Note

A Lower Bound for Orthogonal Polynomials with an Application to Polynomial Hypergroups

RYSZARD SZWARC*

Institute of Mathematics, Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Communicated by Walter Van Assche

Received September 13, 1993; accepted in revised form December 19, 1993

We give a lower bound for solutions of linear recurrence relations of the form $za_n = \sum_{k=n-N}^{n+N} \alpha_{k,n} a_k$, whenever z is not in the P-spectrum of the corresponding banded operator. In particular if P_n are polynomials orthonormal with respect to a measure μ supported in a bounded interval the sequence $P_n(x)^2 + P_{n+1}(x)^2$ is bounded from below by $(1+\varepsilon)^n$, for $x \notin \text{supp } \mu$. We give an application to polynomial hypergroups.

Introduction

Given a probability measure μ on the real line \mathbb{R} such that all its moments are finite. Let $\{P_n\}_{n=0}^{\infty}$ be a system of orthonormal polynomials obtained from the sequence of consecutive monomials 1, x, x^2 , ... by the Gram-Schmidt procedure. It is well known that P_n obey a three-term recurrence formula of the form

$$xP_{n} = \lambda_{n} P_{n+1} + \beta_{n} P_{n} + \lambda_{n-1} P_{n-1}, \tag{1}$$

where λ_n are positive coefficients while β_n are real ones. We are going to study the growth of $P_n(z)$ for z not in the support of the measure μ . By a well known theorem by Poincaré if $\lambda_n \to \lambda$ and $\beta_n \to \beta$ then

$$\frac{P_n(z)}{P_{n-1}(z)} \to u + \sqrt{u^2 - 1},$$

where $u = (2\lambda)^{-1} (z - \beta)$, and $\sqrt{u^2 - 1}$ is that branch of the square root for which $|u + \sqrt{u^2 - 1}| > 1$. In particular $P_n(z)$ have exponential growth.

^{*} Supported by a grant from KBN.

In general exponential lower estimates have been proved for z not in the convex hull of the support of the measure. For example if supp $\mu \subset [-1, 1]$, then

$$\lim_{n \to \infty} \inf \sqrt[n]{|P_n(z)|} \ge |z + \sqrt{z^2 - 1}|$$

for $z \notin [-1, 1]$ (see [1, Theorem 7.1, p. 117; 5, Theorem 1.1.4, p. 4]).

In Section 1 we give a lower estimate for the solutions of recurrence relations associated with finite band-width difference operators. When applied to orthogonal polynomials this yields an exponential lower estimate of $P_n(z)$ for z outside the set of orthogonality. In Section 2 we give an application to hypergroup theory. We show the symmetry of the discrete polynomial hypergroups under mild conditions on the weight function.

1. LOWER BOUNDS FOR POLYNOMIALS

Let L be a linear operator acting on sequences $\{a_n\}_{n=0}^{\infty}$ according to

$$La_n = \sum_{k=n-N}^{n+N} \alpha_{k,n} a_k, \tag{2}$$

where $\alpha_{k,n}$ are complex coefficients such that $\alpha_{k,n} = 0$, for k < 0.

Theorem 1. Let $\sup\{|\alpha_{k,n}|: n \neq k \in \mathbb{N}\} < +\infty$. Let $b = \{b_n\}_{n \geq 0}$ be a nonzero solution of

$$Lb = zb$$

where $z \in \mathbb{C}$ does not belong to the l^p -spectrum $\sigma_p(L)$ of L. Then for 0

$$\lim_{n \to \infty} \inf \sqrt[n]{|b_{n+1-N}|^p + |b_{n+2-N}|^p + \dots + |b_{n+N}|^p} > 1.$$

Proof. Let $z \notin \sigma_p(L)$. Then there is a constant $\eta > 0$ such that

$$\|(zI-L)a\|_{p} \geqslant \eta \|a\|_{p}. \tag{3}$$

Let $b = \{b_n\}_{n \ge 0}$ be a nonzero solution of Lb = zb. Define a sequence $b^{\{n\}}$ by

$$b_m^{\{n\}} = \begin{cases} b_m, & \text{if } 0 \le m \le n; \\ 0, & \text{otherwise.} \end{cases}$$

Observe that

$$(zI - L) b_m^{\{n\}} = \begin{cases} \sum_{n=1}^{m+N} \alpha_{k, m} b_k, & \text{for } n - N < m \le n; \\ -\sum_{m=N}^{n} \alpha_{k, m} b_k, & \text{for } n < m \le n + N; \\ 0, & \text{otherwise.} \end{cases}$$

