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ABSTRACT. Symmetric Jacobi matrices on one sided homogeneous trees
are studied. Essential selfadjointness of these matrices turns out to de-
pend on the structure of the tree. If a tree has one end and infinitely
many origin points the matrix is always essentially selfadjoint indepen-
dently of the growth of its coefficients. In case a tree has one origin
and infinitely many ends, the essential selfadjointness is equivalent to
that of an ordinary Jacobi matrix obtained by the restriction to the so
called radial functions. For nonselfadjoint matrices the defect spaces are
described in terms of the Poisson kernel associated with the boundary
of the tree.
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INTRODUCTION

The classical moment problem consists in the following.
Given a sequence of real numbers m,,, find a positive bounded measure
on the half-line [0, 00) or on the whole real line such that

m, = '/:c"du(l’)

form=0,1,2,....

Two main issues are the existence and uniqueness of the measure p. It is
known that such a measure p on the real line exists if and only if the num-
bers m,, form a positive definite sequence. The uniqueness of the measure
1 is closely related to the selfadjointness of some operators. The problem
was intensively investigated starting with the work of Thomas Jan Stieltjes
(1894, [12], the case of the half-line) and Hans Hamburger (1920, 1921, [4],
the case of the real line), through that of Marcel Riesz (1921-23, [8], [9],
[10], a functional analysis approach), Rolf Nevanlinna (1922, [5], a com-
plex function approach) and Marshall H. Stone (1932, [13], Hilbert space
methods), until recent results of Barry Simon (e.g. [11], 1998).
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One of the key concepts that have arisen in the modern investigations is
that of the Jacobi matrix. An infinite matrix ./ is called a Jacobi matrix if

it has a tridiagonal form

Go Ao O O O
X B A 000
0 A B2 A O

=10 0 x g5 - )
0 0 O

where the diagonal entries (3, are real, while the off-diagonal entries \, are
positive. There exists a one-to-one correspondence between positive definite
sequences m, and Jacobi matrices J given by

my, = (e]ndo, 50),

where J is regarded as a symmetric unbounded operator on £2(Np).

Uniqueness of the measure p on the line turns out to be equivalent to es-
sential selfadjointness of J on the subspace of finitely supported sequences
in /2(Ny). Moreover, in the case when the moment problem m,, is inde-
terminate, description of all the solutions p is related to description of all
selfadjoint extensions of .J.

Selfadjointness of an unbounded operator is an important notion on more
general grounds. If a symmetric operator admits a selfadjoint extension, or
even better, is essentially selfadjoint, then the whole machinery of spectral
theory becomes available.

We take up the problem of essential selfadjointness of a Jacobi matrix on
spaces which are natural generalizations of £2(Ny). The linear infinite tree
Ny of nonnegative integers has two obvious extensions. We may consider
a homogeneous tree branching out from each vertex into a fixed number
of edges directed either downwards (the case of a tree I' with one origin)
or upwards (the case of a tree A with one end at infinity). We consider a
Jacobi matrix J as a symmetric operator acting in the space of all square-
summable functions defined on the partially ordered set of vertices of these
trees. The domain of J consists of finitely supported functions. The main
goal of this work is to investigate essential selfadjointness of J. In order
to do this we look at its deficiency space. It is described by a recurrence
relation, whose solutions yield systems of orthogonal polynomials. It turns
out that essential selfadjointness of J depends on the structure of the tree
and, surprisingly, the behavior of .J is completely different in the two cases.

In fact, the main result of Section 2 states that
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The matriz J in the case of the tree A is always essentially selfadjoint
regardless of its entries. Furthermore, J has a pure point spectrum, i.e.
there is an orthonormal basis consisting of eigenvectors for J.

In the case of I, essential selfadjointness of J depends on its projection on
the one-dimensional tree Ny. Namely, we associate to the Jacobi operator J
acting on the tree I' some classical Jacobi matrix J” acting in £2(Ny) which
corresponds to the restriction of J to the functions constant on levels of T'.

The main result of Section 1 is

The operator J is essentially selfadjoint if and only if J" is essentially
selfadjoint.

One should not be misled by the apparent similarity to the classical case.
The picture becomes clearer when we consider the case when J is not es-
sentially selfadjoint. Then its deficiency space is much bigger than in the
case of £2(Ny), when it is just one-dimensional. We give a description of
the nontrivial deficiency space of J on the tree I'. It resembles the theory
of harmonic functions since a Poisson-like kernel shows up there. We prove
that functions in the deficiency space are determined by their boundary
values via the Poisson integral. The spectral decomposition of selfadjoint
extensions of J is given explicitly. In particular, we show that any such
extension has a pure point spectrum.

PRELIMINARIES

Selfadjoint extensions of symmetric operators. Let H be a Hilbert
space with inner product (-,-). Let A be a linear operator with domain
D(A) C 'H which is dense in H. For a symmetric operator A and a fixed
complex number z ¢ R we define the deficiency space of A by

N, = (Im(A— zI))*,

where + denotes the orthogonal complement in H. It is known that the
dimension of N, is constant on each of the half-planes Im z > 0 and Im z < 0.

The two numbers dim N; and dim N_; are called the deficiency indices of
A.

Theorem 0.1. The deficiency space N, is the eigenspace of the operator
A* associated with the eigenvalue z.

Theorem 0.2. A symmetric operator admits a selfadjoint extension if and
only if its deficiency indices are equal.

Theorem 0.3. Let A be a symmetric operator and B be a bounded selfad-
joint operator. Then A and A+ B have the same deficiency indices.
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Theorem 0.4. A symmetric operator is essentially selfadjoint if and only
if its deficiency space is trivial for any z ¢ R. (i.e. its deficiency indices
are zero).

Presented facts can be found in many books, for instance in [6], [7], [14].

Classical Jacobi matrices. A Jacobi matriz J, i.e. a matrix of the form

Go Ao O 0 O
X B A 00
0 A B2 A O

(0.5) J = 0 0 N B3 - ,
0 0 0

where (3, are real and A, are positive, can be regarded as a linear operator
in the Hilbert space £*(Ny) with domain D(J) = 1in{dy, 1, ds, .. .}. Here 6,
is the characteristic function of the point n, and

(06> Jén = )\n—ldn—l + /Bndn + )\nén—i—la n=>0

(we adopt the convention that A\_; =d_; = 0).
There are two sequences p,(x) and ¢,(z) of orthogonal polynomials asso-
ciated with a Jacobi matrix J. They are solutions to the recurrence relation

(07) Z-an = /\n—lan—l + ﬁnan + Anan—I—la nZ 1a

with given initial conditions a¢ and a;. Taking ay = 1 and a; = )\lo(x — o)
gives a,, = pp; while ag = 0 and a; = /\io give a, = q,. It is known that all
roots of these polynomials are real (see e.g. [3]).

