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We give a lower bound for sclutions of linear recurrence relations of the form
ca, =34t~ % .4 whenever z is not in the -spectrum of the corresponding
banded operator. In particular if P, are polynomials orthonormal with respect to
a measure u supported in a bounded interval the sequence P (x)>+ P, ((x)° is
bounded from below by (I +¢)*, for x¢supp u. We give an application to
polynomial hypergroups. ¢ 1995 Academic Press, Inc.

INTRODUCTION

Given a probability measure g on the real line R such that all its
moments are finite. Let {P,}*_, be a system of orthonormal polynomials
obtained from the sequence of consecutive monomials 1, x, x?, .. by the
Gram-Schmidt procedure. It is well known that P, obey a three-term

recurrence formula of the form
,\'P,,:/{,,P"+1+ﬂ"P"+A",|P"7], (1)

where 4, are positive coefficients while f, are real ones. We are going to
study the growth of P,(z) for = not in the support of the measure . By a
well known theorem by Poincaré if 4, — 4 and 8, — f then

pﬂ%)_—)—>u+,/ul—l,
1

n-- =

where = (24) ' (z— f), and \/uz —~ 1 is that branch of the square root for
which |u + \/uz — 1| > 1. In particular P,(z) have exponential growth.
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In general exponential lower estimates have been proved for z not in the
convex hull of the support of the measure. For example if supp uc<
[—1, 1], then

lim inf /|P,(z)| > |2+ /2> — 1]

for z¢ [ —1, 1] (see [1, Theorem 7.1, p. 117, S, Theorem 1.1.4, p. 4]).

In Section 1 we give a lower estimate for the solutions of recurrence rela-
tions associated with finite band-width difference operators. When applied
to orthogonal polynomials this yields an exponential lower estimate of
P,(z) for - outside the set of orthogonality. In Section 2 we give an applica-
tion to hypergroup theory. We show the symmetry of the discrete polyno-
mial hypergroups under mild condittons on the weight function.

1. Lower BOUNDS FOR POLYNOMIALS

o

Let L be a linear operator acting on sequences {a,} *_, according to
n+ N
La,= Y a4, (2)
k=n—N
where a, , are complex coefficients such that «, , =0, for k <0.
THeOREM 1. Let sup{|a; ,|:n#keN} < +oo. Let b=1{b,},., be a
nonzero solution of
Lb=:b

where z€C does not belong to the IP-spectrum o,(L) of L. Then for
0<p<w

i inf 316,01 w74 1Bysa P4 s F 1B, N> L

Proof. Let z¢0,(L). Then there is a constant # >0 such that
=zl —L)all,=n |all,. (3)

Let 5={b,} ., be a nonzero solution of Lb = zb. Define a sequence b!"}
by

b{n}_ bm’ if Ogmén,
", otherwise.
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Observe that

o e mbe, for n—N<m<n;
(:I—L)bj;": =~ N % m b for n<m<n+N;
0, otherwise.

Denote a =sup{a, ,:n#keN}. Then

n m+ N r n+ N n yd
(ERATEIEID W B ) EE v (I )
N

m=n—N+1 “k=n+1 m=n+1 “k=m—

The first sum can be majorized by using the Holder inequality, if p> 1, or
the triangle inequality, if 0 < p < 1, as follows.

(Y )

m=n—N+1 Nk=n+1

n m+ N

<N Y, Y Ibl”

m=n—N+1 k=n+1
n+ N n+ N

=N" Y (n+l—k+N)|b|"<N™" Y |b]”

k=n+1 k=n+1

where r = p/g or r=0 according to p>1 or 0 <p < 1. In a similar way we
obtain an estimate for the second sum.

n+ N n p n
> (x lbkl) SNTTT b
m=n+1 c=m—n k=n+1~-N
Combining these estimates gives
n+ N
=f =LY b |7 <a? N7 Y 1Okl (4)
k=n+1-N

Let B,=3%72N, | . b7 Then by (3) and (4) we get
n ”p n— N
aPN"*']B";’?I’ Z 'bk"”z— Z Bk'
k=0 2N o
For a fixed natural number 0 <r< N —1, consider the sequence ¢, ,=

B, . ,. Then we have

n—1

Cp,2€ 3 €,  Where =2 N"2a 'y
k=0

| —
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By a simple induction argument one can show thate, ,>e(l1+¢)" " !¢, ,.
Take m to be the first index such that ¢,, ,> 0. Then lim inf V¢, ,>1. |

Remark. It is worthwhile observing that the diagonal coefficients «,, ,
do not need to be bounded for the theorem to hold. Thus L can be an
unbounded operator with respect to any /-norm.

