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To a sequence (sn)n≥0 of real numbers we associate the sequence of Hankel matrices
Hn = (si+j), 0 ≤ i, j ≤ n. We prove that if the corresponding sequence of Hankel
determinants Dn = detHn satisfy Dn > 0 for n < n0 while Dn = 0 for n ≥ n0, then
all Hankel matrices are positive semi-definite, and in particular (sn) is the sequence
of moments of a discrete measure concentrated in n0 points on the real line. We stress
that the conditions Dn ≥ 0 for all n do not imply the positive semi-definiteness of the
Hankel matrices.
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1. Introduction and results

Given a sequence of real numbers (sn)n≥0, it was proved by Hamburger [4] that it
can be represented as

sn =

∫ ∞
−∞

xn dµ(x), n ≥ 0 (1)

with a positive measure µ on the real line, if and only if all the Hankel matrices

Hn = (si+j), 0 ≤ i, j ≤ n, n ≥ 0 (2)

are positive semi-definite. The sequences (1) are called Hamburger moment se-
quences or positive definite sequences on N0 = {0, 1, . . .} considered as an additive
semigroup under addition, cf. [2].

Given a Hamburger moment sequence it is clear that all the Hankel determinants
Dn = |Hn| are non-negative. It is also easy to see (cf. Lemma 2.1 and its proof)
that only two possibilities can occur: Either Dn > 0 for n = 0, 1, . . . and in this
case any µ satisfying (1) has infinite support, or there exists n0 such that Dn > 0
for n ≤ n0 − 1 and Dn = 0 for n ≥ n0. In this latter case µ from (1) is uniquely
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determined and is a discrete measure concentrated in n0 points on the real axis.
(If n0 = 0 and Dn = 0 for all n, then µ = 0 is concentrated in the empty set.)

The purpose of the present paper is to prove the following converse result:

Theorem 1.1 Let (sn) be a real sequence and assume that the sequence of Hankel
determinants Dn = |Hn| satisfy Dn > 0, n < n0, Dn = 0, n ≥ n0. Then (sn) is
a Hamburger moment sequence (and then necessarily the moments of a uniquely
determined measure µ concentrated in n0 points).

Remark 1 It follows from a general theorem about the leading principal minors
of real symmetric matrices, that if Dn > 0 for n ≤ n0, then the Hankel matrix Hn0

is positive definite. For a proof see e.g. [2, p.70]. On the other hand, one cannot
conclude that Hn0

is positive semi-definite, if it is just known that Dn ≥ 0 for n ≤
n0. For the sequence 1, 1, 1, 1, 0, 0, . . . we have D0 = D3 = 1, D1 = D2 = Dn = 0
for n ≥ 4, but the Hankel matrix H2 has a negative eigenvalue. It therefore seems
to be of interest that Theorem 1.1 holds.1

Remark 2 It follows from the proof of Theorem 1.1 that the uniquely determined
measure µ is concentrated in the zeros of the polynomial pn0

given by (7).

Remark 3 Under the assumptions of Theorem 1.1 the infinite Hankel matrix

H∞ = (si+j), 0 ≤ i, j

has rank n0, cf. Chapter XV, Section 10 in [3].

The following example illustrates Theorem 1.1.

Example 1 Let a ≥ 1 and define s2n = s2n+1 = an, n = 0, 1, . . .. Then the Hankel
determinants are D0 = 1, D1 = a − 1 and Dn = 0 for n ≥ 2 because the first and
third row are proportional. Therefore (sn) is a Hamburger moment sequence, and
the measure is

µ =

√
a− 1

2
√
a
δ−
√
a +

√
a+ 1

2
√
a
δ√a.

Here and in the following δx denoted the Dirac measure with mass 1 concentrated
in x ∈ R.

Similarly, for 0 ≤ a ≤ 1, s0 = 1, s2n−1 = s2n = an, n ≥ 1 is a Hamburger moment
sequence of the measure

µ =
1−
√
a

2
δ−
√
a +

1 +
√
a

2
δ√a.

2. Proofs

Consider a discrete measure

µ =

n∑
j=1

mjδxj
, (3)

1The authors thank Alan Sokal for having mentioned the question.
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where mj > 0 and x1 < x2 < . . . < xn are n points on the real axis. Denote the
moments

sk =

∫
xk dµ(x) =

n∑
j=1

mjx
k
j , k = 0, 1, . . . , (4)

and let Hk, Dk denote the corresponding Hankel matrices and determinants. The
following Lemma is well-known, but for the benefit of the reader we give a short
proof.

Lemma 2.1 The Hankel determinants Dk of the moment sequence (4) satisfy
Dk > 0 for k < n and Dk = 0 for k ≥ n.

