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One of the main problems in the theory of or-

thogonal polynomials is to determine whether

any expansion of the product of two orthogo-

nal polynomials in terms of these polynomials

has nonnegative coefficients. We want to de-

cide which orthogonal systems {pn}N
n=0 have

the property

pn(x)pm(x) =
∑

c(n, m, k)pk(x)

with nonnegative coefficients c(n, m, k) for ev-

ery n, m and k. Numerous classical orthogonal

polynomials as well as their q-analogues sat-

isfy nonnegative linearization property (Askey,

Gasper, Rahman). There are many criteria for

nonnegative linearization given in terms of the

coefficients of the recurrence relation the or-

thogonal polynomials satisfy, that can be ap-

plied to general orthogonal polynomials sys-

tems (Askey, Sz.). These criteria are based

on the connection between the linearization

property and a certain discrete boundary value

problem of hyperbolic type.
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Let orthogonal polynomials {pn}N
n=0, where N

may be infinite, satisfy

xpn = γnpn+1 + βnpn + αnpn−1, 0 ≤ n ≤ N,

where γn, αn+1 > 0, βn are real numbers and

α0 = γN = p−1 = 0. Assume that for 0 ≤ n < N

we have

(i) αn ≤ αn+1.

(ii) βn ≤ βn+1.

(iii) αn + γn ≤ αn+1 + γn+1.

(iv) αn ≤ γn for n < N.

Then c(n, m, k) ≥ 0 for any n, m, k (Sz1992).

This criterion yields nonnegative linearization

for the associated polynomials of any order.
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There is a wide class of orthogonal polyno-

mials which resist any general criteria known

so far. These are finite systems of orthogonal

polynomials. The simplest family consists of

Krawtchouk polynomials, orthogonal with re-

spect to the binomial distribution

µ =
N∑

n=0

(N

n

)
pnqN−nδn, q = 1− p,

where 0 < p < 1. Upon normalization

Kn(0) = (−1)n(p/q)n/2

they satisfy

xKn =
√

pq (N − n)Kn+1 + [p(N − n) + qn]Kn

+
√

pq nKn−1, 0 ≤ n ≤ N.

Eagleson (1960) has shown that Kn admit non-

negative linearization if and only if 0 < p ≤ 1
2.
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When we apply our criterion to this case the
assumptions (i)–(iii) are satisfied for 0 < p ≤ 1

2.
The assumption (iv) is valid only for n ≤ N/2.

Let’s modify the recurrence relation by remov-
ing the middle term. Then we obtain

xK̃n =
√

pq (N−n)K̃n+1+
√

pq nK̃n−1, 0 ≤ n ≤ N.

It is possible to show nonnegative linearization
for these polynomials by using the criterion
given previously and some symmetry property
of this new system.

Now the following question arises. Given a sys-
tem of polynomials satisfying

xpn = γnpn+1 + βnpn + αnpn−1.

What property should this system satisfy so
that for any nondecreasing sequence εn of real
numbers the new system

xqn = γnqn+1 + (βn + εn)qn + αnqn−1

satisfied nonnegative linearization property ?
Clearly the system pn should satisfy nonnega-
tive linearization property, but it is not suffi-
cient.
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This new property will be called strong non-

negative linearization. Unfortunately the poly-

nomials K̃n do not satisfy it. Indeed, let

εn =

{
0 0 ≤ n ≤ N − 1,
ε n = N.

Let

xqn = (N − n)qn+1 + εnqn + nqn−1.

Then the nonnegative linearization fails for

0 < ε <
√

N − 2. Therefore the finite system

case remains unsolved.
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Let p
(l)
n (x) denote the associated polynomials

of order l. By definition they satisfy the shifted
recurrence relation

xp
(l)
n = γn+lp

(l)
n+1 + βn+lp

(l)
n + αn+lp

(l)
n−1.

The system pn satisfy the strong nonnegative
linearization property if and only if

p
(l)
n p

(l)
m =

n+m∑
k=|n−m|

Cl(n, m, k)p
(l)
k ,

with nonnegative coefficients Cl(n, m, k) for all
n, m, k and l ≥ 0.

