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AN ANALYTIC SERIES
OF IRREDUCIBLE REPRESENTATIONS
OF THE FREE GROUP

by Ryszard SZWARC

0. Introduction.

This paper is a natural continuation of [11], where a construc-
tion of an analytic family of uniformly bounded representations of
the free group F on the Hilbert space £2(F) was presented. These
representations are irreducible provided that F has infinitely many
free generators. Here we deal with the case when the free group F
is finitely generated (k-number of free generators).

The theory of representations of Fj involves a deep relationship
between certain aspects of harmonic analysis on the free group and
harmonic analysis on SL(2, R). This analogy has been emphasized in
the papers of P. Cartier [1] and A. Figa-Talamanca, M. A. Picardello
(4], fundamental at present.

In analogy with SL(2,R) a decomposition of the regular repre-
sentation into irreducible ones was obtained due to the invention of
the analogues of the positive definite spherical functions on SL(2, R).
In the paper of R. A. Kunze and E. M. Stein [7] a construction
of an analytic series of the representations of the group SL(2,R)
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parametrized by spherical functions was given. There arises a prob-
lem of finding the theorem for a free group related to the theorem of
Kunze and Stein. We refer to [4] for the classification of all spherical
functions on a free group. In [8] there was constructed a uniformly
bounded Hilbert space representation of a free group with an arbi-
trary spherical function as its matrix coefficient. -

In this paper we are going to construct an analytic series of
uniformly bounded representations H,,ﬂ;-er < |z2| < 1, of the
group Fg, all of them acting on the same Hilbert space, such that

(i) mi(e) = ()",

(i) T, =11, if u = '(-2Li—1)z

(iii) II;(z) — II,+(z) has finite rank for any z,2' and = € Fy,

(iv) II, is an irreducible representation. ’1I‘he representations II,
: : o [ S
and II,/ are equivalent iff z = 2’ or 2/ = @r=1)

v) For z unreal or |z 1 the representation II, cannot
(v) . - || ¢_72_k——T P - s
be made unitary by introducing another equivalent inner product.

For |z] = or z € R the representations II, correspond

1
. 2k - 1- . .
respectively to the principal or the complementary series of the
representations defined in [4], where the irreducibility of these two

series was proved.

Moreover it turns out that the matrix coefficients ¥,(z) =
< II,(z)be,6e > is the collection of all spherical functions defined
in (1] and in [4].

We also consider the norm closed algebra Cp, associated with
the representation II, and we prove that there are nontrivial pro-

jections in Cy;, whenever |z| # 7§=kl-—=1- . That distinguishes this

algebra from C(Fj) the projection-free algebra associated with the
regular representation (cf. [9], [3]).

In Section 1 we include an easy proof (Corollary 2) of J.M.
Cohen’s result which states that the spectrum set of C*-algebra
C1(Fk) consisting of radial functions in C3(Fg) , coincides with the
interval [-2v/2k — 1,2v/2k — 1] .
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1. Basic notations and definitions.

Here we will establish some notation relevant to the free group
which we will need in the exposition. The notation we use appeared in
a number of earlier papers ([5], [6], [11]). Especially important is the
“cutting letter’s” operator P introduced in [11] where a construction
of an analytic family of free group representations was based on this
notion.

Let F be a free group and E a fixed set of its frce generators.
When F is a finite set consisting of k elements then the group which
E generates we denote by Fi. Each element & of F may be uniquely
expressed as a reduced finite word which letters are from the set
E U E~! provided that the letters @ and a~! do not follow each
other. The number of letters of the word « we call the length of
z and we denote by |z|, setting |e] = 0 for the empty word e. If
z # e then let T denote the word obtained from z by deleting its
last letter. For n natural let E,, stand for the set of elements = in Fy,
such that the length |z| equals n. The set E,, is finite and it consists
of 2k(2k — 1)~ words.

On the set K(F) of all complex functions finitely supported in F
we introduce the convolution putting as usual f*g = Z f()g(y)bzy,

z,y
where §, is the characteristic function of the one point set {z} .

We say that a function f on the group F; is radial when its
value f(z) depends only on |z| the length of the word z in Fy. It

is easily seen that each radial function is represented as a series
[e o}

Za,.xn, a, € C, where x, denotes the characteristic function
n=0
of the set E,. The convolution of radial functions (if it exists,

e.g. is absolutely convergent) is commutative and it leads to radial
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functions again. It follows from the recurrence ([2], Theorem 1) :

X1 * X1 = X2 + 2k xo ‘
X1*Xn = Xnt+1 +(2k =1)xp—1 for n=2, 3,....

(1)

For 0 < p < oo set £2(Fy) to be the subspace of radial functions
in £P(Fy).

The process of deleting the last letter £ — T lifts in the natural
way to a linear operator P : K(Fi) — K(Fi) by putting Pé; = éz
if z # e and Pé, = 0 ([11])). The operator P leaves the subspace of
radial functions in K(Fy) invariant for

(2) Pxi1=2kxo, Pxn=(2k—1)xpn-1 for n=2, 3,....