Denote $\alpha = \sup \{ \alpha_{k, n} : n \neq k \in \mathbb{N} \}$. Then

$$\|(zI-L)b^{\{n\}}\|_{p}^{p} \leq \alpha^{p} \sum_{m=n-N+1}^{n} \left(\sum_{k=n+1}^{m+N} |b_{k}|\right)^{p} + \alpha^{p} \sum_{m=n+1}^{n+N} \left(\sum_{k=m-N}^{n} |b_{k}|\right)^{p}.$$

The first sum can be majorized by using the Hölder inequality, if p > 1, or the triangle inequality, if 0 , as follows.

$$\sum_{m=n-N+1}^{n} \left(\sum_{k=n+1}^{m+N} |b_{k}| \right)^{p}$$

$$\leq N^{r} \sum_{m=n-N+1}^{n} \sum_{k=n+1}^{m+N} |b_{k}|^{p}$$

$$= N^{r} \sum_{k=n+1}^{n+N} (n+1-k+N) |b_{k}|^{p} \leq N^{r+1} \sum_{k=n+1}^{n+N} |b_{k}|^{p}$$

where r = p/q or r = 0 according to p > 1 or 0 . In a similar way we obtain an estimate for the second sum.

$$\sum_{m=n+1}^{n+N} \left(\sum_{k=m-n}^{n} |b_k| \right)^p \le N^{r+1} \sum_{k=n+1-N}^{n} |b_k|^p.$$

Combining these estimates gives

$$||(zI-L)b^{\{n\}}||_{p}^{p} \leq \alpha^{p} N^{r+1} \sum_{k=n+1-N}^{n+N} |b_{k}|^{p}.$$
 (4)

Let $B_n = \sum_{k=n+1-N}^{n+N} |b_k|^p$. Then by (3) and (4) we get

$$\alpha^{p} N^{r+1} B_{n} \geqslant \eta^{p} \sum_{k=0}^{n} |b_{k}|^{p} \geqslant \frac{\eta^{p}}{2N} \sum_{k=0}^{n-N} B_{k}.$$

For a fixed natural number $0 \le r \le N-1$, consider the sequence $c_{n,r} = B_{Nn+r}$. Then we have

$$c_{n,r} \geqslant \varepsilon \sum_{k=0}^{n-1} c_{k,r}, \quad \text{where} \quad \varepsilon = \frac{1}{2} N^{-r-2} \alpha^{-p} \eta^{p}.$$

By a simple induction argument one can show that $c_{n,r} \ge \varepsilon (1+\varepsilon)^{n-m-1} c_{m,r}$. Take m to be the first index such that $c_{m,r} > 0$. Then $\liminf \sqrt[n]{c_{n,r}} > 1$.

Remark. It is worthwhile observing that the diagonal coefficients $\alpha_{n,n}$ do not need to be bounded for the theorem to hold. Thus L can be an unbounded operator with respect to any l^p -norm.

Let $P_n(x)$ be polynomials orthonormal with respect to the measure μ and satisfying the recurrence formula (1). Then the sequence $a = \{P_n(z)\}_{n \ge 0}$, is a solution of the equation La = za, where

$$La_n = \lambda_n a_{n+1} + \beta_n a_n + \lambda_{n-1} a_{n-1}.$$

L is a symmetric operator on the space $l^2(\mathbb{N})$ of square summable sequences and its spectrum can be identified with the support of the measure μ , whenever L has a unique self-adjoint extension. In particular by Carleman's condition this holds if the sequence λ_n is bounded. Thus by Theorem 1 we get the following.

COROLLARY 1. Let P_n be orthonormal polynomials relative to the measure μ . Assume that the coefficients λ_n in (1) are bounded. Let $z \notin \text{supp } \mu$. Then

$$\lim_{n \to \infty} \inf \sqrt[n]{|P_n(z)|^2 + |P_{n+1}(z)|^2} > 1.$$

Remark 1. The corollary generalizes [4, Proposition 8.3, p. 81], where the authors showed $\limsup_{n\to\infty} \sqrt[n]{|P_n(z)|} > 1$. In our case we cannot replace the conclusion of the corollary by $\liminf \sqrt[n]{|P_n(z)|} > 1$. In fact, if $0 \notin \text{supp } \mu$ and the measure μ is symmetric about 0, then $P_{2n-1}(0) = 0$.

