, p. 201], where it is also proved that (P,(z)) is uniformly bounded on
compact subsets of (—1,1) for n — oco. We have

1

A, (z) = 52 (Pi(l’) ~ knpn—l(I)PrH—l(x)) )

]C 4 631 _ an+17n71
(Snfl 5n+1 v QpYn ’
and it follows that lim k, = 1. Using

An(@) _ P2x) = kn P (2) Paa (2)
AL(0)  P2(0) — knPn_1(0)P,,1(0)°

where

we get the result. |
In analogy with the proof of Corollary 2.9 we get

Corollary 2.10. Under the assumptions of Theorem 2.7 and the additional
hypothesislim «,, = 1/2, the orthogonality measure p is absolutely continuous
on (—=1,1) with a strictly positive and continuous density g(x) = du(x)/dx
satisfying

C

g(z) > N
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We now return to the polynomials (g,) defined in (17) and prove that
they have a non-negative Turan determinant after normalization to being 1
at 1. The polynomials g, are orthogonal with respect to a measure supported
by [—1, 1]. Therefore, ¢,(1) > 0.

Proposition 2.11. Under the assumptions of Theorem 2.5

g (2)  Gu-1(%) Guia (2)
(1) gn1(1) gnya(1)

Proof. Indeed, let Q,(x) = ¢,(z)/g.(1). Then
IQn = CnQn-H + (1 - Cn)Qn—la

where ¢, = Yni2(¢ar1(1)/¢u(1)). We will show that (c,) is decreasing and
¢n > 1/2, and the conclusion then follows from Corollary 2.2. But ¢,—1 > ¢,
is equivalent to

>0, -l<z<l, n>1.

Diyi1(1) = Y1162 (1) = Ynr2Gn-1(1)gnr1(1) > 0,

which follows from (24) and (25). We will show that ¢, > 1/2 by induction.
We have
a() _

1
(1)

Assume ¢,—1 > 1/2. By (21) the sequence (au,Vn41) is increasing. Putting
a = lim «,, we then get

Co = 72

1
QpYn+1 S O[(l - O[) S Z
Using this and (18) leads to
nYn 1 1
1:Cn+wgcn+ Scn'i'_a
Cp—1 Cn—1 2
hence ¢, > 1/2. O

3 Lower bound estimates

It turns out that Turdn determinants can be used to obtain lower bound
estimates for orthonormal polynomials. Recall that if the polynomials (p,)
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satisfy the recurrence relation (1), then their orthonormal version (P,) satis-
fies
lpn = )\nPn+1 + )\n—IPn—la

where A\, = /1170

Proposition 3.1. Assume that the polynomials (P,) satisfy
l’Pn = )\nPnJrl + /\nflpn,l, n Z 0, (29)

with P_y = A_1 =0, A\, >0, n >0, and Py = 1. Assume moreover that (\,)
is increasing and lim A, = L < oo. Then the (LB) property (16) holds in the

precise form
2

P2(z) + P? | (x) > %, zeR, n>0.

Proof. This proof is inspired by [2, Thm. 3]. By replacing the polynomials
P,(z) by P,(2Lx) we can assume that lim A, = 1/2. This assumption implies
that the corresponding Jacobi matrix acts as a contraction in £2, because it
can be majorized by the Jacobi matrix with entries A\, = 5. Therefore, the
orthogonality measure is supported by the interval [—1,1]. In this way it
suffices to consider z from [—1, 1] because the functions P?(z) are increasing
on [1,+oc[ and P?(—z) = P%(x). Let

N[

D, (2) = M1 P2(2) — My Po1(2) Py (3), n>1.
By (29) we can remove P, to get
D, =M P’ |+ X1 P2 — 2P, |P,. (30)
Alternatively we can remove P,_; and obtain

An—1 )‘ifl
. D, = /\nP,fJrl + N

P? —2P,P, ;. (31)