For a € F the symbols A(a) and p(a) will denote the operations
of the left and right translations of the functions of F given by

Ma)f(z) = f(a™"z) and p(a)f(z) = f(za).

2. Spectral properties of the operator P.

The properties of the operator P are crucial in deriving the
properties of the family of the representations =, |z| < 1, introduced
in [11). If the group F has infinitely many free generators then
the operator P is unbounded on *(F), but the representations
constructed are irreducible. The statement is not true when F is
finitely generated. In this case the spectral properties of the operator
P play the most important part. The section below is devoted to
them.

Fix a natural number k. The operator P extends to a bounded
operator on (F}), and also ([11], 1.4, Remark 1)

(3) | P*|) = 2k(2k = 1)*1 for n=1,2,....

Indeed, for f € £2(F;) the value (P"f)(z) is equal to the sum

Z f(zy) of the values of the function f where y runs through the
y
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words of length n such that zy is a reduced word, i.e. |zy| = ||+ |y|-
The set of such y’s has at most 2k(2k — 1)"*~! elements (even less :
(2k — 1)* if « # €). By Schwarz inequality this gives ||P"| <
v/2k(2k — 1)"~1. The operator P" attains its norm on the function
Xn, for P*xn, = 2k(2k — 1)"*"16, and |[|xnllz = 1/2k(2k — 1)"-1.

Reasoning as above we also get

(4) 1Pl < VEE=Tflz if (Pf)(e)=0.

Note that the closed disc {z € C: |2] < v2k — 1} happens
to be the spectrum of the operator P. In fact, by (3) this disc
contains the spectrum of P. On the other hand each point z for
which |z] < v/2k—1 is an eigenvalue of P : the ecigenfunction

o

hy = 2k(2k — 1)716, + Z(2k — 1)™"z"xn belongs to €2(Fy) for
n=1
such z.
The adjoint operator P* acts by “adding” letters. On the
function 6, it is given by P*§, = Z 6.« where a is from the set of the
a

words of length 1 which do not cancel the word z, i.e. |za| = |z| + 1.
As we can treat the action of P on 6, also as adding the letter,
exactly this which cancels the word z, so the sum P + P* is the
right convolution operator with the function x; (the characteristic
function of the set of words of length 1). Write it down as the formula

(8) P+ P* = p(x1)-

We notice that 6§, — Q%P(Xl) is considered as the analogous of
the Laplace operator on Fi. The operator P* (just as P) leaves
the subspace £2(F) of radial functions invariant and in particular
P*xp = Xny1 forn=0,1,... .

The operators P and P* do not commute. Consider their
composition PP*. If z # e then P*6; is a sum of 2k — 1 terms 6,,.
So PP*6, = (2k —1)6,. However P*§, = x1 hence PP*§, = 2ké,. If
T denotes the orthogonal projection onto one-dimensional subspace
Cé., then we have

(6) PP*=(2k—-1I+T.
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Clearly the spectrum of the operator P* also coincides with the

closed disc of radius v/2k — 1.

We have already seen that for |z| < v/2k — 1 the operator 2zI— P
is noninvertible on £2(F;) (for it has nonzero kernel). Theorem 1
will let us know among other things, that in this case the image of
zI — P is nevertheless equal to ¢2(F}). Before that we necd onc more
definition.

For |z|] < 1 let T, denote ([11], p. 10) the bounded invertible
operator on £(Fy) given by

T.=V1-22T+(I-T),

where V1 — 2?2 denotes the main branch of the square root. For
|z] < 1 the correspondence z — T, is analytic. The square of the
operator T, is equal to I — 22T, so it is well defined with no condition

on z.
THEOREM 1. — Let |z| > 757‘%——1- The operator %

(I — 2P)T%(I — zP*) is invertible on ¢*(F;) and commutes with left

translations on Fy. Its inverse is the right side convolution operator

with the function I U_—yul*l, where u = E-ZT%-I—)_; Moreover

M ru-pyrra-ophy= i-(r — uP)T*(I — uP*).

Remark. — Let’s note that none of the operators I — 2P and
I—2zP* is invertible on £2(F}) when |z| > 72-1‘:—-1_—1- So the statement

of the theorem is nontrivial.
The proof of Theorem 1. — For every complex number 2z # 0
® Llu-=PTI-:P)=
WD = plxa), 7(z) = @k =1z + ¢ -
This formula follows immediately from (5), (6) and the fact
that T2 = I — 22T. Next (8) implies that the operator %—(I — zP)

T2(I — zP*) is left translation invariant. Observe that v(z) = v(u)
with u = (—2—1?}_—175 . Combining this with (8) gives the formula (7).
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1

Now if |z| > T}:=1 then |u| < . Therefore the operator

on the right hand side of (7) (denote it by A) is invertible for all

its factors are invertible operators. The right side convolution with

the function A~1§, is the inverse operator for A (because A~ also
o0

commutes with left translations). Finally as (I —uP)™! = E u"P"

n=0

and (I — uP*)™ = 3 u™(P*)" for Ju] < —md—= s0 4715, =
o V2k—1

u T
Sl

G

1l—u
Theorem 1 will be extremely helpful in Section 3. Here only the
simplest corollaries will be derived.