Proof. Let

P (x) =

n∑
j=0

ajx
j

be the monic polynomial (i.e., an = 1) of degree n with zeros x1, . . . , xn. If a =
(a0, . . . , an) is the row vector of coefficients of P (x), then we have

∫
P 2(x) dµ(x) = aHnat = 0,

where t denotes transpose, so at is a column vector, and it follows that Dn = 0. If
p ≥ 1 and 0p is the zero vector in Rp, then also

(a,0p)Hn+p(a,0p)t = 0,

and it follows that Dn+p = 0 for all p ≥ 1.
On the other hand, if a Hamburger moment sequence (1) has Dk = 0 for some

k, then there exists b = (b0, . . . , bk) ∈ Rk+1 \ {0} such that bHk = 0. Defining

Q(x) =

k∑
j=0

bjx
j ,

we find

0 = bHkbt =

∫
Q2(x) dµ(x),

showing that µ is concentrated in the zeros of Q. Therefore µ is a discrete measure
having at most k mass-points. This remark shows that the Hankel determinants of
(4) satisfy Dk > 0 for k < n.

Lemma 2.2 Consider n + 1 non-negative integers 0 ≤ c1 < c2 < . . . < cn+1, let
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p ≥ 1 be an integer and define the (n+ 1)× (n+ p)-matrix

Hn+1,n+p =


sc1 sc1+1 · · · sc1+n+p−1
sc2 sc2+1 · · · sc2+n+p−1
...

...
. . .

...
scn+1

scn+1+1 · · · scn+1+n+p−1

 .

For any (p− 1)× (n+ p)-matrix Ap−1,n+p we have

D =

∣∣∣∣Hn+1,n+p

Ap−1,n+p

∣∣∣∣ = 0.

Proof. By multilinearity of a determinant as function of the rows we have

D =

n∑
j1,...,jn+1=1

mj1 · · ·mjn+1
xc1j1 · · ·x

cn+1

jn+1

∣∣∣∣ J
Ap−1,n+p

∣∣∣∣ ,
where J is the (n+ 1)× (n+ p)-matrix with rows(

1, xjl , x
2
jl , . . . , x

n+p−1
jl

)
, l = 1, 2, . . . , n+ 1,

and since there are n points x1, . . . , xn, two of these rows will always be equal. This
shows that each determinant in the sum vanishes and therefore D = 0.

With n, p as above we now consider a determinant of a matrix (ai,j), 0 ≤ i, j ≤
n+ p of size n+ p+ 1 of the following special form

Mn+p =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s0 · · · sn−1 sn · · · sn+p−1 sn+p
...

. . .
...

...
. . .

...
...

sn−1 · · · s2n−2 s2n−1 · · · s2n+p−2 s2n+p−1
sn · · · s2n−1 s2n · · · s2n+p−1 x0
sn+1 · · · s2n s2n+1 · · · x1 an+1,n+p

...
. . .

...
...

. . .
...

...
sn+p · · · s2n+p−1 xp · · · an+p,n+p−1 an+p,n+p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
which has Hankel structure to begin with, i.e., ai,j = si+j for i + j ≤ 2n + p − 1.
For simplicity we have called an+j,n+p−j = xj , j = 0, 1, . . . , p.

Lemma 2.3

Mn+p = (−1)p(p+1)/2Dn−1

p∏
j=0

(xj − s2n+p).

In particular, the determinant is independent of ai,j with i+ j ≥ 2n+ p+ 1.

Proof. We first observe that the determinant vanishes if we put x0 = s2n+p, because
then the first n + 1 rows in Mn+p have the structure of the matrix of Lemma 2.2
with cj = j − 1, j = 1, . . . , n+ 1.
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Next we expand the determinant after the last column leading to

Mn+p =

n+p∑
l=0

(−1)l+n+pγlAl,

where γl is the element in row number l + 1 and the last column, and Al is the
corresponding minor, i.e., the determinant obtained by deleting row number l + 1
and the last column. Notice that Al = 0 for l = n + 1, . . . , n + p because of
Lemma 2.2. Therefore the numbers an+k,n+p with k = 1, . . . , p do not contribute
to the determinant.

For l = 0, . . . , n the determinant Al has the form∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sc1 · · · sc1+n · · · sc1+n+p−1
sc2 · · · sc2+n · · · sc2+n+p−1
...

. . .
...

. . .
...

scn · · · scn+n · · · scn+n+p−1
sn+1 · · · s2n+1 · · · x1

...
. . .

...
. . .

