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Chain sequences are positive sequences {a,} of the form a,=g,(1 —g,_,) for a
nonnegative sequence {g,}. This concept was introduced by Wall in connection
with continued fractions. In his monograph on orthogonal polynomials, Chihara
conjectured that if a, > 1 for each n then Y (a,— 1) <. We prove this conjecture
and give other precise estimates for a,. We also characterize the chain sequences
{a,} whose terms are greater than 3. We show connections to Jacobi matrices and
orthogonal polynomials. In particular, we characterize the maximal chain sequences
in terms of integrability properties of the spectral measure of the associated Jacobi
matrix.  © 1998 Academic Press
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1. INTRODUCTION

The concept of chain sequences was introduced by Wall [7] in his
monograph on continued fractions. Chain sequences are sequences {a,} ."_,
for which there exists a sequence {g,} ., such that 0< g, <1 and

an:gn(lign—l)a fOr n}l

The sequence {g,} is called a parameter sequence and need not be unique.

The connection to continued fractions is that a nonnegative sequence
{a,} is a chain sequence if and only if the approximants of the continued
fraction

I a| a,| as]
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are positive and converge to a limit. We refer to [ 2, 7] for basic facts about
chain sequences.

The constant sequence a, = 5 is one of the simplest examples of a chain
sequence. The constant ; cannot be enlarged and moreover if a, > and
{a,} is a chain sequence then a, — . In [2, Theorem II1.5.8] Chihara
showed that if {a,} is a chain sequence such that a, >} then

z (an - %) < %
n=1

In [2, Exercise 111.5.6] he replaced 3 with (1 + ﬁ)/S and conjectured that
1 is sufficient. We show that this conjecture is correct. We also show that
one has

& 1 1
a,—+ |<—,
2 (oa)<ay
and we determine when the equality holds.

Chain sequences have important applications to orthogonal polynomials
(see [2]). Let p, be symmetric orthogonal polynomials on the interval
[ —1, 1] relative to a probability measure u and satisfying the recurrence
relation

xpn(x):;Ln+1pn+l(x)+;"npn71(x)’ n>17 (1)

with initial conditions p,(x) =1 and p,(x) =4, /x. It can be shown that the
support of u is contained in [ —1,1] if and only if {1.} is a chain
sequence. The constant sequence A,=3 corresponds to the Chebyshev
polynomials of the second kind. Their orthogonality measure du(x)=
(2/7)(1 —x?)" dx is supported in [ —1, 1]. When 1, > 1 the orthogonality
interval can be larger than [ —1, 1]. The question arises: by how much can
/., exceed 1 so that the orthogonality measure is still supported in the
interval [ —1, 1]? This question is connected with estimating the norms
or spectral radii of the Jacobi matrix associated with (1), because the
orthogonality measure is supported in [ —1, 1] if and only if the spectral
radius of the Jacobi matrix is less than or equal to 1. All this can readily
be solved by means of chain sequences. We give necessary and sufficient
conditions for sequences 4,>3 such that suppu <[ —1, 1]. These condi-
tions are useful in constructing such sequences.

We also discuss maximal sequences 4, with the property that the Jacobi
matrix associated with 4, has a spectral radius equal to 1 and each Jacobi
matrix associated with 1,> 1, has a spectral radius equal to 1 if and only
if 7, =4, for each n. We show that a sequence 4, > 0 is maximal if and only
if the series Y m,, is divergent, where m, are the moments of the
orthogonality measure associated with J.
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The origin of our interest in polynomials p, orthogonal on the interval
[—1,1] and such that 4,>% comes from the nonnegative linearization
problem. If we express the product p,(x) p,,(x) in terms of p,(x) we get the
linearization formula

n+m
pn(x) pm(x) = Z C(n, m, k) pk(x)'

k=|n—m]|

By [6, Prop. 1] we get that ¢(n, m, k) are nonnegative for all n, m, k >0
provided that 4,>1 and suppu <[ —1, 1] (see also [5, Theorem 3]).

2. JACOBI MATRICES AND CHAIN SEQUENCES

A given sequence of real numbers 1, determines a Jacobi matrix J as
follows:

0 4, 0 0
0 A, 0

J=| 0 4, 0 I, (2)
0 , 0

The connection between Jacobi matrices and chain sequences is exhibited
in the next proposition.