CoroLLARY 1. — The operator I — zP is a surjection if and
only if |z 1 . Mor if |2| = ———— then I — zP is an
. .y ] I?éﬁ orcover if |z| oTee e s
injection.

Proof. — Theorem 1 implies that if |z| # 72—71:7 then the

operator I — zP is a surjection. Observe that -21,- belongs to the
spectrum of P if |z| = 7-2—k1=i=1- . Therefore it suffices to show that
I — zP is an injection in this case. Assume f € Ker(I — zP), then
f =2Pf. Forn =0,1,2,... let f, = fxn . Thus f,, = 2Pfpy1 -
By (4) fall: < V3= Tzl [fasillz = [fatalls for n = 1,2,... .
Since 3 |Ifall3 = |IflI2 < +o0, hence fi = f; = -+ = 0. Morcover
f0=”Pf1=0,SOf=0.

Theorem 1 combined with Corollary 1 imply that the operator
1 B o e ey s . 1
=(I — 2P)T;(I — zP ertible if and only if |2 .
( )T( ) is invertible if an y H#ﬁ
Then by (8) the complex number « is in the spectrum of the operator
p(x1) exactly when it is of the form a = 7(z) for some z € C with

|z] = Wkl==1 ,i.e. a belongs to the interval [-2v/2k — 1, 2v/2k — 1].

Moreover in this case in view of (8), Corollary 1 and the fact that
I — zP* is a bijection for every z, the operator al — p()x;) is one-to-
one. In this way we have proved the following :

CoroLLARY 2 ([2], Theorem 4). — The spectrum of the operator
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p(x1) (the right side convolution operator with the function x;) on
£2(Fy) coincides with the interval [-2v/2k — 1, 2v/2k — 1]. Moreover
p(x1) has no eigenvectors in 2(Fy).

3. The representations 7, and their decomposition
into the direct sum.

This section is devoted to study the properties of the family of
representations 7., introduced in [11], in the case when the free group
has finitely many free generators. For a reader’s convenient we recall
the definition of the family =, and the main theorem concerning it.

For any complex number z the operator I — zP is invertible
on the set K(F) of functions with finite support in F, for the series
[o o]

Z 2" P" f has only finitely many nonzero terms. Generally speaking
n=0
the rcpresentation 7, is obtained by the conjugation of the regular

representation A with the operator (I —2P)T,. For z, |z| <1,z € F
and f € K(F) set

) (@) = TN (I - 2P)""Aa)(I — 2P)T. f .

In [11] was shown that 7, extends to a uniformly bounded represen-
tation of the group F on the whole space £2(F).

THEOREM 2 ([11], Theorem 1). — Let F be a free group
on arbitrary many generators. The representations 7,, 2 € D =
{z € C: |z| < 1}, form an analytic family of uniformly bounded
representations of F on the Hilbert space €*(F). Moreover

Q) Im(@l < 24=E1,

(i) 73(a) = m(a)”",
(iii) 7,(a) — A(a) has finite rank,
(iv) < 7 ()6, , 6 >= 2171,

(v) The representations w, are cyclic with 6. as the cyclic
vector,
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(vi) If the group F has infinitely many generators, then any
representation m, z # 0, has no nontrivial closed invariant subspace.
Any two diffecrent ,’s are topologically inequivalent.

The question arises whether the representations 7, are irre-
ducible if the group F has finitely many generators. It is not true

when |z| < , because then the representation 7, is equiv-

1
Vak -1
alent to the regular representation. This is due to the fact that the
spectrum of P is the disc |2] £ +/2k — 1. The conjecture that it is
not true for all other z comes from the fact that n, weakly contains
the regular representation. The aim of this section is to show that

for z with < |2| < 1 the regular representation can be split

1
V2k = 1 o :
off the representation 7, as its direct component. In the ensuing sec-

tions only the complementary component of the representation w,
will be of interest.

Since now we use the notation : u = (2_L£_T); for z # 0 and
Yz)=(2k-1)z+ %— .

For z € C, 72-,%7 < |z] < 1 define the operators U, and R,
by .

U, = \/ET,“‘(I —uP)™Y(I - zP)T,
2
R, =1-UU,.

(10)

The square root \/Z—’- is defined as \/LI = v/2k — lu. The fundamen-

tal properties of operators U, and R, are listed below.

ProPOSITION 1. — Let 75=th=1- < |z| < 1. Then
(i) U,Ur=1,
(i1) R, is a projection and R} = Rz,
(iii) U,m,(z) = mu(x)U; and 7, (z)UF = Uimu(z) ,
(iv) Ker U, = Ker (I — 2P)T; and ImU} = ImT,(I — zP*).
(v) Rymy(z) = 7.(z)R,.



96 R. SZWARC

Proof. — Point (i) is the simple consequence of (7). Next (i)
yields (ii). The first equality of (iii) follows from (9), then the second
one is obtained by conjugation and by Theorem 2 (ii). Point (iv)
holds for both I —uP and I —uP* are invertible. Finally (iii) implies

(v)-

THEOREM 3. — Assume WI}-—E < |z| < 1. The subspace

ImT,(I — 2P*) is a closed subspace of £2(Fy) and Ker (I — zP)T,
is a complementary subspace not necessarily orthogonal i.e.
2(Fi) = ImT,(I — 2P*) ® Ker(I — zP)T,. Both the subspaces are
invariant for the representations ©,, so w, decomposes into the direct
sum of two subrepresentations.