The following basic properties of Jacobi matrices can be found, for in-
stance, in [1], [2], [3], [11], [14].

From (0.5) we can see that the operator J is symmetric. In view of The-
orem 0.2 the following theorem implies that J has a selfadjoint extension.

Theorem 0.8. The deficiency indices of the operator J are either (0,0) or
(1,1). In the former case J is essentially selfadjoint. In the latter case a
selfadjoint extension of J is not unique.

Theorem 0.9. (The Hamburger criterion) A Jacobi matriz J is essentially
selfadjoint if and only if at least one of the series > pn(0)? and >~ ¢,(0)? is
divergent.

Theorem 0.10. Let J be a selfadjoint extension of J in the indeterminate
case and E(z) be the resolution of the identity associated with J. Then the
support of the measure

do(x) = d(FE(x)dg, do)
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is a discrete set and coincides with the spectrum of the operator J.

The selfadjointness of J is important in the theory of classical orthogonal
polynomials. The measure which is the solution to the moment problem
my, = (J"0, dg) is unique if and only if the Jacobi matrix J is essentially
selfadjoint.

Jacobi matrices on homogeneous trees. The set Ny of non-negative
integers can be identified with a linear infinite tree with a natural order.

n—1

n+1

Tthere are two natural generalizations of this configuration: from each
vertex there is a fixed number (greater than 1) of edges either pointing
downward (a tree with one origin) or upward (a tree with one end).

1. A JACOBI OPERATOR ON A TREE WITH ONE ORIGIN

For a fixed d € {2,3,4,...} we consider an infinite homogeneous tree
of degree d, i.e. an infinite connected graph with a distinguished vertex
(root) e and a partial order such that each vertex x has d successors x;
(t¢=1,...,d) and one predecessor xy (unless x = e).

For instance, if d = 3, the top levels of the tree look as follows:

]
NN

SAMAANEAA

The set of all vertices of the tree will be denoted by I'y. There is a
natural distance dist(-,-) in I'y counting the number of edges in the unique
path connecting two fixed vertices. The length of a vertex is, by definition,
its distance from the root e, i.e. |z| = dist(z,e).
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The space £?(T'y) of all square-summable functions on Ty, i.e.
Py = {feC: Y [f(@) <o},
xely
is a Hilbert space with the standard inner product
) = Y f(z)g(x)
xel'y

We write ¢, for the characteristic function of the one point set {z}. Let F
denote the space of all functions with finite support:

F = lin{é,: = €Ty}

Let Ao, A1, Ag, . .. be fixed positive numbers and (g, 31, (2, . . . be fixed real
numbers. We consider the Jacobi operator J with domain

D(J) = F C £*(Ty),
which acts as follows
Jbe = Bo-6c + Ao+ (e, + ...+ 0c,)
oy = X100y + Bu0p + Ay (0o +...+02,), n>1,

where n = |z|. We adopt the convention that A\_; = J., = 0. Then the
action of J can be expressed by the latter formula for all n > 0.
It is elementary that J thus defined is a symmetric operator.

(1.1)

Fact 1.2. The deficiency space N,(J) of the operator J on £*(T'y) consists
of all square-summable functions on I'y satisfying

(1.3) 20(z) = Ape10(20) + B (@) + A (v(21) + ... + v(T4))
for all |x| =n and alln > 0.

Proof. A function v € £3(T'y) is orthogonal to Im(.J — zI) if and only if for
each vertex x with |z| = n,

0 = (v, (J=2)0) = (v, \i—10s, + Buls + Ay (Ony + ...+ 0z,) — 26,)
= Ao10(mo) + Bov(@) + A (v(@1) + ..+ o(z4)) — 20(2). O
Remark. Although the domain of J consists of functions with finite sup-

port, note that the formula for J can be actually applied to any function
on I'y. Therefore we can write

N.(J) = {veP(Ty): Ju(z) =z v(z), z € Ty}

1.1. The one-dimensional operator. We call a function on I'y radial if
it is constant on each level of 'y, that is on each set of vertices of fixed
length. We will denote by £%(T'y) the space of all square-summable radial
functions on I'y. Let y,, denote the characteristic function of the nth level.
Note that the normalized functions

. —n/ -
i) = (V) ") = {7

form an orthonormal basis of ¢2(T'y). Obviously,

> 6

|z|=n
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Each vertex of length n — 1 is a predecessor of exactly d vertices of length
n. Therefore

Ixn = d-An1 Xn—1F Bn s Xn + An - Xnt1-

Since x,, = (\/E)n,un, we have
(V)" Jpa = d(Vd)" Nciptnes + (VA) " Bupta + (V)" Nt
The restriction of J to £2(Ty) will be denoted by J". Thus
D(J") = lin{po, pi1, pi2, ...} C £2(Ty)

and
(1.4) iy = Vdo1 - fn1 + By - g + Vg - g1, 1> 0.
In other words, we can identify J” with the matrix

Bo  Vdhe 0 0 0
Vdho B Vdh 0 0
. O \/8/\1 62 \/a/\Q O
(1.5) Jh = 0 0  Vd\, fB5  Vdis

0 0 0 Vds B

This means that J” on £2(Ty) can be regarded as a classical one dimensional
Jacobi operator on £?(Ny). In particular, by Theorem 0.8, its deficiency
space N,(J") is either one-dimensional or trivial.

Fact 1.6. A function v € £2(Ty) belongs to N,(J") if and only if
(1.7) 20(z) = X\po10(20) + B (@) + A (v(z1) + ... + v(z40))
for each n > 0 and for each x with |x| = n. Moreover,
N.(J") € N.(J).
Proof. Let v € £2(Ty) be orthogonal to Im(J" — zI), i.e.
0 = (v,(J" = 2)xn), n > 0.

We calculate

(v, (J" = 2)xn)

=, d A1 Xno1+ B Xn+ An Xns1 — ZXn)

= dA\p_1 Z v(x) + By Z v(x) + Ay Z v(x) — 2 Z v(x).

z|=n—1 |z|=n |z|=n+1 |z|=n
Since v is radial, we obtain
0 = dh\p_1-d" (o) + Bn - dv(x) + Ny - d"o(2)) — 2 - d"v(2).
It follows that 0 = A\,_1v(xo) + Bpv(z) + And - v(z1) — zv(x) for each vertex
x with |z| = n. O

Theorem 1.8. The operator J on (*(Ty) is essentially selfadjoint if and
only if the one-dimensional operator J" on £*(Ny) is essentially selfadjoint.
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Proof. By Theorem 0.4 and Fact 1.6, it suffices to show that if J is not es-
sentially selfadjoint, neither is the matrix J". To this end, assume that there
exists 0 # f € N,(J). We will construct a special function in a deficiency
space. This will allow us to show that J” is not essentially selfadjoint.