...
sn+p · · · xp · · · an+p,n+p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for integers cj satisfying 0 ≤ c1 < . . . < cn ≤ n.

Each of these determinants vanish for x1 = s2n+p again by Lemma 2.2, so conse-
quently Mn+p also vanishes for x1 = s2n+p. As above we see that the determinant
does not depend on an+k,n+p−1 for k = 2, . . . , p.

The argument can now be repeated and we see that Mn+p vanishes for xk = s2n+p
when k = 0, . . . , p.

This implies that

Mn+p = K

p∏
j=0

(xj − s2n+p),

where K is the coefficient to x0x1 . . . xp, when the determinant is written as

Mn+p =
∑
σ

sign(σ)

n+p∏
j=0

aj,σ(j),

and the sum is over all permutations σ of 0, 1, . . . , n+ p.
The terms containing the product x0x1 . . . xp requires the permutations σ in-

volved to satisfy σ(n + l) = n + p − l, l = 0, . . . , p. This yields a permutation of
n, n+ 1, . . . , n+ p reversing the order hence of sign (−1)p(p+1)/2, while σ yields an
arbitrary permutation of 0, 1, . . . , n− 1. This shows that K = (−1)p(p+1)/2Dn−1.

Proof of Theorem 1.1.
The proof of Theorem 1.1 is obvious if n0 = 0, and if n0 = 1 the proof is more

elementary than in the general case, so we think it is worth giving it separately.
Without loss of generality we assume s0 = D0 = 1, and call s1 = a. From D1 = 0
we then get that s2 = a2, and we have to prove that sn = an for n ≥ 3.
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Suppose now that it has been established that sk = ak for k ≤ n, where n ≥ 2.
By assumption we have

0 = Dn =

∣∣∣∣∣∣∣∣∣∣∣

1 a · · · an−1 an

a a2 · · · an sn+1
...

...
. . .

...
...

an−1 an · · · s2n−2 s2n−1
an sn+1 · · · s2n−1 s2n

∣∣∣∣∣∣∣∣∣∣∣
. (5)

Expanding the determinant after the last column, we notice that only the first two
terms will appear because the minors for the elements sn+j , j = 2, . . . , n have two
proportional rows (1, a, . . . , an−1) and (a, a2, . . . , an). Therefore

Dn = (−1)n+2an

∣∣∣∣∣∣∣∣∣
a a2 · · · an

a2 a3 · · · sn+1
...

...
. . .

...
an sn+1 · · · s2n−1

∣∣∣∣∣∣∣∣∣+ (−1)n+3sn+1

∣∣∣∣∣∣∣∣∣
1 a · · · an−1
a2 a3 · · · sn+1
...

...
. . .

...
an sn+1 · · · s2n−1

∣∣∣∣∣∣∣∣∣ ,
hence

Dn = (−1)n(an+1 − sn+1)

∣∣∣∣∣∣∣∣∣
1 a · · · an−1
a2 a3 · · · sn+1
...

...
. . .

...
an sn+1 · · · s2n−1

∣∣∣∣∣∣∣∣∣ .
The last n×n-determinant is expanded after the last column and the same proce-
dure as before leads to

Dn = (−1)n+(n−1) (an+1 − sn+1

)2
∣∣∣∣∣∣∣∣∣

1 a · · · an−2
a3 a4 · · · sn+1
...

...
. . .

...
an sn+1 · · · s2n−2

∣∣∣∣∣∣∣∣∣ .
Going on like this we finally get

Dn = (−1)n+(n−1)+···+2
(
an+1 − sn+1

)n−1 ∣∣∣∣ 1 a
an sn+1

∣∣∣∣ = (−1)n(n+1)/2
(
an+1 − sn+1

)n
,

and since Dn = 0 we obtain that sn+1 = an+1.

We now go to the general case, where n0 ≥ 2 is arbitrary.
We have already remarked that the Hankel matrix Hn0−1 is positive definite, and

we claim that Hn0
is positive semi-definite. In fact, if for ε > 0 we define

sk(ε) = sk, k 6= 2n0, s2n0
(ε) = s2n0

+ ε, (6)

and denote the corresponding Hankel matrices and determinants Hk(ε), Dk(ε),
then

Hk(ε) = Hk, 0 ≤ k < n0, Dn0
(ε) = Dn0

+ εDn0−1 = εDn0−1 > 0.
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This shows that Hn0
(ε) is positive definite and letting ε tend to 0 we obtain that

Hn0
is positive semi-definite.