Let P,(x) be polynomials orthonormal with respect to the measure x4 and
satisfying the recurrence formula (1). Then the sequence a= {P,(z)}, 50, IS
a solution of the equation La = za, where

A
Lanz}'nan»#l +/jnan+/tnf]an~l'

L is a symmetric operator on the space /’(N) of square summable
sequences and its spectrum can be identified with the support of the
measure g, whenever L has a unique self-adjoint extension. In particular by
Carleman’s condition this holds if the sequence 4, is bounded. Thus by
Theorem 1 we get the following.

CoroLLARY 1. Let P, be orthonormal polynomials relative to the
measure u. Assume that the coefficients 2, in (1) are bounded. Let = ¢ supp u.
Then

lim inf /P, ()12 | Py ()2 1.

n—x

Remark 1. The corollary generalizes [4, Proposition 8.3, p. 81], where

the authors showed limsup, . . JIP,(z)]>1. In our case we cannot
replace the conclusion of the corollary by liminf Y|P, ()} > L. In fact, if
0 ¢ supp 4 and the measure g is symmetric about 0, then P,, ,(0)=0.

Remark 2. Since L is a symmetric linear operator, with spectrum
supp 4, the constant » from (3) is equal to dist(z, supp ). Analyzing the
proof of Theorem 1 gives a more explicit estimate:

) = dist(z, 2 )
liminf IO 1B > 1+ SSUL SUPP U ) i cup A,

5
n— o 2).,‘- ’ n— X

2. APPLICATION TO PoLyNoMiAL HYPERGROUPS

We start by briefly describing polynomial hypergroups. We refer to [6,
pp. 159-162] for details (see also [3]). Let {P,},., be polynomials
orthonormal with respect to a measure g on the real line. We assume that
the support of the measure g is bounded from the right hand side, say
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by 1. This is equivalent to requiring that P,(1) be positive numbers. Let
R,(x) denote polynomials normalized at [, ie., R,(x)=P,(x)/P,(1).
Assume also that the linearization coefficients c(n, m, k) in the product
formula

R.(x) R, (x)= Y cn m k)R x)

k=\|n—nm|

are nonnegative. Let w,= P,(1)°. By using the coeflicients c(n, m, k) we
can define the convolution * of the two sequences 4 and b according to

(a * b)(k) = Z C(n» n, k) (U,,(Uma,,b,,,-

nm=0

With this operation !'(w,), the space of sequences absolutely summable
with respect to the weight w,,, becomes a Banach algebra. This structure is
a polynomial hypergroup, and u is called the Plancherel measure, while w,
is called the Haar measure of this hypergroup. The maximal ideal space of
this hypergroup can be identified with the set

M ={zeC:sup |R,(2)| <1} ={zeC:|P,(z})| <P1}). neN}

n

We are interested in the relation between .# and supp . We always have
supp u <.#, (see [ 3, Theorem 7.3C, p. 41; 6, Theorem 1 ]).

THEOREM 2. Let P,(x) be polynomials orthonormal relative to pu,
supp u < (— oo, 1], having nonnegative linearlization coefficients. If

liminf WP, (1)2+ P, (1) <1

N — A
then

supp u=1{zeC:|P,(2)|<P,(1), neN}.

In other words the maximal ideal space of I'(w,) coincides with supp u. In
particular the algebra I'(w,) is symmetric.

Proof. Tt suffices to show the inclusion from the right to the left as the
opposite inclusion always holds true (cf. [6, Theorem 1]). Assume that
|P(z)| < P,(1), neN. Then

liminf Y|P(2)2+ P, (2)><liminf /P,(1) >+ P,, (1)2< 1.

In view of Corollary 1 this implies zesupp ¢#. 1
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CoroLLARY 2 ([2, 7, 81). If P,(1) has subexponential growth, then the
maximal ideal space of the Banach algebra I'(w,) coincides with the support
of the measure u; ie., the algebra is symmetric.
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