Let x be a vertex in the support of f of minimal length, i.e.

fx)#0  and  f(y) =0 for [y| <|z].

Let I, denote the subtree of I'y with root at x (see the figure below).
e

A TR T T T TR N R R R I I IR\ I T I e o 0o o

In the proof we are going to apply an averaging operator F.

Lemma 1.9. The averaging operator

(1.10) Bfw) = 22 > [)

is a selfadjoint projection In (*(Ty).
Proof. For any f,g € F we have

(Ef.g) = Y Ef(w) g(w) = ) (%Zf(w) +9(w)

wel'y k=0 |w|=

=Y S i)

k=0 |w|=k |y|=k
Reversing the order of summation yields

(Ef.g) = ZZ(%Z@)%@)

k=0 |y|=k |lw|=Fk

= > fw)-Eg(w) = (f, Eg),

wely

which proves the symmetry.
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Now, by the Schwarz inequality,

1BAP = Y B = X 3 (¢ Y fw)|

wel'y k=0 |w|=k ly|=Fk

< > e (1)
k=0 lyl=Fk

< d* 1 1f ()]
x o (2w) (Zror)

= > S 1wl = Y lrwl = IR
k=0 |y|=k yely

whence || E|| < 1. Moreover, for f € ¢?(I'y) we obtain the equality ||Ef]| =
/1] O

We denote by f, the restriction of f to the subtree I',. Let k = |z|. The
symbol F, will denote the averaging operator on I',. More precisely, E,(g)
is the mean value of a function g on each level of the subtree I',:

B, 02(T,) — A(T,)

and

(1.11) Eyg(y) = 03" g(0).

tely

[t[=Iy]
By Lemma 1.9, it is obvious that F, is a contraction on £*(T';). Thus the
function FE,(f,) is square-summable and radial on T',. Restricting to T',
and averaging in I', does not change the value at z. Therefore F,(f,) takes
a nonzero value at x. In order to belong to a deficiency space it needs to
satisfy appropriate equations. Since f, as an element of N,(J), satisfies
all the recurrence equations (1.3), its restriction f, satisfies those of them
which are related to the restriction of J to I',. Indeed, at each vertex of
I', different from x the equations and values remain unchanged. Therefore,
only the equation at x can raise doubts. However, at x we have

2fu(@) = 04 Befu(x) + M(falz) + o+ fulza)),

which is consistent with the convention in (1.1) applied to the operator
J with coefficients shifted by k. The corresponding radial operator is ex-
pressed by the matrix

B VA, 0 0 0
Vd, B Vddn 0 0
; 0 Vd\en  Brre Vdo 0
(112)  Jp = 0 0 Vddiys  Brys  Vdigs
0 0 0 Vdh\ss  Bera
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It is immediate that taking the mean value on levels does not affect the
recurrence relation described above. Hence

0 # E.(f.) € N.(J}),

i.e. the matrix J; is not essentially selfadjoint. We add to J; an extra
first column and first row consisting of zeros. We also add an extra first
coordinate with value zero to the vector F,(f,). We thus get one additional
equation in the description of the deficiency space of the new operator (cf.
(1.7)) which is trivially satisfied. Hence, the extended matrix is not essen-
tially selfadjoint either. Therefore, the matrix with exactly k extra zero
columns and rows

000 0
000 0
00

00 J

is not essentially selfadjoint. Next we add to it a symmetric finite-dimensionall
operator of the form

Bo  VdXo 0 0 0
NZ )Y - :
0 Bro1  Vd\i O
0 VA1 0 0
0 .. 0 0 0

Since it is selfadjoint and bounded, the operator J”, by Theorem 0.3, is not
essentially selfadjoint. U
Remark. We have associated with .J in £2(I'y) the radial operator J" acting
in ¢%(T'y), which can be identified with £*(Ny). The two matrices

Bo Ao 0 O Bo Vdho 0 0
J /\0 51 /\1 0 d JT \/E)\() 51 \/E)\l 0
o 0 N\ By . a B 0 Vdi, By
o o . - 0 0 ..

do not have to be essentially selfadjoint at the same time. Let us consider
an example. For d =2 let 8, = A\, + \—1 and By = Ag. Then

Ao Ao
Ao Ao+ A A1
J — )\]_ )\]_ + )\2 )\2

A Aet A

The recurrence relation associated with J (cf. (0.7)) is
Thn = An—lan—l + (>\n + An—l)an + Anan—l—l
= (an—l + an>)\n—1 + (an + an—l—l))\na n > 1.
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In particular, for z = 0 we get

an1(0) = — A;: (an—1(0) + a,,(0)) — an(0).

For the sequence p,(0) (cf. (0.7)) we get ap(0) = po(0) = 1 and a,(0) =
p1(0) = —1. Consequently, by induction p,(0) = (—1)". Hence the se-
ries Y p,(0)? is divergent. By the Hamburger criterion (Theorem 0.9), the

matrix J is essentially selfadjoint.
The corresponding matrix on the tree I'y is of the form (cf. (1.5))

Ao V2N
V2Xo Aot A V2\
Jr = \/5/\1 )\1 + /\2 \/5)\2

V2o Ao+ g

Let A\, = 2" Then \,_; + A\, = 3-2""!. Hence for z = 0 the general
solution to the recurrence relation

V2 a1 +3 a, +2V2- a0 =0,  n>1,
is
1 \» .
a, = (ﬁ> (cl-cosnﬁ—l—cQ-smn@).

Thus the series

1

Z lan? < (lerf” + Jeaf) on
is always convergent. Hence both series > p,(0)? and 3" ¢,(0)? (cf. (0.7))
are convergent. By the Hamburger criterion, J" is not essentially selfadjoint.

1.2. The description of the deficiency space. We are going to write
down the nontrivial deficiency space N,(J) as a sum of spaces associated
with vertices of I'y.

Fix a vertex x of length k. Let J; denote the truncated matrix

O Ak 0 0 0
e Br4r A1 O 0
0 M1 Brre A2 O
Ji = 0 0 A2 Brrs Apss

0 0 0 Met3 Brga

Observe that the subtree I', of I'y can be identified in a natural way with
the whole tree I'y. Hence (2(T';) can be identified with ¢2(T'y).

In this way the matrix J restricted to £2(T',) coincides with the operator
Jy, on £2(T'y). Moreover, J restricted to £2(T',) coincides with the operator
Jy, on (2(T'y). Similarly to (1.4) and (1.5), it can be further identified with
Jy, on £2(Ny).

From now on we assume that the operator J in £*(T'y) is not essentially
selfadjoint. Hence

N.(J) = (Im(J—z0))" # {0},
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By Theorem 1.8, the operator J" on £?(Ny) is not essentially selfadjoint.
Furthermore, from the proof of this theorem, the truncated matrix J; on
¢(Np) is not essentially selfadjoint either. By the above arguments, J on
(3(T',) is not essentially selfadjoint. Moreover, its deficiency space is one-
dimensional (cf. Theorem 0.8).

