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One of the main problems in the theory of or-
thogonal polynomials is to determine whether
any expansion of the product of two orthogo-
nal polynomials in terms of these polynomials
has nonnegative coefficients. We want to de-
cide which orthogonal systems {pn}f;fzo have
the property

pr(2)pm(z) = ) c(n,m, k)py(z)

with nonnegative coefficients c¢(n, m, k) for ev-
ery n,m and k. Numerous classical orthogonal
polynomials as well as their g-analogues sat-
isfy nonnegative linearization property (Askey,
Gasper, Rahman). There are many criteria for
nonnegative linearization given in terms of the
coefficients of the recurrence relation the or-
thogonal polynomials satisfy, that can be ap-
plied to general orthogonal polynomials sys-
tems (Askey, Sz.). These criteria are based
on the connection between the linearization
property and a certain discrete boundary value
problem of hyperbolic type.



Let orthogonal polynomials {pn}2_,, where N
may be infinite, satisfy
IPn — TnPn+1 + Bnon + anpp—1, 0<n <N,

where ypn,a,41 > 0, Bn are real numbers and
ag =Ny =p_1 = 0. AssumethatforO<n < N

we have
(i) an < apg1.
(i) Bn < Bp41-
(iii) an +m < apg1 + Ynt1-
(iv) an <~yn for n < N.

Then c¢(n,m,k) > 0 for any n,m,k (5z21992).

This criterion yields nonnegative linearization
for the associated polynomials of any order.



There is a wide class of orthogonal polyno-
mials which resist any general criteria known
so far. These are finite systems of orthogonal
polynomials. The simplest family consists of
Krawtchouk polynomials, orthogonal with re-
spect to the binomial distribution

N
= 3 (e =1

n=0

where 0 < p < 1. Upon normalization

Kn(0) = (=1)"(p/q)"/?
they satisfy
rKp =1/pg (N —n)K,, 11+ [p(N —n) + gn]Kn
+ vpgnK,_1, 0<n<N.

Eagleson (1960) has shown that K, admit non-
negative linearization if and only if 0 < p < 3.



When we apply our criterion to this case the
assumptions (i)—(iii) are satisfied for 0 < p < %
The assumption (iv) is valid only for n < N/2.
Let's modify the recurrence relation by remov-
ing the middle term. Then we obtain

2Kn = /pg (N—-n)K, 11+/pgnK, 1, 0<n < N.
It is possible to show nonnegative linearization
for these polynomials by using the criterion

given previously and some symmetry property
of this new system.

Now the following question arises. Given a sys-
tem of polynomials satisfying

TPn = YnPn+1 T PnPn + anpn—1.

What property should this system satisfy so
that for any nondecreasing sequence &, of real
numbers the new system

Ldn — Yndn+41 + (Bn + en)an + angn—1

satisfied nonnegative linearization property 7
Clearly the system p, should satisfy nonnega-
tive linearization property, but it is not suffi-
cient.



This new property will be called strong non-
negative linearization. Unfortunately the poly-
nomials K, do not satisfy it. Indeed, let

- O O<n<N-—-1,
") e n = N.

Let

rqn = (N — n)Qn—|—1 + engn + ngp—1.

Then the nonnegative linearization fails for
0 < e < VN —2. Therefore the finite system
case remains unsolved.



Let pg)(:c) denote the associated polynomials
of order [. By definition they satisfy the shifted
recurrence relation

zpy) = 7n+ngJ)r1 + Bgpy + a1

The system p, satisfy the strong nonnegative
linearization property if and only if

n+m
) (1 l
PP = S Cn,m, k)plg),
k=|n—m|
with nonnegative coefficients C;(n,m, k) for all
n,m,k and [ > 0.
For convenience we will use the polynomials

p%] satisfying

:qu[zl] = vnpq[f]ﬂ + ﬁnpv[zl] + anpq[f]_l, n>l+1,

1
pg]=p[1l]=...=pl[l]=0 [ ——

Then we have

p’l[vl,] — pgj_l 1_)1 :

The advantage is that the polynomials p%] sat-
isfy the same recurrence relation for each .
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We have

n+m—I[—1
pilpld = > ci(n,m, k)pl.
k=|n—m|+I1+1
The nonnegativity of the coefficients C;(n,m, k),
IS equivalent to the nonnegativity of the lin-
earization coefficients c(n,m,k) = Cp(n,m,k)
and that of ¢;(n,m, k) because

c(n,m,k) =Cp1(n—1—-1,m—-1-1,k—-1-1).

We are going to show three equivalent con-
ditions for each of the properties nonnegative
linearization and strong nonnegative lineariza-
tion.