ProroOSITION 1. The Jacobi matrix J corresponds to a bounded linear
operator on square summable real valued sequences, with operator norm less
than or equal to 1 if and only if 12 is a chain sequence.

Proof. Since J is a symmetric matrix we have
[0 o= SUp{xTJx | xTx < 1}.

On the other hand,
xTIx=2 ) A,x,X,.;.
n=1

Now the conclusion follows from [7, Theorem 20.1] (see also [2, Exer-
cise I1L.5 13]). 1



62 RYSZARD SZWARC

3. ESTIMATES FOR CHAIN SEQUENCES

The next two lemmas are known. We prove them in order to remain self-
contained. Note that the proof of Lemma 2 is entirely different from the
one in [2, p. 99].

Lemma 1 (Wall [7]). Let a, be a chain sequence with a parameter

sequence g,. If a,, > 1 the sequence g, is increasing and it tends to 1. In par-

ticular, a, tends to }.

Proof. We have

a}’l

>
1_g)771 4(l_gn7])

&n= =g, -

Thus g, ~g and a, —> g(1 — g) > 4. Hence g=1.

Lemma 2 ([2], p.99). Let a, >3 be a chain sequence with a parameter
sequence g,. Then

Proof. Let
5;7 =1- 2gn .
In view of the preceding lemma we have 0 <J,<1 and

_5n71_(4an_1)< 5}171

! 1+57171 \1+5n71.
Hence
X
5n<f(5n 1)9 Where f(x)zi
x+1
Therefore
0o 1

n times

This gives the conclusion. ||
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THEOREM 1.

Let a,,>1/4 be a chain sequence. Then

oo}

1 1
=n n

3)
If for some n=1 equality holds in (3) then a,,=1/4 for m>n and
a,=1/4+1/4n.
In particular

4)
and the equality holds if and only if a,=1/2 and a,,=1/4 for n=2.

Proof. Let g, be any parameter sequence for ¢,. By Lemma 1 we have
g,> 1. Therefore

an_%zgn(l _gnfl)_

:%(gn_gnfl)_(%

Next, adding up the terms and using Lemma 2 gives

oo}

1 1/1 1
—2)<5 (5201 ) <5
mz_n<”m 4) 2<2 & ‘> 4n
This equality holds if and only if

(%_gmfl)(%_gm)zo for m=>=n

and g,,_,=1/2—1/2n. Since by Lemma 1 the sequence g, is nondecreasing
we get g,,= 1/2 for m > n. Therefore

1/1 1
anzgn(l_gnl)=2<2+2n>=

1
am:gm(l_gmfl)zz for

1+ 1
4 4w’

m>n. ||
THEOREM 2. Let a, be a chain sequence such that a, ~%. Then

0<a l<1 tanL2
ST 474 2( ))

n+1

Proof. We will make use of the following lemma.
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LEMMA 3. Let

flx)= ¢ , g=tan ¢.

Then denoting by f™ the mth iterate of f we have

X —¢&tan mo

J (x):(sfltanm(p)xﬁ—l’
In particular
tan ¢
"1l)=——F—.
S tan(m+1)¢

Lemma 3 can be proved by induction using the relation between
tan(m+ 1) and tan me. The more demanding reader may instead con-
sider the corresponding 2 x 2 matrix

1 —¢?
(1)
Its iterates can be computed by finding a basis of eigenvectors for F.
Assume that
a,=3+% and ¢, \O.
Let g, be a parameter sequence for a,. Write g, in the form
gn=3(1-0,).