For convenience we will use the polynomials
p

[l]
n satisfying

xp
[l]
n = γnp

[l]
n+1 + βnp

[l]
n + αnp

[l]
n−1, n ≥ l + 1,

p
[l]
0 = p

[l]
1 = . . . = p

[l]
l = 0, p

[l]
l+1 =

1

γl
.

Then we have

p
[l]
n = p

(l+1)
n−l−1.

The advantage is that the polynomials p
[l]
n sat-

isfy the same recurrence relation for each l.
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We have

p
[l]
n p

[l]
m =

n+m−l−1∑
k=|n−m|+l+1

cl(n, m, k)p
[l]
k .

The nonnegativity of the coefficients Cl(n, m, k),

is equivalent to the nonnegativity of the lin-

earization coefficients c(n, m, k) = C0(n, m, k)

and that of cl(n, m, k) because

cl(n, m, k) = Cl+1(n− l− 1, m− l− 1, k− l− 1).

We are going to show three equivalent con-

ditions for each of the properties nonnegative

linearization and strong nonnegative lineariza-

tion.
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Let u(n, m) be a matrix of complex numbers

indexed by 0 ≤ n, m < N. Define two operators

L1 and L2 acting on such matrices by the rule

(L1u)(n, m) = γnu(n + 1, m)

+βnu(n, m) + αnu(n− 1, m),

(L2u)(n, m) = γmu(n, m + 1)

+βmu(n, m) + αmu(n, m− 1).

Let

H = L1 − L2.
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Proposition 1. (i) The polynomials pn admit

nonnegative product linearization if and only

if every matrix u = {u(n, m)} such that{
Hu(n, m) = 0, for 0 ≤ m < n < N

u(n, 0) ≥ 0, for 0 ≤ n ≤ N,

satisfies u(n, m) ≥ 0 for 0 ≤ m ≤ n ≤ N.

(ii) The polynomials {pn}N
n=0 admit strong non-

negative product linearization if and only if

every matrix u = {u(n, m)} such that{
Hu(n, m) ≤ 0, for 0 ≤ m < n < N

u(n, 0) ≥ 0, for 0 ≤ n ≤ N,

satisfies u(n, m) ≥ 0 for 0 ≤ m ≤ n ≤ N.
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The proof of both propositions follows from

the lemma.

Lemma 1. Given a matrix v = {v(n, m)}n>m≥0

and a sequence f = {f(n)}n≥0. Let a matrix

u = {u(n, m)}n≥m≥0 satisfy

Hu(n, m) = v(n, m), for 0 ≤ m < n < N,

u(n, 0) = f(n), for 0 ≤ n ≤ N.

Then

u(n, m) = −
∑

k>l≥0

v(k, l)cl(n, m, k)

+
∑
k≥0

f(k)c(n, m, k).

The summations are finite because cl(n, m, k) 6=
0 implies |n−m| ≤ k + l + 1 ≤ n + m.
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For each point (n, m) with 1 ≤ m ≤ n ≤ N,

let ∆n,m denote the set of lattice points in the

plane defined by

∆n,m = {(i, j) |0 ≤ j ≤ i ≤ N, |n− i| < m− j}.

The set ∆n,m is depicted in below for n + m ≤
N. (the points in ∆n,m are marked with empty

circles).

-
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In case N is finite and n + m > N the corre-

sponding picture is
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Let H∗ denote the adjoint operator to H with

respect to the inner product of matrices

〈u, v〉 =
N−1∑

n,m=0

u(n, m)v(n, m).

This operator acts according to

(H∗v)(n, m) =

αn+1v(n + 1, m) + βnv(n, m) + γn−1v(n− 1, m)

−αm+1v(n, m+1)−βmv(n, m)−γm−1v(n, m−1).
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Theorem 1.(a) The orthogonal polynomials

{pn}N
n=0 admit nonnegative linearization if

for every (n, m), with 1 ≤ m ≤ n ≤ N, there

exists a matrix v(i, j) such that

(i) supp v ⊂ ∆n,m.