Let u(n,m) be a matrix of complex numbers
indexed by 0 < n,m < N. Define two operators
L1 and Lo acting on such matrices by the rule

(Liu)(n,m) = ~pu(n+1,m)

+Gru(n, m) + anu(n — 1, m),
(LQU’) (na m) — ’ymu(n, m _I_ 1)

+Bmu(n, m) + amu(n,m — 1).
et

H=Li— Loy



Proposition 1. (i) The polynomials p, admit
nonnegative product linearization if and only

if every matrix u = {u(n,m)} such that

= 0, forO<m<n<N
u(n,0) > 0, for0<n <N,
O for0O<m<n<N.

1V

satisfies u(n, m)

(ii) The polynomials {pn}"_, admit strong non-
negative product linearization if and only if

every matrix u = {u(n,m)} such that

Hu(n,m) < 0, forO<m<n<N
u(n,0) > 0, for0<n <N,

satisfies u(n,m) >0 for 0 <m <n < N.



The proof of both propositions follows from
the lemma.

Lemma 1. Given a matrix v = {v(n,m) },>m>0
and a sequence f = {f(n)},>0. Let a matrix
u = {u(n,m)},>mn>0 Satisfy

Hu(n,m) =v(n,m), for0O<m<n<N,
u(n,0) = f(n), for 0 <n < N.
Then
u(n,m) - - Z v(k,l)cl(n,m, k)

k>1>0

+ Z f(k)e(n,m,k).

k>0

The summations are finite because ¢;(n,m, k) #
O implies | n—m|<k+I1+1<n+m.
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For each point (n,m) with 1 < m < n < N,
let An m denote the set of lattice points in the
plane defined by

Anm = {(4,5)|0<j<i<N, |n—il <m—j}.

The set A, is depicted in below for n+m <
N. (the points in Ay, m are marked with empty
circles).
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In case N is finite and n 4+ m > N the corre-
sponding picture is

m
(n,m)
&
o)
o o o
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Let H* denote the adjoint operator to H with
respect to the inner product of matrices

N-1

(u,v) = Z w(n, m)v(n,m).

n,m=0

T his operator acts according to

(H*v)(n,m) =
1000+ 1,m) + Bav(n,m) 4 n_10(n — 1,m)
—ozm_|_1v(n, m—I—l)—BmU(n, m)_7m—1v(n7m_1)°
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Theorem 1.(a) The orthogonal polynomials
{pn}_, admit nonnegative linearization if
for every (n,m), with 1 <m <n < N, there
exists a matrix v(i,7) such that

(i) suppv C An.m.
(ii) (H*v)(n,m) < O.
(iii) (H*v)(4,7) > 0 for (i,7) &= (n,m).

(b) The orthogonal polynomials {pn}_, admit
strong nonnegative linearization if for every
(n,m), with 1 <m <n < N, there exists a
matrix v(i,j) such that

(i) suppv C Anm.

(ii) (H*v)(n,m) < 0.
(i) (H*v)(i,j) > 0 for (i,5) # (n,m).
(iv) v(z,5) >0 for (i,7) € Dnm.
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Let vy m denote a matrix such that

suppvnm C Anm,
(H*vn,m)(n,m) —1,

This is a special choice of the matrix which
satisfies conditions (i), (ii) and partially (iii),
of Theorem 1. The matrix vnm IS uniquely
determined. Moreover we have the following.

Theorem 2. Foranyn>m>0and k>1>0

we have
vnm(k,l) = c(n,m, k).
Moreover
n+m
H*Un,m — _5(n,m) —|— Z C(’I’L, m, k)5(k;,0)‘
k=n—m

In this way the conditions given in Theorem 1
become equivalent to nonnegative (or strong
nonnegative) linearization.
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By Theorem 2 the following becomes evident.

Theorem 3.(a) The orthogonal polynomials
{pn})_, admit nonnegative linearization if
and only if for every (n,m), with 1 < m <
n < N, the matrix vn m satisfies
(H*Un,m)(ja 0) > 0.

(b) The orthogonal polynomials {pn}_, admit
strong nonnegative linearization if and only
if for every (n,m), with 1 <m <n < N, the
matrix vn,m satisfies (H*vn,m)(3,0) > 0 and
vn.m(i,5) >0 for (i,5) € Apm.
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Proof of Theorem 1(b)
Let u = {u(n,m)},>m>0 satisfy

(Hu)(n,m) <0, forn>m > 0,
u(n,0) > 0.
We will show that u(n,m) > 0, by induction
on m. Assume that u(é,57) > 0 for j < m. Let

v be a matrix satisfying the assumptions of
Theorem 1(b). Then

0 > (Hu,v) = {u, H*v)
= u(n,m)(H*v)(n,m)+ > u(i,j)(H v)(,j5)

12720
j<m
T herefore
127520
j<m

and the conclusion follows. &
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Theorem 4. Assume that
(i) Bm < Bn for m < n.
(ii) am < ap for m < n.
(iii) am + ym < an + yn for m < n.
(iv) am < vyn for m <n.