The proof of Theorem 3 is derived from Proposition 1 and the
following simple lemma which we state without proof.

LeEMMA 1. — Let A and B be bounded linear operators on a
Hilbert space H such that their product AB is an invertible operator.
Then :

(i) The subspace ImB is closed and the space‘ 'H decomposes
into the direct sum of the subspaces ImB and Ker A.

(ii) The operator B(AB)~'A is a projection (not always or-
thogonal) onto the space ImB along Ker A.

(11i) A linear operator C' on the space H preserves both of
the subspaces ImB and Ker A iff C commutes with the projection
B(AB) ' A.

Proof of Theorem 3. — By Proposition 1 (i) the operators
A = U, and B = UZ satisfy the hypotheses of Lemma 1. So the
first part of the theorem follows from Lemma 1 (i) and Proposition
1 (iv). Next Proposition 1 (iii), (iv) gives the invariance of these two
subspaces.

Remark 1. — Theorem 2 implies that both subrepresentations
Tz |Ker(—zP)T, and 7. |tmT,(1-:p+) are uniformly bounded by

.2
2% . When z is a real number the decomposition of the space

£?(F4) is orthogonal and both subrepresentations are unitary.
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Remark 2. — In view of Lemma 1 and Proposition 1 the opera-
tor R, 1is the projection onto Ker(I — 2zP)T, along
Im T,(I — zP*) which commutes with the action of the represen-
tation 7,. Applying Theorem 1 gives the explicit formula

k - 2
(11) R, =1- (21—121th([_ zP*)p(u*I\(I - zP)T., .
—u
Remark 3. — As §, is a cyclic vector for the representation 7,

so R,é. is a cyclic vector for the representation m, restricted to the
invariant subspace Ker(I — z2P)T,.

Remark 4. — Now we can explain why in Section 1 we separated
the subspace £%(Fy) of radial functions in £2(F). This subspace is
invariant for the collection of the operators P, P*, T,, A(x1) thus also
for w,(x1) and the projection R,. All just listed operators preserve
also the orthogonal complement (¢2)% to the subspace ¢2(Fy).

THEOREM 4. — Assume 721:—1 < |z| < 1. Then the repre-

sentation obtained by the restriction of the representation 7, to the
subspace Im T,(I — zP*) is equivalent to the regular representation

A

Proof. — Proposition 1 (i), (iv) implies that the operator Uz
maps (2(F) onto Im T,(I — zP*) isomorphically. Furthermore by
Proposition 1 (iii) Uz intertwines the representation m, | Im T, (I —
zP*) and the representation m,, the latter being equivalent to the

regular representation for |u| < 72k1—T .

As we mentioned earlier from now on we will discuss only the
second subrepresentation which occured in the decomposition in
Theorem 3, namely the representation 7, |ger(r—zp)1,. In Section
4 we will show that this representation is irreducible. We will prove
also that for nonreal z it cannot be made unitary.

To simplify the notation : H, is the subspace Ker(I — 2P)T,
and 7/, is the subrepresentation 7, restricted to H..
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4. Irreducibility of the representations .

In order to prove the irreducibility of n), we show that the
orthogonal projection onto the cyclic vector of 7, belongs to the
norm closed algebra of operators generated by 7. Remind that M.
Pimsner and D. Voiculescu ([9]) proved, solving an old problem
of Kadison, that C}(F) the algebra associated with the regular
representation contains no nontrivial projections. This fact extends
to representations weakly contained in the regular representation.
The existence of nontrivial projections clearly distinguishes the
behaviour of 7/ from the behaviour of the regular representation.

The projection will be constructed from the operator «,(x;) by
analytic functional calculus. So first we have to indicate the spectrum

of m;(x1)-

LEMMA 2. — Let 72-1:1—-1- < |z| < 1. The function f,

(12) f.=6 +2}’__—_1‘/1 ﬂiu" u___l____
fT 0T ok g Xno %= k1),

n=1

is the unique, up to the constant multiple, radial function in H, =
Ker(I — zP)T;.
Remark. — Since the function R,é, lies in H, and is radial

(cf. Remarks 2, 4 following Theorem 3) hence R, = ¢, f, for some
constant c,. It means that f; is a cyclic vector for 7.