Remark 2. Since L is a symmetric linear operator, with spectrum supp μ , the constant η from (3) is equal to dist(z, supp μ). Analyzing the proof of Theorem 1 gives a more explicit estimate:

$$\lim_{n\to\infty}\inf_{\infty}\sqrt[n]{|P_n(z)|^2+|P_{n+1}(z)|^2}\geqslant 1+\frac{\operatorname{dist}(z,\,\operatorname{supp}\mu)^2}{2\lambda^2},\qquad \lambda=\limsup_{n\to\infty}\,\lambda_n.$$

2. APPLICATION TO POLYNOMIAL HYPERGROUPS

We start by briefly describing polynomial hypergroups. We refer to [6, pp. 159–162] for details (see also [3]). Let $\{P_n\}_{n\geq 0}$ be polynomials orthonormal with respect to a measure μ on the real line. We assume that the support of the measure μ is bounded from the right hand side, say

by 1. This is equivalent to requiring that $P_n(1)$ be positive numbers. Let $R_n(x)$ denote polynomials normalized at 1, i.e., $R_n(x) = P_n(x)/P_n(1)$. Assume also that the linearization coefficients c(n, m, k) in the product formula

$$R_n(x) R_m(x) = \sum_{k=|n-m|}^{n+m} c(n, m, k) R_k(x)$$

are nonnegative. Let $\omega_n = P_n(1)^2$. By using the coefficients c(n, m, k) we can define the convolution * of the two sequences a and b according to

$$(a*b)(k) = \sum_{n, m=0}^{\infty} c(n, m, k) \omega_n \omega_m a_n b_m.$$

With this operation $l^1(\omega_n)$, the space of sequences absolutely summable with respect to the weight ω_n , becomes a Banach algebra. This structure is a polynomial hypergroup, and μ is called the Plancherel measure, while ω_n is called the Haar measure of this hypergroup. The maximal ideal space of this hypergroup can be identified with the set

$$\mathscr{M} = \left\{ z \in \mathbb{C} : \sup_{n} |R_n(z)| \leq 1 \right\} = \left\{ z \in \mathbb{C} : |P_n(z)| \leq P_n(1), \ n \in \mathbb{N} \right\}$$

We are interested in the relation between \mathcal{M} and supp μ . We always have supp $\mu \subset \mathcal{M}$, (see [3, Theorem 7.3C, p. 41; 6, Theorem 1]).

THEOREM 2. Let $P_n(x)$ be polynomials orthonormal relative to μ , supp $\mu \subset (-\infty, 1]$, having nonnegative linearlization coefficients. If

$$\lim_{n \to \infty} \inf \sqrt[n]{P_n(1)^2 + P_{n+1}(1)^2} \le 1$$

then

$$\operatorname{supp} \mu = \{ z \in \mathbb{C} : |P_n(z)| \leq P_n(1), n \in \mathbb{N} \}.$$

In other words the maximal ideal space of $l^1(\omega_n)$ coincides with supp μ . In particular the algebra $l^1(\omega_n)$ is symmetric.

Proof. It suffices to show the inclusion from the right to the left as the opposite inclusion always holds true (cf. [6, Theorem 1]). Assume that $|P_n(z)| \le P_n(1)$, $n \in \mathbb{N}$. Then

$$\lim \inf \sqrt[n]{|P_n(z)|^2 + |P_{n+1}(z)|^2} \le \lim \inf \sqrt[n]{P_n(1)^2 + P_{n+1}(1)^2} \le 1.$$

In view of Corollary 1 this implies $z \in \text{supp } \mu$.

COROLLARY 2 ([2, 7, 8]). If $P_n(1)$ has subexponential growth, then the maximal ideal space of the Banach algebra $l^1(\omega_n)$ coincides with the support of the measure μ ; i.e., the algebra is symmetric.

ACKNOWLEDGMENTS

I thank Michael Voit for comments and for pointing out to me the references [7, 8]. I am grateful to the referee for an essential improvement of the exposition.

REFERENCES

- 1. G. Freud, "Orthogonal Polynomials," Pergamon Press, New York, 1971.
- 2. A. HULANICKI, On positive functionals on a group algebra multiplicative on a subalgebra, *Studia Math.* 37 (1971), 163–171.
- 3. R. I. JEWETT, Spaces with an abstract convolution of measures, Adv. Math. 18 (1975), 1-101.
- 4. E. M. Nikishin and V. N. Sorokin, "Rational Approximations and Orthogonality," Translations of Mathematical Monographs, Vol. 92, Amer. Math. Soc., Providence, RI, 1991.
- 5. H. STAHL AND V. TOTIK, "General Orthogonal Polynomials," Encyclopedia of Mathematics and Its Applications, Vol. 43, Cambridge Univ. Press, Cambridge, 1992.
- R. SZWARC, Convolution structures associated with orthogonal polynomials, J. Math. Anal. Appl. 170 (1992), 158-170.
- M. VOGEL, Spectral synthesis on algebras of orthogonal polynomials series, Math. Z. 194 (1987), 99-116.
- 8. M. Voit, Positive characters on commutative hypergroups and some applications, *Math. Z.* **198** (1988), 405–421.

Printed in Belgium Uitgever: Academic Press, Inc. Verantwoordelijke uitgever voor België: Hubert Van Maele Altenastraat 20, B-8310 Sint-Kruis