Then the system {pn},2y satisfies the strong
nonnegative linearization property.
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It suffices to construct for every (n,m) with
n > m, a matrix v satisfying the assumptions
of Theorem 1. Fix (n,m). Define the matrix v
according to the following.

.y _ Jocic; (4,5) € Apm, n+m —i— 7 odd
v(i, j) = { 0 otherwise

where

Y071 --7%i—1
C; — .
a1 ... 04
The points in the support of v are marked by
empty circles in the picture below.

co = 1,

m

(n,m)
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Then supp H*v consists of the points marked
by o,e,<4,> and ¢. A straightforward computa-
tion gives the following.

( —Om E27]§ — (n’m)
H T
( ’U)(.’L,]) =S aj+vi—aj—v (i,j) — e
CiCy Q; — O (7’7]) — b
\ Vi — Oy (7’7]) — <
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Theorem 5. Assume orthogonal polynomial sys-
tem {pn}ﬁfzo satisfies strong nonnegative lin-
earization property. Let £, be a nondecreasing
sequence. Let g, be a sequence of polynomials
satisfying the perturbed recurrence relation

Ldn =— Tnqdn41 + (Bn + en)an + angn—1,

for n > 0. Then the system {qn}"_, satisfies
strong nonnegative linearization property.

Proof. We will make use of Theorem 1(b). Let
H and H: denote the hyperbolic operators cor-
responding to the unperturbed and perturbed
system, respectively. For any matrix v(7,7) we
have

(Hv)(4,5) = (H™v)(6,7) + (g; — €5)v(i, j).

By assumptions for any n > m > 0, there ex-
ists a matrix v satisfying the assumptions of
Theorem 1(b), with respect to H.

21



The same matrix v satisfies these assumptions
with respect to H.. Indeed, the assumptions (i)
and (iv) do not depend on the perturbation.
Since v(n,m) = 0 the assumption (ii) is not
affected, as well. Concerning (iii), since v > 0
and e, IS nondecreasing we have

(HZv)(4,5) > (H*v)(4,7) > 0,

for: > 53 >0 and 5 < m. Hence the perturbed
system of polynomials satisfies the strong non-
negative linearization property $

This theorem is not valid for standard nonneg-
ative linearization property e.g. the Krawtchouk
polynomials case.
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Since

YoP1Pn = YnPn+1 t+ (Bn — Bo)pn + anpp—1,

nonnegative linearization requires 38, > Bg. There
are many examples of orthogonal polynomial
systems satisfying nonnegative linearization for
which 31 > B2 > ... > Bg. For example the Ja-
cobi polynomials with o« > 8 > —1 and -1 <
a+ (B < 0, are such. Therefore the associ-
ated polynomials do not satisfy nonnegative
linearization. Moreover the following holds.

Proposition 2. Assume orthogonal polynomial
system {pn},ﬁfzo satisfies strong nonnegative
linearization property and

TPn = YnPp+1 + OnPn + anpp_1.

T hen (B, is nondecreasing.
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Proposition 3. The Jacobi polynomials satisfy
strong nonnegative linearization property if and
only if either a« > 8 > —1 and a+ 3 > 0 or
a=/p2> —%.

By Gasper’s result the Jacobi polynomials sat-
isfy nonnegative linearization property if o« >
B > —1 and ¢(2,2,2) > 0. In particular the
conditions « > 68 > —1 and a+ 3 > —1 are
sufficient.
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Nonnegative

Strong nonnegative

linearization linearization
C(?’L, m, k) 2 0 C(”) m, k) 2 0
ci(n,m,k) >0
Hu(n,m) =20 Hu(n,m) <0
n>m>0 »=u>0 n>m>0 =u>0
u(n,0) >0 u(n,0) >0

For n > m > 0 there exists
a matrix v such that
(i) suppv C Apm.
(i) (H*v)(n,m) < 0.
(i) (H*v)(4,5) > O,
0< 7 <m.

For n > m > 0 there exists
a matrix v such that
(i) suppv C Apm.
(i) (H*v)(n,m) < 0.
(i) (H*v)(4,5) > 0,
0< 7 <m.
(iv) v(i,5) > 0.

(i) (H*’Un,m)(’iaj) > 0,
0<j73<m.

(i) (H*’Un,m)(’iaj) > 0,
0<j73<m.
(ii) ’Un,m(iaj) > 0.
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We always assume that n>m >0i:7:> 35 > 0.