LEMMA 3. — Let 75—}3—-? < |z| < 1. The function f, is an

eigenfunction of the operator m;(x,) corresponding to the eigenvalue
y(z) = (2k - 1)z + L.
Proof. — Theorem 3 and Remark 4 following it implies that
72(x1)f: is a radial function which lies in H,. Now applying Lemma
2 gives m,(x1)f: = af, for some complex number a. In order to
determine « it remains to evaluate m,(x1)f, on a point z in Fy,
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e.g. on e. Taking into account the identities 7}(z) = 7z 1) and
7,(z)be = 26, + V1 — 226, for |z| = 1 (compare [11], p. 12, (5)) we
have

a =< 7'rz(Xl)fza6c >=< fzvﬂ-?(XI)&C >=
< £1,2K%6, + V1 — Pxa >= (2k — D)z + 1.
V4

Let’s define an operator @ which acts similarly to P but on the
left side, i.e. if z1z2... 2, is a reduced word then put Qéz,z,...z, =
0z,...2, and @b, = 0. The operator @) has the same spectral properties
as P and its adjoint operator @* acts like P* but on the left side. In
particular certain versions of results of Section 2 remain valid with
@ instead of P. Analogously the formulas (5), (6), (7) and (8) are
interchanged by

(13) Q@+Q"=Xx),
(1)  QQ*=2k-1I+T,

(15)  SUI-:@THI-:Q") = =(I - w@)TH(I - vQ"),
(16) (- 2@)THI - 2@") = 7() = Ax0)-

The operators P and @) commute. P and Q* do not commute however
their commutator is finite dimensional, namely

(17) [P,Q*] = (2k)T — J, where Jf = > f(z71)é..

lz|=1

LEMMA 4. — Let |z| < 1. On the subspace (£2)* the operator
m:(x1) Is expressed as

(18) m(x1)=Q+ Q" —=zJ.

Proof. — If f € (£2)% then f(e) = 0 and so T.f = f. Thus
by (13) m.(x1) = (I = 2P)™(Q + Q*)(I — zP) on (£)L. Since P
and Q commute hence (I — zP)~'Q(I — zP) = Q. On the other
hand (I — zP)"1Q*(I — 2P) = Q* + z({ — 2P)"![P,Q*] thus by
1) (I -2P)'Q*(I - 2P) = Q*—2(I —2P)"'J. As P =0 on
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(¢2)t so (I — zP)™1J = J. Collecting all above yields the desired
m.(x1)=Q+ Q" — zJ.

THEOREM 5. — Let \/—ET—lsT < |z| < 1. The spectrum of the

operator 7,(x1) consists of the interval g—2\/2k —1, 2/2k — 1] and
the simple eigenvalue y(z) = (2k—1)z+
of m,(x1)-

Proof. — In virtue of Theorem 4 the spectrum of 7,(x;) on
the subspace Im T,(I — zP*) coincides with the spectrum of A(x1)
on ¢2(Fy). Therefore by Lemma 3 and by J.M. Cohen’s theorem (cf.
Corollary 2, Section 2) the set mentioned in the theorem is contained
in the spectrum of m,(x1).

= -7(2) is the only eigenvalue

In order to prove the containment in opposite direction we
decompose £%(Fy) into the direct sum of three subspaces invariant
under 7,(x1), and then we examine the spectrum of 7,(x1) on
each of them separately. Namely (F;) = Cf, @ (€2)* ® M where
M = £nIm T,(I - zP*). By Theorem 4 the spectrum of 7,(x1) on
M is contained in [—2v/2k — 1,2v/2k — 1]. Moreover by Corollary 2
7z(x1) has no eigenvectors in M. In view of lemma 3 it remains to
consider m,(x1) restricted to (£2)*. We claim that the spectrum of
7.(x1) on (€2)1 lies in [-2v/2k — 1,22k — 1], too.

Every complex number a is of the form a = ~(z'), where

|2'] < T}:-—i- Then by (13), (16) and (18) there holds

il

() - (Q+ Q") +2J
as) = S -2QI - Q")+ 2]

al —m.(x1)

;17(1 — QYT+ 22 T = 2 Q%)

on (£2)L. In calculation above we used also the formulas QJ =
J@Q* =0 valid on (2)1. If « is outside [-2v/2k — 1,2v/2k — 1] then
|2'] < 727%‘7 and the operators I —2z'Q and I —2'Q* are invertible.

I+ 22'7J is also invertible for |zz/| < |z] < 1 and J is a contraction.
This implies that ol —7.(x1) is invertible on (£2)* and consequently

the spectrum of 7;(x1) is contained in the interval mentioned above.
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If & belongs to [—2v/2k — 1,2v/2k — 1] then |2| = —beee. I
| a belongs o[ V% V- ] then |2| Ty n
this case by Corollary 3 (applied to Q) all the factors representing
al — w;(x1) in (19) are injections (I + zz'J remains invertible). It
means 7, (x1) has no eigenvectors in (£2). This completes the proof.

Remark 1. — Collecting results of the preceeding proof gives
that the whole space £2(F}) decomposes into the dircct sum of two
subspaces invariant under w;(x1) : the one-dimensional subspace
spanncd by the eigenvector f, and the subspace (2)* @ (€2 N ImT,
(I — zP*)). The spectrum of 7,(x1) on the second space coincides
with [-2v2k — 1, 2v/2k — 1.

Remark 2. — Theorem 5 yiclds that the spectrum of 7% (x1) is
contained in [—2v/2k — 1,22k — 1] U {y(2)} and 4(z) is a unique
and simple eigenvalue of #,(x;). Actually the spectrum of 7! (x;)
contains entire interval. To see this it suffices (cf. (19)) to check

that the image of I — 2'Q,|2'| = 7213=—1 does not contain H, =
Ker(I — zP)T,.