_ Let f, denote a nonzero function in this deficiency space. Observe that
fz(x) # 0. Indeed, if v, is the value of f, on the nth level of I'y D T',, then
the condition describing the deficiency space

J f x = Zf x
(cf. Fact 1.6) is equivalent to the system of equations

2V = Prvk + d - AgUgr,
Z2Up = An—lvn—l + ﬁnvn +d- /\nUTH—la n>k.

Hence, if v, = 0, then vg41 = 0, and so f, = 0, which yields a contradiction.
Choose a function f, such that f,(x) = 1. For each vertex = € Lq we
define f, € (*(T'y) by saying that supp f, C I'; and f, coincides with f, on
r,.
For each vertex x € I'; we also define the linear subspace

A, = {Zd:ai-fmi: a; € C, Zd:ai=0}.
=1 i=1

For i # j the functions f,, and f,, are orthogonal as their supports are

disjoint. Note that the condition Zle a; = 0 guarantees that each element
g € A, (x € Ty and |x| = n) satisfies, in addition, the recurrence relation
(1.3) at z, namely

0 = z-g(x)
= Mc19(20) + Bog (@) + Angl@1) + g(z2) + ... + g(24))

d
=0+0+ X > a =0
i=1
This means that all A, are (d — 1) dimensional subspaces of N,(J).
Set
Ay = {a~fe: aE(C}.
Obviously, it is a one-dimensional subspace of N,(J).
We are going to exhibit some properties of the spaces A,. First, we
establish the following technical lemma.

Lemma 1.13. Let x € Ty and |x| =n. If g € A,, then

for all k> n+ 1.

Proof. Observe that for two different vertices x; and z; with the same
predecessor x the values of f,, and f,, on the corresponding levels of I';,
and I';, are equal. This is because, by definition, the value f,(x) depends
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only on the lengths of ¥ and z. It follows that the sum of the values of
9 = fu; — fo; on each level of I'; vanishes. It is easily seen that any function
g € A, is a linear combination of the functions f,, — f,;. Therefore the
values of g € A, also vanish on all levels of T',. U

Fact 1.14. Let x,y € T, U{0} and x #y. Then A, L A,.

Proof. Let g, € A, for some vertex x € I'y, where |z| = n. Since [, is
radial, we write f.(|t]) = fe(t) for t € T'y. Then

(gxafe Z ng fe Zfe ng

k=n+1 tery k=n+1 tely
[t|=k [t|=k

By Lemma 1.13, all the sums Y g¢,(¢) vanish, whence

tEls
It|=k

(gxafe) = 0.

Consider a function g, € A, for some vertex y different from z. If z ¢ T,
and y ¢ I';, then the functions g, and g, have disjoint supports and thus
they are orthogonal. On the other hand, if x € I';, then

lz| > |y| and supp(g.) C T,

(Gos 9y) = > gult)

and on levels of I'; the function g, has constant values g, (k). Therefore,
applying Lemma 1.13 once more, we obtain

ga:y gy Z ng gy Z nga}(t) =0

Hence

k=n+1 telg k=n+1 tely

It|=k It]=k
Clearly, the case when y € I',, is similar. [l
Fact 1.15. Assume that f € N,(J) and f L A, for all x € T3yU{0}. Then

f=0.

Proof. We are going to show that f vanishes on the successive levels of I'y
starting from the root e. The function f, is radial on I'y, whence E(f.) = fe.
(cf. (1.10)). By Lemma 1.9, we thus get

= (f7fe) = (f?E(fe)) = (E(f)7fe)

By the same lemma, F(f) is square-summable. Moreover, both f, and E(f)
are in NV,(J") because taking the mean value on levels does not affect the
recurrence relation (1.7). As N,(J") is one-dimensional, F(f) is a constant
multiple of f.. Let F(f) = af.. Then

0 = (E(f)7 fe) = (af€7 fe) = a”fe||27
whence v = 0. Thus F(f) = 0 and in particular

fle) = (Ef)(e) = 0.
Summarizing, the orthogonality of f to f, yields that f vanishes at the root
e, i.e. on the zero level of the tree I'y. Similarly, the orthogonality of f
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to the successive spaces A, enables us to show that f is equal to zero at
the corresponding vertices. Indeed, assume that f(z) = 0 for each |z| < n.
Fix a vertex x of length n. Since f € N,(J) and f(x) = f(zo) = 0, the
recurrence equation (1.3) at x

2f (@) = Apor f(@o) + Buf (@) + Al f(z1) + flz2) +
gives
(1.16) flx) + f(@2) + ...+ flza)
Fix g € A,. Since g is radial on each subtree I'y,,

Ey, Ev, . ... By (9) = g.

By the symmetry of these averaging operators (cf. Lemma 1.9),

= (fag) (fa xd1---Ex1g>= ( EAREIE :n,;fa >
By (1.16), the function

o+ f(a))

= 0.

Ip, - By By ... By f,

where 1, denotes the characteristic function of I', O supp g, belongs to
and is orthogonal to the space A, at the same time. Hence it must be zero.

Therefore
f(l‘l) = ]lpr . Ex1 e Exdf<xz) = 0
foralli=1,...,d. [l

We see that the sets A,, in a sense, fill up the whole deficiency space
N,(J). To be more precise, the above facts can be summarized as follows.

Theorem 1.17. The algebraic direct sum

@ A, = lin{gm: Js € Ay, xEFdU{O}}

zel’ qU{0}

of the pairwise orthogonal spaces A, is dense in the nontrivial deficiency
space N,(J).

Remark. In the case when d = 2 not only Ay but also all the remaining
spaces A, for x € I'y are one-dimensional. Moreover, the functions

fa:l - fm
T e =l

along with the function gy = form an orthonormal basis in N,(J) on
the tree I's.

Let us now calculate norms of elements of A, in the case when d > 2 is
arbitrary.

Let p, be the orthogonal polynomials (cf.

9ax x € Fda

||f [

(0.7)) associated with the

matrix
Bo  Vdro 0 0 0
Vdo B Vdh 0 0
0 Vd\i By Vdh 0 ...
(1.18) Jh = 0 0 vV B Vs ... |
0 0 0 Vd\s B.
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i.e. let the numbers p,(2) satisfy the equations
(1.19) 2pn(2) = \/&)\n_lpn_l(z) + Bupn(2) + \/&)\npnﬂ(z), n >0,

p-1(2) = 0, po(2) = 1
Dividing by (\/3)71 gives

Pn(2) Pn-1(2) Pn(2) Prt1(2)
s S W e /AN M td N, RS >,
Vo e T VT

These are exactly the equations describing the unique radial function in
N,(J) (cf. (1.7)), hence

(1.20) folz) = fo(lz|) =
Then

o)

Ill” = 32 [l = 32

=0

o0

= > Im(2)”
n=0

The norm of an arbitrary g € Ag can be expressed as

lgll = ao(z) - lg(e)l;

- (fj |pn<z>|2)%.