By Lemma 1 we have 0<J, <1. Then using ¢,=g,(l —g,_,) and ¢,,<g,
gives

) &2 0 &2

m—1" %y m—1" %y

5 - S s <
" 5»1714_1 5m71_|—1 " "
Thus
x—e2
0,m<f(0,_1), where f(x)= % for m<n.
x+1

Since f(x) is an increasing function for x>0, by Lemma 3 we obtain

tan ¢

I <SM00)<S" V= Cie T,
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for m <n, where ¢, =tan ¢. This implies that tan(m+ 1)@ >0 for m<n.
Hence (n+ 1)@ <n/2. Thus

tan ¢ <t n I
&, =1lan stan ————.
" ¢ 2n+ 1)

Using tan x <4x/n, for 0 < x <m/4, gives
COROLLARY 1. Let a, be a chain sequence such that a, ~%. Then

Te 1
a, 4\(n+1)2

The next theorem gives a characterization of the chain sequences with all
terms greater than or equal to 1. In view of Proposition 1 the constant
chain sequence a, =} corresponds to the Jacobi matrix with 4,=1, which
is in turn associated with the Chebyshev polynomials of the second kind

sin(n+1)x

U,(cos x)= -
sin x

THEOREM 3. Let a,=%(1+e¢,), with ¢,>0. Then {a,} is a chain
sequence if and only if there exists a sequence {c,} of positive numbers such
that

(1) Chi1<2¢,, for n=1.
(1) cpyp1—Cp= i Con€m» for n=1.
Proof. (=) Leta,=g,(1— gnil) and g,=3(1—4,). Then
£,=0,_1—0,—0,_10,.
Set ¢, =1 and

4
"7"'1:1_'_5”71.

cl’l
Then ¢, <2c,, because J,, <1. We have
C}7+l_cn=(";75n71' (7)

Moreover

8;1251171_5)1(1—'_5}171) 5n71_cn+15 .
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Hence
cngnzcn 5}171_(:n+15n' (8)

Thus the sequence c¢,d,_; is nonincreasing; as such it has a limit
¢, 0, ;—>5=0.

Now summing up (8) and using (7) yields

Cmgmzcnénfl_S:Cn+l_c}1_S<cn+l_Cn'

n

ﬁMS

(=)
Set
-
Sp=c, Y e
m=n+1
Then

S, <2,

n =

Cnii

Thus J, < 1. Let h,=1(1—J,). Then

M (1—h, ) =(1=0)(14+08, )=1+e,+2 "5 5. 5,
C

n

1 [ o]
>1+6,1+< Y cmsm>5n—5n1 S,

n

=1+¢,=4a,.

Thus 4,(1 —h,_,;) > a,. This implies that a, is a chain sequence (see also
[2, Theorem 5.7, p. 97]). 1

The next Corollary can be found in [2, Problem 5.7, p. 100]

COROLLARY 2 (Chihara). Let a,=3(1+z¢,), where ¢,>0 and

Then {a,} is a chain sequence.
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Proof. Apply Theorem 3 with ¢,=n. |1

COROLLARY 3. Let {c,} be a concave nondecreasing sequence of positive

numbers satisfying 2c,<c, ., for n=1. Set
_20n+1 _cn_cn+2
B .

n

Then the sequence a,=%(1+z¢,) is a chain sequence.

Proof. We have ¢, ., —c, \s>=0. Thus

53
Z 8,,7Cm:C”+1—Cn—S<Cn+1—Cn. I
m=

4. MAXIMAL CHAIN SEQUENCES

A chain sequence {a,} is called maximal if there is no chain sequence
{b,} such that b,>a, and {a,} #{b,}.

Maximal chain sequences exist and moreover every chain sequence is
bounded from above by a maximal one (see [7]).

The next proposition follows in part from Proposition 1.

ProposITION 2. Let {a,} and {b,} be chain sequences. Then the
sequence {c,} defined by

Ve =iJa, +(1=2)/b,

is a chain sequence for any 0 <A <1. Moreover if {a,} #{b,} then {c,} is
not a maximal chain sequence.

Proof. Llet a,=g,(1—g, ;) and b,=h,(1—h,_,) for 0<g,<1 and
0<h,<1. Set f,=4g,+ (1 —4) h,. Then

Sl =fo ) ={Ag, + (1 =A) h,} {(1 =) (1 =h, )+ (1 —g, 1)}
=1 =) {g, (1 =h,_ )+ h(1 =g, )} +22a,+(1—1)*b,
>20(1—2) /g1 =g, ) hy(1 —h, 1)+ 22a,+(1—=2)%b,
=(AJa, +(1=12) /b, =c,.