Replacing n by n — 1 in (31) and subtracting it from (30) gives

Ao DL
D, — "D, ="l Tnmip? >, (32)
)\n—l )\n—l

Iterating the inequality D, > (An—2/An—1)Dn—1 leads to

Ao A2 9
D, > LD, = > 2\,
o An—l ! )\n—l o 0

14



because D; = A by (30), which for |z| <1 yields

+ P2 (33)

n—1

1
D, < )‘nflpi—l + )‘nflPE + §|$|(P3—1 + PS) <P

In the general case the lower bound is 2(\o/(2L))%. O

Corollary 3.2. Under the assumptions of Proposition 3.1 with L = 1/2 the
orthogonality measure p is absolutely continuous with a continuous density
g = du(z)/dx on [—1,1] satisfying

g(z) < ! v1—22

~ 27wl
Furthermore, g(x) > 0 for —1 <z < 1.

Proof. By assumptions the orthogonality measure is supported by [—1,1].
By the proof of Proposition 3.1 we have

D,(z) > 2)5.

On the other hand, by [8] and [5, p. 201] the orthogonality measure is
absolutely continuous in the interval (=1, 1) with a strictly positive and con-
tinuous density g such that

1 21— 22
lim — D, (z) = Y-
S S 79(@)

uniformly on compact subsets of (—1,1), cf. the proof of Corollary 2.9. By
property (LB) there are no masses at +1. O

Remark 3.3. Corollary 3.2 is also obtained in [4, p.758].

The Jacobi polynomials Prs,a’a) (x) in the standard notation of Szegd, cf.
[10], are discussed in the Introduction. The corresponding orthonormal poly-
nomials are denoted P,(a;x). We recall that

Pl (2)P(1—2?)* do = .
P @P A=) dr = s T + 20+ D Ba T 1.1/2)

(34)

/1 220H10 (n + o + 1)2
Ca
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Proposition 3.4. Property (LB), defined in (16), holds for the orthonor-
mal symmetric Jacobi polynomials (P,(c; x)) if and only if « > 1/2. More
precisely:

(i) Fora>1/2

2
200+ 3

inf{P?(a;x) + P? |(a;7) | € R,n € N} >

(ii) For —1 <a <1/2
inf{P(c;z) + P?_(a;z) | € R,n € N} = 0.

Proof. Assume « > 1/2. In this case we get from (27)

X = 1 1 4a* —1 7
4 dn+a+1)2-1
so (A,) is increasing with lim A, = 1/2. By Proposition 3.1 we thus have
2
P24 P >N =
n + n—1 = 0 20{+>37

which shows (i).
In order to show (ii) we use Theorem 31 on page 170 of [9] stating

wn(xk,n)pi—l(wvl'k,n) ~ 1- "Lin (35)

for a generalized Jacobi weight w. (For two positive sequences (ay,), (b,) we
write a, =~ b, if 0 < C1 < a,/b, < Cy < oo for suitable constants C;.)
Applying this to the largest zero x;, of the orthonormal symmetric Jacobi
polynomials (P, (a;x)), we get

wn(xl,n)Ps—l(O@ xl,n) ~ 4/ 1- x%,n (36)

1 1
wy(t) = (VI —t+ 5)2“(\/1 +t+ 5)2“ > (1 -3~
This gives in particular

P2

n—1

with

(as21,) <C(1— 22 )1/2"l

1,n )

hence lim P?_;(; zy,,) = 0 for @ < 1/2. This shows (ii) because P, (a; x1,) =
0. O
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Remark 3.5. For —1 < a < —1/2 the observation of (ii) follows easily from
the asymptotic result

Pu(ai1) ~ dan®™ 72, 7= o0,

where d,, is a suitable constant, but this simple asymptotic can not be used
when —1/2 < a < 1/2.