Let ¢, be the orthogonal polynomials of the second kind (cf. (0.7)) asso-
ciated with the matrix J", i.e.

ZQn(Z> = \/E/\n—IQn—l(Z) + ﬁnQn(Z) + \/E/\nQn-l-l(Z)v n 2 1:
w(z) = 0, qlz) =~

)\—0.
As before, dividing by (\/E)n_l gives
.. Aogn(2) _ \ AoGn—1(2)

where

AOQn( )
n-1"—F——TDn" + d- /\ T —
N V=R AT NG

Therefore, for a fixed 1,

_ oy 4e(2)
(1'21) fez’(x) - fei( ZL‘|) - dlml_l'
Hence
el =3 1@ =" a7 [ fe(n)[*
z€le, n=1
. n—1 \2 n(2) ? 2 = 2
= Z d"" Ay g = Ag Z |90 (2)"
n=1 n=1

Let

(122) a(2) = )\o(i |qn<z>|2)%.
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Since the functions f,, are pairwise orthogonal, the norm of an arbitrary
function g € A, is equal to

loll = [ S gtensi]| = @) Vg F+ - Flgteal

Now we consider a function g € A, for a fixed vertex = # e, i.e. |z| =
k > 1. Since
d

g9 =Y g(@) fu.

i=1

where f,, are pairwise orthogonal, we get

d
lgll* = 11faill®- Y gt
i=1

because the values of f,, on the subtree I',, depend only on the length of
vertices and on k which is the length of the root of this subtree. These
values are determined by the equations

2fe;(n) = M1 fo, (0 — 1) + By fo,(n) + dAp fo, (0 4 1), n=>k+1,

and

(cf. (1.7) and the definition of f,). Note that the numbers

M (P(2)an (2) = qi(2)pn(2))

satisfy these equations. Indeed, p,(2) and ¢, (2) satisfy the recurrence start-
ing with n = 1, in particular, for n > k. Therefore, the same holds for any
linear combination of them. Since |z;| = k+ 1, there are exactly n — (k+1)
vertices on the nth level of I',,. This accounts for the exponent in the de-
nominator. Furthermore, for n = k the value of the expression (1.23) is 0.
Finally, from the formula

(1.23) n>k

1
pn(2>qn+1(2> _pn+1<z)Qn<Z) = )\_
(see e.g. [1] or [14]), we get the value 1 for n = k + 1. Consequently,
A ((2)0n (2) — @i (2)pa(2))

124 €4 == 9 Z ]-7
and thus
£l = > d D L, m)P =X ) [pr(2)an(2) — (2 (2)".
n=k+1 n=k+1
Hence

ol = (lg@)P + -+ lo@a)P) - 3 S [e(2)aa(2) = ax(2lpn(2)

n=k+1
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Let ayy1(2z) denote the positive number such that

(1.25) ali(2) = A Y pe@)a(2) — @) k> 1

n=k+1

Then

loll = ani(z) - Vigle)P + ... + lg(wa)

for any g € A,, where |z| =k > 1.

Note that for £ = 0 the right hand side of (1.25) gives exactly the number
aq(z) defined already by (1.22) so the numbers ay(z) may be defined by the
common formula (1.25) for all k£ > 0.

The following fact summarizes the previous considerations concerning
norms.

Fact 1.26. We have
| fell = o for xz € T’y U{0},

and
ao(z) - [g(e)| if g€ Ao,

||g|| = d L '
o) (S o)’ i g€ A weTy

where the coefficients ax(z) do not depend on functions and are as follows:

ao(z) =3 Ipal2)P

on(2) = My > Pa(B)an(z) = geoa(D)pa(2)|” for k> 1

1.3. The deficiency space and the boundary of the tree. A path in
a tree is, by definition, a sequence {x,} of vertices such that for any n, the
vertices x, and x,,1 are joined by an edge. The boundary €2 = OI'y of the
tree I'y is the set of all infinite paths starting at the root e.

Note that at each level on the way downward from the root e we have
to choose one of d edges, hence the boundary {2 can be identified with the
Cantor set

Q ~{0,1,...,d—1}"

(which is the classical Cantor set in an interval when d = 2). Clearly, to
each vertex x and thereby to each subtree I',, there is associated a cylinder
(), C Q, i.e. the set of all those paths which contain .

Let u be the probability measure on {0,1,...,d — 1} such that

1
on = 9(50+51++5d—1)

Let dw denote the natural probability product measure on the boundary {2,

do = (K)dp, i = p,
1=0
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i.e. the values of dw on cylinders are given by
dw(Qy) = d71#!, z ey

For each subspace A, C N,(J) we define the corresponding subspace
B, C L?*(,dw). Namely, let By denote the one dimensional linear subspace
of constant functions on €2 and for z € I'; we put

d d
_ {;bi.ngwi; b € C, ;bizo}.

Similarly to A,, each B, is a linear space of dimension d — 1. Another
analogy is given by the following property of any element F' of B, :

/ Z/ wydw = d~1#l. sz

Lo,

Fact 1.27. The subspaces B, for x € Ty U{0} are pairwise orthogonal and
fill up the whole L?(Q, dw), i.e. the algebraic direct sum

P B. = 1lin{G,: G, € B,, 2€T,U{0}}

zel’qu{0}
is dense in L*(, dw).

Proof. Let G, € B, and GG, € B, for x # y. Two cylinders with different
vertices are either disjoint or one is a proper subset of the other. If 2,N$Q2, =
(), then G, and G, are orthogonal. On the other hand, if Q, & €, then
there exists ¢ such that €2, C Q,,. Let b; denote the value of G, on €,,.

Then
Gx,G /G’ w)dw = b; - /G’

which completes the proof of orthogonality.
Assume that F' € L?*(§2,dw) is orthogonal to every B, for x € T'y U {0}.
In particular, for the function Gy = 1 belonging to By we obtain

(1.28) 0 = (F,Go) = / Z /

The orthogonality of F' to 1g, — Lo, € B, for i # j gives

0 = (Flg, —1g,) = / F(w)dw — / Flw)dw,

Q, Qe

whence

/ Flw)dw = / F(w)dw.
Qe, e,
Since all the numbers [ F(w)dw are equal and sum up to 0 (see (1.28)), all
Q,
of them vanish. Similar considerations applied to x = e; and its successors

z; yield [Q,F(w)dw = 0 for dist(y, e) = 2. In this way one can show that
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integrating F' over an arbitrary cylinder gives 0. Hence I' =0 dw—almost
everywhere. O

Let z € I'y. To the function f, corresponds the function F, € L?(Q, dw)

defined by
F, = Qg * Vel 1q,.
Then
||Fx||2 = /Fw(w)Fw(w)dw = O‘|2x|(z)d|x| ~dw(Qy) = a|2x|(z) = ”fx”z

Q
Clearly, if z; # x; have a common predecessor, then F,, and F, are orthog-
onal as their supports are disjoint. Thus

d d
(1.29) A, > Za,fmi =g «— G = ZaiFCEi € B,
i=1 i=1

is one-to-one correspondence. Furthermore,
G = 1Fll - V]ar? + laof? + ... + laql?
= I full- Viaa[? +las? + ... +Jaal> = gll.