(ii) (H∗v)(n, m) < 0.

(iii) (H∗v)(i, j) ≥ 0 for (i, j) 6= (n, m).

(b) The orthogonal polynomials {pn}N
n=0 admit

strong nonnegative linearization if for every

(n, m), with 1 ≤ m ≤ n ≤ N, there exists a

matrix v(i, j) such that

(i) supp v ⊂ ∆n,m.

(ii) (H∗v)(n, m) < 0.

(iii) (H∗v)(i, j) ≥ 0 for (i, j) 6= (n, m).

(iv) v(i, j) ≥ 0 for (i, j) ∈ ∆n,m.
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Let vn,m denote a matrix such that

supp vn,m ⊂ ∆n,m,

(H∗vn,m)(n, m) = −1,

(H∗vn,m)(i, j) = 0, for 0 < j < m.

This is a special choice of the matrix which

satisfies conditions (i), (ii) and partially (iii),

of Theorem 1. The matrix vn,m is uniquely

determined. Moreover we have the following.

Theorem 2. For any n ≥ m ≥ 0 and k > l ≥ 0

we have

vn,m(k, l) = cl(n, m, k).

Moreover

H∗vn,m = −δ(n,m) +
n+m∑

k=n−m

c(n, m, k)δ(k,0).

In this way the conditions given in Theorem 1

become equivalent to nonnegative (or strong

nonnegative) linearization.
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By Theorem 2 the following becomes evident.

Theorem 3.(a) The orthogonal polynomials

{pn}N
n=0 admit nonnegative linearization if

and only if for every (n, m), with 1 ≤ m ≤
n ≤ N, the matrix vn,m satisfies

(H∗vn,m)(j, 0) ≥ 0.

(b) The orthogonal polynomials {pn}N
n=0 admit

strong nonnegative linearization if and only

if for every (n, m), with 1 ≤ m ≤ n ≤ N, the

matrix vn,m satisfies (H∗vn,m)(j, 0) ≥ 0 and

vn,m(i, j) ≥ 0 for (i, j) ∈ ∆n,m.
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Proof of Theorem 1(b)

Let u = {u(n, m)}n≥m≥0 satisfy

(Hu)(n, m) ≤ 0, for n > m ≥ 0,

u(n, 0) ≥ 0.

We will show that u(n, m) ≥ 0, by induction

on m. Assume that u(i, j) ≥ 0 for j < m. Let

v be a matrix satisfying the assumptions of

Theorem 1(b). Then

0 ≥ 〈Hu, v〉 = 〈u, H∗v〉
= u(n, m)(H∗v)(n, m)+

∑
i≥j≥0

j<m

u(i, j)(H∗v)(i, j)

Therefore

−u(n, m)(H∗v)(n, m) ≥
∑

i≥j≥0
j<m

u(i, j)(H∗v)(i, j),

and the conclusion follows. ♦
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Theorem 4. Assume that

(i) βm ≤ βn for m ≤ n.

(ii) αm ≤ αn for m < n.

(iii) αm + γm ≤ αn + γn for m < n.

(iv) αm ≤ γn for m ≤ n.

Then the system {pn}∞n=0 satisfies the strong

nonnegative linearization property.
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It suffices to construct for every (n, m) with

n ≥ m, a matrix v satisfying the assumptions

of Theorem 1. Fix (n, m). Define the matrix v

according to the following.

v(i, j) =

{
cicj (i, j) ∈ ∆n,m, n + m− i− j odd
0 otherwise

where

c0 = 1, ci =
γ0γ1 . . . γi−1

α1α2 . . . αi
.

The points in the support of v are marked by

empty circles in the picture below.
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Then supp H∗v consists of the points marked

by ◦, •, /, . and �. A straightforward computa-

tion gives the following.