The proof of (ii) presented above has kindly been communicated to us by
Paul Nevai. Our original proof is based on Hilb’s asymptotic formula [10,
Thm 8.21.12]:

9 a+1/2 9 a+1/2
9=1/2 (sin 5) (cos 5) P (cos 6)

Ila+n+1) ~3/2
= J.NO) +0(n%?, (37
S (N0 + O, (37
where 6 € [¢/n,7/2], N =n+a+ % and ¢ > 0 is fixed. Let j, denote the
smallest positive zero of the Bessel function J,.
Defining 6,, = j./N, we get

WPE,) = O ),
n-pl

©O () = (1V2 4 o(1)) Jalju O~/

n=32) — O(n~1).
“wragip TOOT =007

By (34) and Stirling’s formula

1 22(1
P(a,a) 2 1— 2\« PO e
o [ PP =) do g

and hence

P?(a;cos0,) = O(n**?%), P?

n—1

(a;cos6,) = O(n**71).
This shows that
P2(a;cos0,) + P2 (a;cos6,) — 0 when o < 1/2.

Remark 3.6. The example of symmetric Jacobi polynomials suggests that
if (\,) is decreasing, then property (LB) does not hold. This is not true,

17



however, because for % <A < LQ and \, = % for n > 1 we have a decreasing
sequence. The corresponding Jacobi matrix has norm 1 because this is so
for the cases A\g = % and \g = 1/4/2, which correspond to the Chebyshev
polynomials of the second and first kind respectively. Furthermore, for n > 2
we have by (30) and (32)

2 1

Dn = )\nflps - )\nPnflpnﬁLl = D? = 22 P‘é y (/\g N Z)xz]
0
and for -1 <z <1
2 1
Dy(x) > Dy(1) = p()\g — 5)2 > 0.
0

On the other hand, (33) applies for n > 2, and we see that the orthonormal
polynomials satisfy

2
A

(-

inf{P%(z) + P?_,(z) |z € R,n € N} > 5

4 Continuous ¢-ultraspherical polynomials

The continuous g-ultraspherical polynomials C,,(z; 8|¢) depend on two real
parameters ¢, 3, and for |q|,|3] < 1 they are orthogonal with respect to a
continuous weight function on (—1,1), cf. [6],[7]. The three term recurrence
relation is

1 _ qn+1
xCy(x; Blg) =

2(1 — Bq™)

1— ﬁQ(]n_l

Crns1(z; Blq) + m

Cpa(z:6lq), n>0
(38)

with C_; = 0,Cy = 1. The orthonormal version C,(z; 8|q) satisfies equation

(29) with

1 1 _ an+l 1 _ A2.n

A, = L A= ﬁqﬂ). (39)

2\ (1= Bg")(1 = Bg*T)
The value C,,(1; 5]q) is not explicitly known, and therefore we can only obtain
the recurrence coefficients oy, v, from (1) for p,(x) = C,(z; 5|q)/Cn(1; Blq)
as given by the recursion formulas

)\2

1—a,
which we get from the relation A\, = /&, 17n-

Upt1 = P Qo = 07 Tn = 1- Oy, (40)
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Theorem 4.1. (i) Assume 0 < 3 < g < 1. Then the recurrence coefficients
(An) form an increasing sequence with limit 1/2, and therefore (C,(x;5|q))
satisfies (LB).

(ii) Assume 0 < q < 3 < 1. Then the recurrence coefficients (\,) form a
decreasing sequence with limit 1/2, and the sequence (ay,) is increasing and
concave with limit 1/2. In particular, we have

A, (z)
.2 >cA(0), —-l<z<l1l, n>1,

with ¢ = 2a1(1 — a2) /(1 — aq).

Proof. The function

(1—gz)(1 - ) _ a . x
RS T Rl | GO Gy o Ty o

is decreasing for 0 < § < ¢ < 1 and increasing for 0 < ¢ < # < 1. This
shows that A, = (1/2)y/%(¢") is increasing in case (i) and decreasing in case
(ii). In both cases the limit is 1/2.

In case (ii) we therefore have A\? > 1/4 and hence

() =

> >
Opty1 = 4(1 . Oén) Z O,

because 4z(1 —x) < 1 for 0 < z < 1. This shows that («,,) is increasing and
hence with limit 1/2. We further have

1 1 1
A1 = = 2(\] — Z) + 2(5 - an)(g = Ont1),
showing that a1 — v, is decreasing, i.e., (ay,) is concave. We can now apply
Theorem 2.5. 1
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