It follows that the mapping G —— ¢ is a linear bijection between B, and
A, which, in addition, preserves the norm. We also define a mapping from
Ag onto By by

(1.30) fo — 0= 0ag - lg,

which, clearly, is also a norm preserving linear bijection.
In view of Theorem 1.17 and Fact 1.27, all these bijections have a unique
extension to an injective isometry

(1.31) U:  L(Qdw) 28 N,(J).
For a fixed vertex y € 'y we define a functional on L?(2, dw) by
F — (UF)(y).

As it is linear and bounded, it determines, by the Riesz Theorem, a unique
function P,(y,w) € L?*(£2,dw) such that for all F' € L*(Q, dw),

(1.32) (UF)(y) = /Pz(y,w)F(w)dw.

In particular, for a function g € A, and the corresponding G € B,,

(1.33) o(y) = / Py, w)G(w)dw.

In view of this formula, it is natural to call P,(y,w) the Poisson kernel.
It describes a relationship between functions in the deficiency space and
functions on the boundary of the tree.

We now state some of the properties of this kernel.

Fact 1.34. For a fired y € 'y,

(JPz(,w))(y) = z- Pz(yaw)
dw—almost everywhere.
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Proof. Let y € T'; U {0}. It is sufficient to show that for all x € T'y U {0}
and G € By,

(Jpz(ya ')7 G) = (ZPz(ya ')7 G)
Set g = UG € A,. Since A, C N,(J), g satisfies, in particular, the recur-
rence relation (1.3) at y, i.e.

(Jg)y) = z-9(v).

In view of (1.33), we have
(1( [ rtwcens) ) w = = [ PG,

By the linearity of the integral, we get

[Pty = [ p.pwce,
Q Q
completing the proof. O

Now we are going to make use of automorphisms of I'y. By an automor-
phism we mean a mapping k: I'y — I'y such that

(Vo,y e Ty ) dist(kx, ky) = dist(z,y).

Observe that the root e is the only vertex in I'; of degree d. Clearly, au-
tomorphisms preserve degree of vertices. Therefore k(e) = e. In addition,
each automorphism of I'y extends to the boundary €.

Note that J commutes with all isometries of I'y. Each automorphism
of 'y acts on functions in A, and in B, in a natural way. Namely, let
k:T'y — I'y be an automorphism of I'y. For any g € A, we put

(k9)(y) = g(k™'y).
Then

k9 € App and kg (ky) = g(y).

Similarly, £ acts on functions in B,. Hence for the corresponding function
G € B, we have

1G € By and (xG)(kw) = G(w).

Lemma 1.35. For any fized vertex y € I'q and an arbitrary automorphism
k Of Fd;
Pky, kw) = P.(y,w)

dw—almost everywhere.
Proof. Let z € T, U {0} and g € A,. By (1.33) and the property of the

automorphism k, we have

/ P.(y,)G(w)dw = g(y) = glky) = UGG) (ky)

Q
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Replacing w by kw in the last integral yields

/ P.(y,w) - G(w)dw = / P.(ky, kw) - (4G (kw) d(kw)

Q Q

_ /Pz(ky, kw) - G(w) d(kw).
Q
By the invariance of the measure dw, we obtain

/Pz(y,w) CG(w)dw = /Pz(k:y, kw) - G(w) dw.

Q Q
Since (¢ was an arbitrary function, the conclusion follows. O
Fix a path w € €2 and a vertex y € I';. Number the consecutive vertices
in w with the numbers 0,1, 2, ... starting with the root e,
w = {wy,wr,ws, ...}, wo = e.

The relative position of the path w and the vertex y can be described by
two nonnegative integers. Let n = n(y,w) denote the distance between y
and w and let m = m(y,w) be such that the vertex w,, € w realizes this
distance,

n = dist(y,w) = dist(y, wm)-
Obviously, |y| = m+n. One can say that on the way from the root e to the
vertex y we do exactly m steps along the path w and exactly n steps off w.

wo

For instance, for y and w in the figure above (d = 2) we get n = m = 2.
Note that replacing y by y gives the same numbers n and m.

Fact 1.36. The value of the Poisson kernel P,(y,w) depends only on the
numbers m(y,w) and n(y,w) defined above.

Proof. Let v,y € I'y and w,w’ € Q) satisfy
m(y,w) =m(y',w) and  n(y,w)=n(y, ).
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Let k; be any automorphism on I'y mapping w to w’. By assumption,
dist(ky1y,w’) = dist(y,w’) and both distances are realized by the same point
in the path w’. Hence, there exists an automorphism k, which fixes w’ but
maps k1y to y'. By Lemma 1.35, we thus get

PZ(?J,WJ,) = PZ(kQ(kly)7k2wl) = Pz(k‘ly,w/)
= Pz(klyv klw) = Pz(yv("J) O

To give an explicit formula for P,(y,w), we introduce some projections.
Let 7, denote the projection of £*(T'y) onto the deficiency space

N= P A
zel’qU{0}
(cf. Theorem 1.17). Then for every f € £*(T'y) we have

7Tz(f) = Z 7Tz7x(f)a

zel;U{0}

where 7, , denotes the projection of £2(T'y) onto A,; in particular 7, is the
projection onto Aj.

Fact 1.37. Let x be a vertexr in Ty and k = |z| + 1. If y € T, is different
from xz and y € I'y,, then

mea(d) = f(f)) [fm—ij i

Moreover, for all y € 'y we have

fey)
aj(z)

Proof. Since 7, ,(d,) € A, there exist constants a; such that

T.0(0,) = Zaj fe;.
j=1

Let g = 27:1 bj fz; be any element of A,. Then

(ga 5y) = (772@(9)7 5y) = (ga 7Tz7x(5y))-
Since supp(fz,) € Iy, and y € I';,, we obtain

7‘-2,0(53/) = : fe-

On the other hand, (fy,, fz,) = 0 for i # j. Hence

d d
(9:m0(6)) = D _bia; |1 fnl® = ai(z)- > ba;.
j=1 j=1

We thus get the equation

bi fo(y) = Zb a;
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d

for any coefficients b; such that Y b; = 0. Let b; = 1. Then setting b;, = —1
j=1
for an arbitrary jo # ¢ yields

feuly) = ail2) (@ — @),
This means that the coefficients a; for all j # ¢ have the same value, as
Jo was chosen arbitrarily. Set a = a; for j # . Since the sum of all the

coefficients a; vanishes, we have a; = —(d — 1)a. It follows that
faly) = 0g(z)- [ (d=Na—a] = —da-ai(2),
whence
 fuy)
dai(z)
Summarizing,
)= T b 2
fo:(y) 1 1
ai(e) (RS 2 )
fo:(y) 1
ce R Y|

The formula for 7, ¢(d,) is clear as the vector generating the one dimensional
subspace A is equal to (ag(z))~! f.. Hence

_ Oyt L)
772,0(531) - ||fe||2 “fe = a%(z) S 0

In order to describe the action of 7, on J, it is necessary to consider all
the subspaces A, such that y € I',.