THEOREM 6. — Let Fkl.—=1. < |z| < 1. The subspace H, =

Ker(I — z2P)T, contains no nontrivial closed invariant subspace
of the representation w,. It means the representation n!, obtained
by the restriction of w, to the subspace H, is irreducible. The
representations 7!, are mutally inequivalent.

Proof. — Let C be the circle centered at v(z) with radius so
small that the interval [-2v/2k — 1,2v/2k — 1] lies outside C. Define
the operator A on H, by

1 et
A= /C (¢ = 7 (xa)) M.

By Remark 1 the operator A is the projection onto Cf, along
(¢2)L NH,. Actually A is an orthogonal projection for f, is orthog-
onal to (£2)1. So the projection onto the cyclic vector of m) (cf.
Remark following Lemma 2) belongs to C'r: the norm closed algebra
generated by 7., Now we may argue in a routine way. Let M be a
nonzero closed subspace of H, invariant under 7.,. Then AM C M
and there are two cases to consider : AM = Cf, or AM = 0.
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The first case implies M = H, for f, is a cyclic vector of ). The
second case implies M = 0. Indeed, observe that Ag = g(e)f, for
g € H,. So if AM =0 then g(e) = 0 for each g € M. It means that
0 =< m,(2)g,6e >=< g,7z(z~1)8, > for each ¢ € M and z € F;.
Taking into account that &, is a cyclic vector of w7 gives g = 0.

As regards to inequivalence if z # 2’ then the spectrum of
m,(x1) does not coincide with =,(x1) for v(z) # v(z'). Therefore
the representations #, and 7}, cannot be equivalent.

PROPOSITION 2. — Assume ;T,:-T < |zl <1andz ¢ R

Then the representation w', as well as w,, cannot be equivalent to
any unitary representation.

Proof. — The point is that the spectrum of the operator «,(x1)
is unreal, while the function x; is hermitian.

Remark. — Since Cy: contains the orthogonal projection onto
the cyclic vector of #, hence it contains all compact operators.

5. An analytic series of irreducible representations.

In this section we are going to show that the representations

!
z)

7271=T < |2} < 1, can be settled on a common Hilbert space,
on which they form an analytic family of representations. Concerning
the related group SL(2,R) its irreducible representations of the
principal series together with its analytic continuation, work on a
common Hilbert space (see [7]). So it is reasonable to expect that

the theorem like this would hold in the case of free group.

One may proceed in the following manner : to fix a number z,
and to try to map all subspaces H, onto H,,. However no one of
z with ﬁkl=——T < |2| < 1 does not distinguish from others in a
natural way. Let us observe that the nonradial parts (i.e. the parts
orthogonal to £2) of H, = Ker(I — 2P)T, and Ker(I — zP) are equal

(the radial parts of these subspaces are one-dimensional, cf. Lemma
2). So instead of H, consider the subspaces Ker(I — zP), now with
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lz| > 72Tl:T Next since Ker(I — zP) = Ker(P — %I) hence if we
let z tend to infinity we will ”get” Ier P. This is the space on which

we are going to settle the representations .

Denote Hoo = KerP. Observe that 6, is the only radial function
in Heo. We will transform the subspaces H, onto He,. We will do
that separately for the radial and nonradial parts of H, and H.
Fortunately there are no difficulties with the radial parts for these
are one-dimensional.

If M C €%(Fi) then M® will denote the nonradial part of M,
ie. M® = Mn ().

PRroOPOSITION 3. — Let |z| > 1

—yP*)-1
T The operator (I —uP*)
maps H2, onto HY isomorphically, where u = =1 1 Ve

Proof. — The statement follows immediately from the formulas

1

P(I—-uP*)=—~(I-2zP
0 (- uP*)= -2~ 2P)
(I - zP)(I —uP*)™ ' = —2P
valid on (£2)1. As regards to the first equality :

P(I —uP*) =P —uPP* =P — (2k — 1)ul
=P - -1-I= —l(I— zP).
2 z

Now the second equality follows from the first one.

. 1
LEMMA 4. — Let |z| > TR Then

Z—Uu

(21) R,(I — uP*) =

R,

Z—U

(22) R,(I — uP)(I—uP*)R, = R,

on the subspace (£2)*.

Proof. — F'irst let us note that in all the formulas we may omit
the operator T, for T, f = f whenever f € (2)*. Then by Remark
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2 following Theorem 3 R,(I — zP*) =0 and so R,P* = %R,. This
implies (21). Next using (20) and (I — 2P)R, = 0 gives

R.(I —uP)(I —uP*)R, = R,(I — uP*)R, — uR,P(I — uP*)R, =
Z-UR, LRI - zP)R, = £ZUR,.

- =z

Z—U
z

ProprosIiTION 4. — Let |2| > EL=1 Then R, =

(I —uP*)~! on HZ,. The operator
isomorphically. If z is real then this mapping is an isometry.

Proof. — (21) implies R,(I — uP*) = £ = LT on HY. Then by
Proposition 3

z o Rz maps H2, onto H?

z —

~ o
<~

u
0
- IonHg.