Hence ¢, is a chain sequence as it is bounded from above by the chain
sequence f,(1—f,_1).
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If {c,} is a maximal chain sequence then both {a,} and {b,} are maxi-
mal chain sequences. In that case g,=/h,=0, because otherwise setting
go=0 or h,=0 leads to chain sequences which are greater than {a,} or
{b,}, respectively.

Also, if {c,} is a maximal chain sequence, the calculations performed
above enforce

anfn(l _]rnfl)?
gn(l_hnfl):hn(l_gnfl)a 7’121

Since g, =h, =0, the last equation implies g, =4, for n>0. Hence a,=5b,
forn=1. |

We now turn to chain sequences such that a, > 1.

THEOREM 4. Let a,=3(1+z¢,), where ¢=0. Then {a,} is a maximal
chain sequence if and only if there exists a unique sequence {c,} of positive
numbers such that ¢, =1 and

(1) 2¢,=2Cpins for nz=1.
0

(11) Cn+l_cn> Z Cmgmﬂ fOr n>1
m=n

Proof. Let {a,} be a maximal chain sequence. By Theorem 3 a
sequence {c,,} exists. Let g, be a unique parameter sequence for {a,,}. Set

g,=%(1—4,). Analyzing the second part of the proof of Theorem 3 we get

Cn+l_cn: z Cm‘o‘mzcnén—l’ I’l>1

Since ¢, =1 and J,, is uniquely determined by g, we conclude that ¢, is also
uniquely determined.

Assume {a,} is not maximal. By [7] it has two different parameter
sequences. Hence there exist {g,} and {/,} such that

an:gn(l_gnfl):hn(l_hnfl)s n}l,

and g, <h,. Define ¢, and d,, by ¢;,=d,=1and ¢,,,=2(1—g,,_,) ¢, and
d,,1=2(1—h,_,)d,. This leads to two different sequences satisfying
Theorem 3. ||

DErINITION 1. The Jacobi matrix associated with the sequence {4,}
will be called maximal if |J|| <1 and for each Jacobi matrix J' associated
with the sequence {1,} # {4,} such that |4,|<|Z,| we have ||J'| > 1.
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In view of Proposition 1 J is a maximal Jacobi matrix if and only if {12}
is a maximal parameter sequence. By [7] a sequence {a,} is a maximal
chain sequence if and only if the continued fraction

L|_01| a,|  as|

i

tends to 0.

Favard’s Theorem states that for each Jacobi matrix of the form (2)
there exists a probability measure x symmetric about the origin,
suppu<=[ —|JI, |/]], such that it is the orthogonality measure for the
polynomials p, given recursively by (1).

The next theorem collects facts that can be deduced from [7] and
[1, Theorem 1]. Our setting is a bit different, so we provide a short inde-
pendent proof.

THEOREM 5. Let J be a Jacobi matrix associated with the sequence {1.,}.
Assume that ||J|| <1 and that p is the associated orthogonality measure. The
following conditions are equivalent.

(1) J is a maximal Jacobi matrix.
(il) X7 ma,= +00, where m,=[*_ x" du(x).

(ii1) The continued fraction

AL BL AL
| I}

tends to 0.

Proof. Assume J is not maximal. In view of Proposition 1 the sequence
a, =72 is not a maximal chain sequence. Then there exists a chain sequence
{b,} such that a,<b, and {a,} #{b,}. Let {h,} be a parameter sequence
for {b,} and N be the smallest index such that ay<by=hy(1 —hy_,).
Set gy="hy and define g, recursively by a,=g,(1—g,_,). Then it is
immediate that g,>h, for n< N and g,<h, for n> N. In particular we
have that g, > h,>0.