Corollary 1.38. Lety € I'y has length n > 0. Let yo, Y1, - . ., Yn be the path
from the root e to y =vy,. Then

— n d
Je(y) Ju:(Y) 1
7725): 'fe + — fi__ fi_' ’
@)= g 2o | e a2 fe
where (yi_l)j for 3 =1,2,... are all the successors of the vertex vy;_.

Proof. It is sufficient to apply Fact 1.37 to the sum

Wz(éy) = Z Tzx (5?4) = (”z,yo T Moy Tt 7Tz,yn) (5y>~
2T U{0} O

Note that in view of (1.29) and (1.30), the isometry U defined by (1.31)
can be expressed by the formula

d d
Ula(z) Vd - ai-1g,) = Y aifa,

where k = |z;] = || + 1, and
(1.39) U(ao(z) - 1a) = fe



24 A. M. KAZUN AND R. SZWARC

As the supports are disjoint for i # j, the first formula can be written as
(1.40) U(ak(z) Vv dk . ]lei) = fxz
Here comes the promised explicit formula for the Poisson kernel.

Theorem 1.41. Let w € Q2 and y € 'y be of length n. Then
fe Sy y N 1
Pyw) = g + Z oi V[ 1g, = g1a, |,

where {yo, Y1, - - - ,yn} 1s the only path from the root e = yo to y = y,.
Proof. Applying (1.39) and (1.40) in Corollary 1.38 yields
T.(d,) = U(S(y)),

where

d
For any I € L*(£, dw) we have
UF(y) = (UF,é,) = (UF,m.(d,)).
On the other hand, by (1.32),

Hence

(F, P.y,")) = (UF,m.(5,))
= (UF,U(S(y))) = (F.S()),

which completes the proof.

1.4. The spectrum of a selfadjoint extension. Our next aim is to de-
scribe the spectral properties of J.

Recall that we are considering the case when .J is not essentially selfad-
joint. For a fixed vertex x € I'y we define the linear subspace H, of /2(T;)
to consist of those functions | € 3(Ty) which satisfy

(1) supp( ) C Tp\ {z},
E f(xi) =0,

(3) f 1s radial on each subtree I',,,
(4) the value of f on a level of I';, equals the value of f on the corre-

sponding level of T'y; multiplied by fgm;

Moreover, we set Hy = £2(T'y).

Fact 1.42. The spaces H, C (*(Ty), where x € T3 U {0}, satisfy
(1) J[H,) € H, for every x,
(2) H, is closed for every x,
(3) H, L H, forx+#y,
(4) D,erugoy He = lin{f € Hy: x € TgU{0}} is dense in £*(Tq).
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Proof. Properties (1) and (2) are clear. Property (3) may be proved in
much the same way as Fact 1.14. To prove (4), assume that g € £2(T'y) is
orthogonal to every H, for x € T'; U {0}. In particular, as 6, € H,

0 = (9.9.) = gle).
The orthogonality to ., — d., € H, gives

0 = (g,éei—éej) = g(6i> - g(ej)v

whence the values on the first level are all equal. Furthermore, since the
characteristic function y; of the first level is an element of H,, we get

0= (g.x1) = > gle)

i=1

This means that g vanishes also at the first level of I';. Similar considera-
tions show that ¢ is equal to 0 at each level of T'y. O

Let J, denote the restriction of J to H, N D(.J). For x = 0 the operator
J, has the matrix J" = JJ. For x € I'y the action of J, is associated with
the restricted matrix J", where n = |z| 4+ 1 (cf. (1.12)).

Since J is not essentially selfadjoint, neither is any of the matrices J.
(cf. the beginning of Section 1.2). It is known that there exists a selfadjoint
extension .J, of J! and the spectrum of each selfadjoint extension is a discrete
set (cf. Theorem 0.10).

Let J, be the operator with domain D(J,) C H, associated with the
selfadjoint extension j|m|+1. Hence its spectrum 0(j|x|+1) is a discrete set,

so J, has a pure point spectrum (i.e. there exists a basis consisting of
eigenvectors). Define

J(f) = Y. L)
zel’qU{0}

with domain
D(J) = @ D(J.) = lin{f € (*(Ty): f € D(J,)}.

Since the H, are invariant under J and their Hilbert orthogonal sum is the
whole ¢2(T'y), the operator .J is a selfadjoint extension of J. Moreover, the
spectrum of this extension

is also a pure point spectrum.

2. A JACOBI OPERATOR ON A TREE WITH ONE END

For a fixed number d = 2,3,4,... we consider an infinite homogeneous
tree of degree d which is partially ordered and locally looks like the one in
the previous section but upside down. For instance, if d = 3, the top levels
of the tree look as follows:
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X1 T2 I3

/S VYVVVY

¢ N

In view of the figure above, it is intuitively clear what the partial order
in this tree is. All vertices with only one edge are on the zero level. Those
at distance 1 from the zero level have length 1, and so on. To be more
precise, this time we distinguish not a vertex but an infinite path w =
{wo, w1, ws, ...} where wy is any vertex with only one adjacent edge. The
natural distance dist(-,-) enables one to calculate the distance between a
given vertex x and the path w, i.e. dist(z,w). Then, by the length of a
vertex r we mean

|| = n—dist(z,w),
where n is the index of the element of w which realizes the distance
dist(z,w) = dist(z,wy).

In the figure above the fixed path w is indicated by a bold line. We have
|z] =3 —2=1 and for y = wy we have |y| =2 — 0 = 2. It is clear that the
length | - | defined in this way is independent of the choice of w.

The set of all vertices with this partial order is denoted by Ag.

In the tree A4, each vertex of length at least 1 has exactly d predecessors
and one successor. Each origin, i.e. a vertex with no predecessor, has length
0 and exactly one adjacent (downward) edge so also one successor. This time
there are infinitely many vertices of length 0. At each vertex, however, there
is just one downward edge so A4 can be said to be a homogeneous tree with
one end.