(23) (I -uP")R, =

The above means R, = £ < L(I—uP*)~! on HZ,. So by Proposition
3 the operator ,/ Z Z uRz maps H2, onto H? isomorphically.

Let f, g € (£2)1. Then by (22)

< (I —uP*)R,f,(I —GP*)Rsg > =< Ro(I — uP)(I - uP*)R.f,q >
= =z <sz7R?g> .

z

Assume f, g € H%,. Then by (23)

(z—;u>2 < fig>= z:u <R,f,Rzg>.

This gives the last part of Proposition 4.
For 1 < |z| < 1 define the operator V, : Hoo — H, b
Yy |2] I o y
the rule

z

V.f =

R, f if f € M,

Z—Uu

/ 2k —1
(24) V.iée = cu —z—chSc, where ¢, = 1 —u2,
Z—U 2k
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The constant ¢, is chosen to satisfy < V.6, V56, >= 1.

THEOREM 7. — Let Tkl:i < |z] < 1. The operator V, maps

the space Hy, onto the space H, isomorphically. If z is real V, is an
isometry. Moreover

(25) <V.f,Vzg>=<f,9>, f, 9 € Heo.

Proof. — Except (25) the theorem follows from Proposition 4
and from (24). By Proposition 2 and the remark following (24) the
formula (25) holds for real z. Then by the analycity of the function
z =< V. f, Vzg > this formula extends on other z.

With the aid of the isomorphisms V, we can move the represen-
tations 7, to the space Hqo, this way obtaining the representations
V,;1x',(z)V,. In order to find an explicit formula for the action of the
representations on the new space we look at the matrix coefficients.

Let f, g € H%,. Combining (25), (24), Proposition 1 and (10)
gives

<V inl(2)V.f, g >=< w (x)V.f, Vzg >

== < 7 (2)R. f, Rzg >= =< < R.m.(z)f, 9 >
z—u z—u

== <m(x)f,9> L < UzU,x.(z)f,9 >
z—u z—u

== < 7. (z)f,9 > L mu(2)U. f,Uzg > .
Z2—U Z2—1Uu

Since U, f = \/gf and Uzg = %”-g, if f, g € H2,, hence
(26) < VIm(@WVef,g >= —— < [emu(@) —umu(@)lf g >
z—u

In the same way we derive the remaining formulas

<V 1zl (2)V,b.,9 >=
Vels) [ 2 ) - — (s
z—u <[~/1—z2 (=) V1—u? o )]

be, g >
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(27)
<V 7 (2)V,6e, 6. >=

chle < [1 _Zzz m(z) —

u
1—u?

Wu(x)] be,be >

for g € H2,, where ¢(z) = 2—kf_ﬁ'—l(l - z2)(1 - u?).

THEOREM 8. — Let Fix be a free group on k generators.
There exists an analytic series of uniformly bounded representations
H"_Fl_——l < |z| < 1, of the group F) on the Hilbert space
Hoo = Ker P, such that

(1) vaﬁ < |z] < 1 then II, is equivalent to .
(ii) Hz = Hu, where u = (Z_k—l—i-);
(iii) II%(z) = Ozx(z)" L.

(iv) I,(z) — I,/(z) has finite rank.

(v) Any representation II, is irreducible. The representations
. . o ' 1
II, and I,/ are equivalent iff z = 2’ or 2’ = GF=1)z"

vi) II, is a unitary representation if |z| = 1 or z is real.
(vi) IL y rep sl = 75—
In other case the representation Il; cannot be made unitary.

Proof. — By (26) and (27) the family V, 1! (z)V;, —513?{ <

|z] < 1, extends to the analytic family II., ﬁ < |2 < 1,
satysfying (i) and (ii). Theorem 2 (iii) and (26) imply (iv). Next
for real z the representation II; is unitary for in that case 7 is a
unitary representation and V; is an isometry. Then (iii) holds for real
z, therefore by analyticity it remains valid for other z. Consider (vi) :
by (iii) if z is real then II, is a unitary representation. Furthermore

if [z] = Fklj then u = Z. Hence by (ii) and (iii)
M¥(z) = Oxz) ™! = M(2)™! =, (z)" 2.

It means I, is a unitary representation. Observe that by Lemma
3 and by (24) é. is an eigenvector of II;(xx1) corresponding to the
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eigenvalue '7{,2). But v(z) is a real number if and only if 2z is real
or |z| = =T In other cases II;(x;) is nonselfadjoint hence II,

cannot be equivalent to any unitary representation.

It remains to show (v). In view of (i) and (ii) we have to discuss
the case |z| = W/%:T only. The following lemma is a key one.

LEMMA 5. — Let |z| = :Fkl:? Then 6, is the only eigenvector
of the operator II;(x1). So v(z) is the unique eigenvalue of I1,(x1).