The positive semi-definiteness of the Hankel matrix Hn0
makes it possible to

define a semi-inner product on the vector space Πn0
of polynomials of degree ≤ n0

by defining 〈xj , xk〉 = sj+k, 0 ≤ j, k ≤ n0. The restriction of 〈·, ·〉 to Πn0−1 is an
ordinary inner product and the formulas

p0(x) = 1, pn(x) =

∣∣∣∣∣∣∣∣∣
s0 s1 · · · sn
...

...
. . .

...
sn−1 sn · · · s2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣ , 1 ≤ n ≤ n0 (7)

define orthogonal polynomials, cf. [1, Ch. 1]. While pn(x)/
√
Dn−1Dn are orthonor-

mal polynomials for n < n0, it is not possible to normalize pn0
since Dn0

= 0. The
theory of Gaussian quadratures remain valid for the polynomials pn, n ≤ n0, cf. [1,
Ch.1], so pn0

has n0 simple real zeros and there is a discrete measure µ concentrated
in these zeros such that

sk =

∫
xk dµ(x), 0 ≤ k ≤ 2n0 − 1. (8)

To finish the proof of Theorem 1.1 we introduce the moments

s̃k =

∫
xk dµ(x), k ≥ 0 (9)

of µ and shall prove that sk = s̃k for all k ≥ 0. We already know this for k < 2n0,
and we shall now prove that s2n0

= s̃2n0
. Since µ is concentrated in the zeros of

pn0
we get ∫

p2n0
(x) dµ(x) = 0. (10)

If (D̃k) denotes the sequence of Hankel determinants of the moment sequence
(s̃k), we get from Lemma 2.1 that D̃k = 0 for k ≥ n0.

Expanding the determinants Dn0
and D̃n0

after the last column and using that
they are both equal to 0, we get

s2n0
Dn0−1 = s̃2n0

Dn0−1,

hence s2n0
= s̃2n0

.
Assume now that sk = s̃k for k ≤ 2n0 + p − 1 for some p ≥ 1, and let us prove

that s2n0+p = s̃2n0+p.
The Hankel determinant Dn0+p is then a special case of the determinant Mn0+p

of Lemma 2.3, and it follows that

Dn0+p = (−1)p(p+1)/2Dn0−1 (s2n0+p − s̃2n0+p)
p+1 .

Since Dn0+p = 0 by hypothesis, we conclude that s2n0+p = s̃2n0+p. �
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3. Applications to Stieltjes moment sequences

A sequence of real numbers (sn)n≥0 is called a Stieltjes moment sequence if it can
be represented as

sn =

∫ ∞
0

xn dµ(x), n ≥ 0 (11)

with a positive measure µ on the half-line [0,∞). In this case the shifted sequence
(sn+1)n≥0 is a moment sequence of the positive measure x dµ(x). The fundamental
work of Stieltjes [5] characterized Stieltjes moment sequences by positive semi-
definiteness of the Hankel matrices

Hn = (si+j), 0 ≤ i, j ≤ n, H(1)
n = (si+j+1), 0 ≤ i, j ≤ n, n ≥ 0. (12)

In the language of Hamburger moment sequences this shows that (sn)n≥0 is a
Stieltjes moment sequence if and only if (sn)n≥0 and (sn+1)n≥0 are Hamburger
moment sequences. It is remarkable that Hamburger’s work appeared a quarter of
a century after Stieltjes’ work.

In the following we also need the Hankel determinants

D(1)
n = |H(1)

n |. (13)

If the discrete measure µ given by (3) is concentrated on the half-line, i.e., 0 ≤ x1 <
x2 < . . . < xn, then by Lemma 2.1 the Hankel determinants D

(1)
n of the discrete

measure

x dµ(x) =

n∑
j=1

mjxjδxj

satisfy

D
(1)
k > 0, 0 ≤ k < n, D

(1)
k = 0, k ≥ n

if 0 < x1 and

D
(1)
k > 0, 0 ≤ k < n− 1, D

(1)
k = 0, k ≥ n− 1

if x1 = 0.
The Stieltjes version of Theorem 1.1 takes the form

Theorem 3.1 Let (sn) be a real sequence such that the Hankel determinants

Dn, D
(1)
n satisfy

Dn > 0, n < n0, Dn = 0, n ≥ n0, D(1)
n > 0, n < n1, D

(1)
n = 0, n ≥ n1,

then (sn) is a Stieltjes moment sequence of a measure

µ =

n0∑
j=1

mjδxj

8
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with mj > 0 and 0 ≤ x1 < x2 < . . . < xn0
.

If x1 = 0 then n1 = n0 − 1, and if x1 > 0 then n1 = n0.

Remark 4 The case x1 > 0 is Theorem 18 in Chapter XV, Section 16 of [3],
obtained in a different way.
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