Analogously to I'y, the predecessors of a vertex x are denoted by 1, o, .. ., 4l
and the successor by xq. In analogy with the previous chapter we also define
the action of the Jacobi operator J on the characteristic function 9, of a
vertex || = n, namely

J6y = X1 (Opy 4 Oy + oo+ 02y) + Budz + Ay
The domain of J consists of functions with finite support, i.e.
D(J) = lin {5:,3 S Ad} - éz(Ad)

We keep the convention that A\_; = 0, which makes the formula for J valid
also for vertices of length 0.

Fact 2.1. The deficiency space N,(J) of the operator J on €*(Ag) consists
of all square-summable functions v on Ay satisfying

(2.2) 20(z) = Ay (v(z1) + .o+ 0(Ta)) + Bav(@) + Apv(z0)
for all x with |x| =n and all n > 0.
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Proof. Just as for I'y, this follows by calculation:
0 = (v, (J=2)h)
= (0, Ac1(Oay + -4 0uy) + Bl + Ay, — 20,)
= A1 (v(z1) + ..o+ v(xa)) + Bov(z) + Av(zo) — 20(2). N
Remark. Clearly, an equivalent formulation of the assertion is:
N.(J) = {veP(Ag): Ju(z) =2 v(x), z € Ag}.

Let A, denote the subtree of A; which ends at the vertex z. The subtree
A, is emphasized in the figure below.

A D N Y Y Y Y Y Y Y NN Y YN YN 00 00 e o o o

Y

\/

The following technical lemma is a direct preparation for the main theo-
rem of this section.

Lemma 2.3. Assume that v € (?(\y) satisfies the recurrence relation (2.2)
for some z € C (possibly real). Let x € Ay have length n. Assume that the
values pp(z) of the orthogonal polynomials associated with the matriz J" are
nonzero for k = 1,...,n. Then the values of v are constant on each level
of Ay. Moreover, if y € A, and |y| = k > 0, then

u(y) = \/d_kpk(z) " Vo,
where vy is the value of v on the zero level of A,.

Proof. The proof is by induction on n.
(1) Fix a vertex x with |z| = n = 1. For each i = 1,...,d, by (2.2) for
T = x; we have

(z = Bo)v(zi) = Aov(w).
Hence

i z—

co(z) = Vdpi(2) - v

2po(2) = Bopo(z) + VdAopi(2).

(2) Assume that the assertion holds for some n > 1. Let x be any vertex in
A, of length n + 1. Each of its predecessors x; has length n so the values of
v on the kth level of A, are constant and equal to Vd* - pi(2) - v}, where
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v} is the value of v on the zero level of A,,. By assumption, the recurrence
equation (2.2) at z;,

d
(2= Bn) - v(z) = Ao Zv((m,)J) + A - v(2),
yields |
(z— Ba) - VA po(z) -0 = dha_y - VA" T pp_1(2) - 0) + An - v(2).
Hence

v(z) = (2 = Bu) V" pu(2) = dAn 1 VA" T poa (2) Lt
An 0

Since {p,(z)} satisfies (1.19), we get
v(z) = vy VA poga(2), O
Here is the main theorem.

Theorem 2.4. The operator J on Ay is always essentially selfadjoint.

Proof. For a complex number z ¢ R all the coefficients v/d*ps(z) appearing
in Lemma 2.3 are nonzero, as all roots of the orthogonal polynomials p,, are
real. By Lemma 2.3, if there existed a function satisfying all the equations
(2.2), it would have to be nonzero and constant on levels of the whole tree
A4. However, there are infinitely many vertices on each level, so such a
function cannot be square-summable. Therefore, N,(J) = {0}. O

Theorem 2.5. The Jacobi operator J on Ay has a pure point spectrum,
i.e. there is an orthonormal basis consisting of eigenvectors for J. More-
over, o(J) coincides with the closure of the set of all roots of the orthogonal
polynomials p, associated with the matriz J.

Proof. Since J is essentially selfadjoint it suffices to find a set of eigenvec-
tors which is linearly dense in D(.J).

Fix x € Aq of length n > 1. We consider the subspace M, C D(J)
consisting of the functions with support in A,. Clearly,

dmM, = 1+d+d*+...+d"

It is known that p, has exactly n real simple roots ¢1,...,t,. For a fixed
predecessor z; of x and for a fixed ¢; let f; ; € M, be given by

ol = L VE ) fory € Ay and Jy| =,
ij\Y 0 for 3 gé Al,i‘

Of course, f;; satisfies (2.2) with z = ¢; and for any = € A,, different
from x;. Furthermore, since

fig(@) = 0 = Vd-pa(ty),
the equation (2.2) also holds at z;. Hence, the linear combinations
Jij — Jij for i=2,...,d
satisfy (2.2) at x, i.e.
0= (2 = Bu)(fr(x) — fig(®)) = Ana(frj(@1) — fig(@i)) + A - O
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because fi;(z1) = fi;(z;).
By the above, when j is fixed and ¢ varies from 2 to d the functions
fi; — fij satisty (2.2) for z = t; at every vertex of Ay, i.e.

J(flu‘—fm) :tj'(flg‘—fi,j), 1=2,...,d.

Hence they are eigenfunctions associated with the eigenvalue ¢;. Clearly,
there are d — 1 of them and they form a linearly independent system since
the functions f; ; are pairwise orthogonal for ¢ = 1,...,d as functions with
disjoint supports.

In this way, for a fixed vertex of length n, we have indicated exactly
n - (d — 1) linearly independent eigenfunctions associated with this vertex.
In the entire subtree A, there are d"* vertices of length k. Of course,
the eigenfunctions corresponding to two such vertices of the same length k
are orthogonal as their supports are disjoint. Moreover, if two vertices are
such that one is in the subtree associated with the other, the corresponding
eigenfunctions are also orthogonal, because on each level of the smaller tree
one function has a constant value while the values of the other one sum to
zero (cf. the proof of Fact 1.14). Therefore, the number of all eigenfunctions
of J thus defined with support in A, is equal to

(d—1)-) k-d*
k=1

and they are all linearly independent.
Let V, € M, denote the linear subspace spanned by the eigenvectors
defined above and with support in A,. Then

dimV, = (d—1)-Y k-d"*=(1+d+d’+...+d") - (n+1).
k=1

Since there are n + 1 levels in A,, there exist exactly n + 1 linearly inde-
pendent functions in M, which are constant on the levels of A,. Therefore,
the equality

dimM, = dimV, + (n+1),

obtained above, means that the orthogonal complement of V, in M, consists
only of functions constant on levels of A,.

To complete the proof it suffices to show that no square-summable and
nonzero function is orthogonal to every V,. Assume that f € ¢?(A\,) satisfies

Ve e Ay fLV.

Then [ is constant on levels of A, for each x € A;. Hence f is constant on
levels of A;. But f is square-summable. Therefore f = 0. O
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