Proof. — Suppose II,(x1)f = Af, f € He. We may assume
that f is orthogonal to &, i.e. f € H2,. Then by (27)

0 =< [AI - IL,(x1)]f, 9 >=< [/\I - zms(u) = mru(Xl)]f,g >

zZ—U

zm (x1) — umy .
for cach g € HZ,. It means [/\I - (Mz — (Xl)]f = P*h for
some h € (£2)1. We may write A as A = y(z'), with [2'| < \—/§1=:T

Next using Lemma 4 and repeating the transformations as in (19)
leads to

(28) ;1—,(I - 2ZQ +2'(z +u)J)I - 2'Q*)f = P*h.

Applying the operator P to both sides of (28) and using the identities
PJ=QJ =0, Q*P— PQ* =J and PP* = (2k —1)I gives

(29) Jf=(2k-1)h.

It means h is supported by the words of length 1. This implies
Q*P*h = 0 for h € (2)1, so P*h = (I - 2'Q)(I + 2'Q)P*h. As
I—-2'Q is a bijection (cf. Proposition 1) so the latter and (28) imply

-j—,[I + 2 (z+u)JJ(I-2'Q*)f =T +2'Q)P*h = P*h — 2'Jh.

Next applying J to the above identity and using JP* = J@Q* = 0
yields

1
;Jf +(z4+u)J?f=—2"Jh = =2'h.
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-1
By (29) the above gives Jh = —lgyz—(z)—lh. As J? = J so the spectrum
of J consists of —1, 0 and 1. The assumption h # 0 would imply
¥(2'71) = +4(z). However it cannot hold for |2/} > V2k -1 > 1
and ﬂ-lj—l- < |z| < 1. Thercfore h = 0 and by (28)

(I-2QU+7'(z+u)J)(I-2'Q")f =0.

As (cf. the proof of Theorem 5) the factors [ — 2'Q, I — 2'Q* and
I+ Z'(z + u)J are injections for |2'| < \/T_—l and |z'(z +u)| < 1,
so f = 0. This completes the proof of Lemma 5.

Return to the proof of Theorem 8(v). First we show that 6. is
a cyclic vector of II,. Assume < II;(z)é., f >= 0 for each z in Fy
and some f in Heo. Then f € HY, for < &, f >= 0. We are going
to show that f(z) = 0 for each z, by induction on the length |z|.
Suppose f(x) =0 for |z| < n. Let |z] = n, then by (27)

z u
< | —=——=m(2) - ———=mu(2)|be, f >=0.
[ =) - —=m(e)]
|z|—1
Applying 7,(z)6, = 21%16, + /1 = 22 Z z"P"6, yields < 6, f >=
n=0

0 (cf. [11], (5)). Hence f = 0 and &, is a cyclic vector.

By Lemma 5 the orthogonal projection T onto §, belongs to the
von Neumann algebra generated by II,. Indeed, if E) denotes the
spectral resolution of the identity corresponding to the sclfadjoint
opcrator II;(x1) and ¢ = ~(z) then by thecorem of Lorch T =

1irn+(E'c —E._.). Now repeating the routine arguments (cf. the proof
e—0

of Theorem 5) implies II, is irreducible.

The inequivalence follows from Theorem 5 and Lemma 5 for
¥(z) = (") if and only if z = 2' or 2' = (_2—1»_1—1)_3' This completes
the proof of Theorem 8.

Remark. — Define the function 9,(z) =< ()b, 6. >, = €
F, -2—1;1__—1 < |z| < 1. By (27) and by Theorem 2 (iv) %, is a radial
function. Moreover the property II;(x1)é. = ¥(z)6, implies

X1 * s = A2)p: .
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So 1 is a spherical function in the sense of Cartier [1] (cf. also [4]).
By (27) we can derive an explicit formula

[2(1 —u?) py_ u(l - zz)ulzl] ,

Z—Uu Z2—U

pa(a) = 2

If 2 is a real number or |z| = WkL:T then 1, is positive definite
and it determines the representation II, up to the equivalence.

In [4] the classification of all spherical functions is presented.
They are denoted by ., where z belongs2to the rectangle S =
{c+iy : 0 <z <1, 0L y< Tog(2k = 1)} Consider the
analytic mapping h(z) = (2k — 1)~% on S. The function h(z) is
single-valued and maps the rectangle S onto the annulus =T <
|z] < 1. In particular the segment [0,1] is mapped onto the segment

[ﬂ;l_—, 1], the segment {z :0<z<1l, y= log(2k )} — onto
[—1, —2-11;1:——1-], the vertical segment {z €ES:z= E} — onto the

inner circle § 2 : |z| = 1 . It is easy to see that in the notation
V2k -1

we apply we have ¢, = ¥,(;), z € S. In the papers [4], [§] for an
arbitrary z € S the construction of a representation with the matrix
coefficient equal to ¢, is given. It is shown there ([4]) that for real
zorz=g+ 1y the representation constructed are irreducible. Since
they have equal associate positive definite functions, it turns out that
our irreducible unitary representations II, are unitary equivalent to
the principal and complementary series in [4] and [8].

Added in proof. After submission of the manuscript A. M.
Mantero, T. Pytlik and A. Zappa proved that the family II, of
the present paper is isomorphic to the family of uniformly bounded
representations of [8]. This was announced during Conference on
Harmonic Analysis in Karpacz (Poland) in January 1987.
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