Let r,(x) be the polynomials defined recursively by

\Y
=

xrn(x):gn—lrn+l(x)+(l_gn—])rn—l(x)ﬂ n
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with initial conditions ry(x)=1,r,(x)=x. Thus r,(1)=1 and r,(—1)=
(—1)" Hence r, ,,(x)—r,(x) is divisible by x?— 1. Consider the polyno-

mials ¢,(x) defined by

_rn+2(x)_rn(x)

= 10
qa(X) 21 (10)
Then by (9) we obtain
an(x):gn+lqn+l(x)+(l_gn—l)qn—l(x)’ n>15
and qo(x) =g, ', ¢:1(x) =(gog1) ~'x. Set
£182 " 8xn
Pax)=g / gu(x). (11)
NI —g)(l—g)-(1—g, )

Then the polynomials p,, satisfy

xpn(x): gn+l(1_gn)pn+l(x)+ gn(l_gnfl)pnfl(x)a n>1’
(12)

with py(x)=1 and p,(x) =c¢~'x, where ¢=./g,(1 — g,). Then taking into
account A>2=a, =g, (1 —g,_,) implies

xpn(x):}“n+1pn+l(x)+/lnpn(x)» n>1a (13)

with po(x)=1 and p,(x) =41, 'x. Let v be a probability measure associated
with the polynomials r,, which exists by Favard’s Theorem. Recall that by
(13) u is the orthogonality measure for the p,s and it is supported in
[—1,1]. By (10) and (11) the measures v and u are related by

du(x)=c (1 —x?) dv(x),

where ¢=[' | (1 —x?) dv(x). Thus

o0

Y mz,7=j1 d”(x)z< + oo, (14)

n=0 -1 l_x

This completes the proof of (ii) = ().
Assume Y, m,, < +co. By (14) the measure

d o0
1 dulx) where ¢= ) m,,,

n=0
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has total mass equal to 1 and its support is contained in [ —1, 1]. Hence
the zeros of the corresponding orthogonal polynomials belong to (—1, 1).
Let r, be these polynomials normalized at x =1, i.e., r,(1)=1. There exists
a sequence {g,}_, such that g,>0 and

xrn(x):gnflrnJrl(x)_l—(l_gnfl)rnfl(x)v n>la

where ro(x)=1 and r,(x)=x. Define the polynomials ¢, and p, by (10)
and (11), respectively. Then by the relation between x and v the polyno-
mials p, are orthonormal relative to . Hence combining (12) and (13)
gives

)"}212 gn(l - gnfl)'

Since g,> 0 the sequence {4} is not a maximal chain sequence, which in
turn implies that J is not a maximal Jacobi matrix. This shows (i) = (ii).
The equivalence (ii) <> (iii) follows from the formula

Jl du(x) 1] 23] A3

y=x ly oy ly

-, (15)

(see [3, p. 46]) and the fact that since the measure x4 is symmetric about
x=0

fl du(x) fl du(x)

=X =X

The formula (15) holds for y¢ [ —1, 1]. We get the desired result by taking
the limit when y - 1%, |

5. MAXIMAL PARAMETER SEQUENCES

Wall [7] observed that a chain sequence {a,} is maximal if and only if
it admits a unique parameter sequence. Other chain sequences admit more
parameter sequences. Among them there exists a maximal parameter
sequence (see [7, Theorem 19.2; 2, Theorem II1.5.3]). Wall proved that
maximal parameter sequences are exactly those sequences {g,} for which

- 182 &n
= . 16
LT g)l—gn-(l—g) % (16)

(see [7, (19.10), p. 82; 2, Theorem II1.6.1]). For chain sequences {a,}, with
terms greater than 1 we have the following.
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PROPOSITION 3. Let {a,} be a chain sequence such that a,>% for n>1.
Let {a,} be a parameter sequence and set g, =%(1—30,). Then {g,} is the
maximal parameter sequence if and only if

Y exp<—2 > 6k>=oo.
n=1 k=1

Proof. Observe that

182" 8n (1=06)(1=063)---(1=62)

- . 17
I-g)l-g)-(1—g) (+00 (U407 ~(1t0,7 7

By Lemma 2 we have J,<1/(n+1). Thus
(-0 (1< (18)

Again by using Lemma 2 and the fact that the function x+ e*/(1+x) is
increasing we obtain
e en eon
1<
140,140, 1+9,
exp(l+3+ -+ +1)
S+ (1)

| 1
exp<l++---+n><2. (19)

:n+l 2

Combining (17), (18), and (19) gives the conclusion. |

COROLLARY 4. Using the notation of Proposition 3, if

i 0,< -+

n=1

then the sequence g, =%(1—0,,) is the maximal parameter sequence.
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