(H∗v)(i, j)

cicj
=



−αm (i, j) = (n, m)
βi − βj (i, j) − ◦
αi + γi − αj − γj (i, j) − •
αi − αj (i, j) − .
γi − αj (i, j) − /
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Theorem 5.Assume orthogonal polynomial sys-

tem {pn}N
n=0 satisfies strong nonnegative lin-

earization property. Let εn be a nondecreasing

sequence. Let qn be a sequence of polynomials

satisfying the perturbed recurrence relation

xqn = γnqn+1 + (βn + εn)qn + αnqn−1,

for n ≥ 0. Then the system {qn}N
n=0 satisfies

strong nonnegative linearization property.

Proof. We will make use of Theorem 1(b). Let

H and Hε denote the hyperbolic operators cor-

responding to the unperturbed and perturbed

system, respectively. For any matrix v(i, j) we

have

(H∗
εv)(i, j) = (H∗v)(i, j) + (εi − εj)v(i, j).

By assumptions for any n ≥ m ≥ 0, there ex-

ists a matrix v satisfying the assumptions of

Theorem 1(b), with respect to H.
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The same matrix v satisfies these assumptions

with respect to Hε. Indeed, the assumptions (i)

and (iv) do not depend on the perturbation.

Since v(n, m) = 0 the assumption (ii) is not

affected, as well. Concerning (iii), since v ≥ 0

and εn is nondecreasing we have

(H∗
εv)(i, j) ≥ (H∗v)(i, j) ≥ 0,

for i ≥ j ≥ 0 and j < m. Hence the perturbed

system of polynomials satisfies the strong non-

negative linearization property ♦

This theorem is not valid for standard nonneg-

ative linearization property e.g. the Krawtchouk

polynomials case.
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Since

γ0p1pn = γnpn+1 + (βn − β0)pn + αnpn−1,

nonnegative linearization requires βn ≥ β0. There

are many examples of orthogonal polynomial

systems satisfying nonnegative linearization for

which β1 ≥ β2 ≥ ... ≥ β0. For example the Ja-

cobi polynomials with α > β > −1 and −1 ≤
α + β < 0, are such. Therefore the associ-

ated polynomials do not satisfy nonnegative

linearization. Moreover the following holds.

Proposition 2.Assume orthogonal polynomial

system {pn}N
n=0 satisfies strong nonnegative

linearization property and

xpn = γnpn+1 + βnpn + αnpn−1.

Then βn is nondecreasing.
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Proposition 3. The Jacobi polynomials satisfy

strong nonnegative linearization property if and

only if either α > β > −1 and α + β ≥ 0 or

α = β ≥ −1
2.

By Gasper’s result the Jacobi polynomials sat-

isfy nonnegative linearization property if α ≥
β > −1 and c(2, 2, 2) ≥ 0. In particular the

conditions α ≥ β > −1 and α + β ≥ −1 are

sufficient.
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Nonnegative

linearization

Strong nonnegative

linearization

c(n, m, k) ≥ 0 c(n, m, k) ≥ 0

cl(n, m, k) ≥ 0

Hu(n, m) = 0
n > m ≥ 0
u(n, 0) ≥ 0

 ⇒ u ≥ 0
Hu(n, m) ≤ 0

n > m ≥ 0
u(n, 0) ≥ 0

 ⇒ u ≥ 0

For n ≥ m ≥ 0 there exists

a matrix v such that

(i) supp v ⊂ ∆n,m.

(ii) (H∗v)(n, m) < 0.

(iii) (H∗v)(i, j) ≥ 0,

0 ≤ j < m.

For n ≥ m ≥ 0 there exists

a matrix v such that

(i) supp v ⊂ ∆n,m.

(ii) (H∗v)(n, m) < 0.

(iii) (H∗v)(i, j) ≥ 0,

0 ≤ j < m.

(iv) v(i, j) ≥ 0.

(i) (H∗vn,m)(i, j) ≥ 0,

0 ≤ j < m.

(i) (H∗vn,m)(i, j) ≥ 0,

0 ≤ j < m.

(ii) vn,m(i, j) ≥ 0.
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We always assume that n ≥ m ≥ 0 i i ≥ j ≥ 0.


