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0 Introduction

The main objective of this paper is to study relations between two systems of
orthogonal polynomials corresponding to two measures which differ by
a point mass. The intuition suggests that the difference operator associated
with polynomials via recurrence formula shouldn’t change too much if we add
a point mass to the measure. One expects that the new difference operator is
a compact perturbation of the original one. In Sect. 3 we show that under
some conditions on the measure it is so. This generalizes partially results of
Nevai [3]. However the statement is not true in general. We show an example
of two measures equal modulo a point mass such that corresponding differ-
ence operators are not compact perturbations of each other.

The basic tools we use are chain sequences and quadratic transformations.
These are described in Sect. 1 and 2. The notion of chain sequences is due to
Wall [5]. We refer to Chihara’s book [2] for results on chain sequences that
are frequently used in the present work. In particular a kind of master key is
Chihara’s theorem on the convergence of chain sequences [2, Theorem 6.4].
As his proof involves several results concerning chain sequences that are not
discussed here, we give an alternative straightforward proof in the Appendix.
Also, in Sect. 2, we characterize so called maximal parameter sequences for
chain sequences.

In Sect. 4 we discuss the growth of orthonormal polynomials on the
interval of orthogonality. Nevai et al. [4] showed that if the coefficients in the
recurrence formula are convergent then the polynomials have uniform sub-
exponential growth on the interval of orthogonality. 12 years earlier Nevai [3]
showed almost uniform subexponential growth in the interior of the interval.
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We show using tricks with quadratic transformations that one can derive
uniform subexponential growth from the almost uniform one. The method
works for measures whose support consists of an interval and finitely many
points off the interval.

1 Chain sequences

Let u be a probability measure on the real line IR all of whose moments are
finite. We will always assume that the support of u is an infinite so that the
monomials 1, x, x2, . . . are linearly independent. Let {P,},~o be a system of
orthonormal polynomials obtained from the sequence 1, x,x%,... by the
Gram-Schmidt procedure. Then P, obey a three-term recurrence formula of
the form

XPy=AyPpi 1+ BnPot An—1Pa-1 1)

where 4, are positive coefficients while f, are real ones. With this relation we
usually associate the difference operator L acting on sequences as

Lan=inan+l+ﬂnan+’1n—lan—1 (2)

L is a symmetric operator on the space £ 2(IN) of square summable sequences.
For any complex number z and initial value a, there exists a unique eigen-
a0

vector {a, }»=o corresponding to the eigenvalue z. This is due to the fact that
1, are nonzero numbers. The correspondence

Ji{a o Y, anPy
n=0

is an isometry from ¢ ?(N) into the Hilbert space & 2(R, dy). By (1) and (2) we
have
L=J*M,J

where M, is a linear operator on £ 2(R, dy) whose action is to multiply by the
variable x. As such the operator L has a simple spectrum which coincides with
that of M,, the latter being, as is well known, the support of . By this
reasoning the operator L is positive definite if and only if the support of the
measure p is contained in the half-axis [0, + o). The positivity of L can be
stated also in terms of the coefficients A, and f,. This is where the chain
sequence turn up in natural way. The following result is well-known. We will
give a short proof for the sake of completeness.

Proposition 1 [2, Theorem 9.2] The support of pis contained in [0, + o0) if and
only if B,>0, neN, and there is a sequence of numbers m, satisfying 0 =m, = 1
and

An-1

ﬂnﬁu— 1

=m,(1-m,—,) n=0,1,.... 3)
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Proof. Let 4, denote the n x n minor of the matrix of L, ie.

BO j'O 0 0
o B 00
A=t
0 0 o By ooy
0 0 - g B,

Expanding the determinant relative to the last row two times successively
gives a recurrence formula for 4,.

AnzﬁnAn—l—Ar%—lAn—Z ngz

Assume that supp u < [0, 4+ c0). Then L is positive definite operator. We
then have

+

Bu= | xPu(x)*du(x) .

0

Since the support of x is an infinite subset of nonnegative reals, then $,>0.
The positivity of L implies that 4,>0 for every n. Actually we have 4,>0.
Indeed, if 4,=0, then there would exist a sequence a with finite support such
that La=0. As L has simple spectrum, so a is a multiple of the sequence
{P,(0)},=0, which doesn’t vanish for infinitely many n. Hence a=0. For the
same reason f3,>0, for every n. Set 4_, =1, my=0 and

m 213—1 An—Z
" Bn An—l

Then 0=<m,<1, and also (3) is satisfied.

Conversely if f,>0 and there is a sequence m, satisfying (3), then the
sequence i, defined by i, =0, and

An-y
ﬂnﬁn—l

fulfills 0 <, <m, (cf. [2, Theorem 5.2, p- 93]). But as we have seen in the first
part of the proof

forn=1,2,....

An(1—1i,_y) n=1,2,...

~ _213—1 An—z
" ﬁn An—l

Hence 4,>0, for every neN and L is positive definite operator. []

Remark. The first part of the theorem can be also obtained by means of

[1, Theorem 1]. It is worthwhile comparing the second part of the theorem
with [1, Theorem 2].

Sequences {a,},~, that admit a representation of the form

an=gn(1 ~gn—l) Oégnél s
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are called chain sequences. { g, };% o is called a parameter sequence for {a, tn=o-
When go =0, then g, is called the minimal parameter sequence. By [2, Theorem
5.3, p. 94] there exists a maximal parameter sequence {M,} such that g, M,
for every parameter sequence {g, }»=o- If the maximal and minimal sequences
coincide we say that {a,}.% o determines its parameter sequence uniquely. We
are going to describe minimal and maximal parameter sequences by means of
quadratic transformations. We refer the reader to [2, Chaps. IIL5, Iv.2] for

more detailed treatment of the above notions.

2 Quadratic transformations

Let duo(y) and du, (y) be probability measures with infinite support contained
in [0, + o), having all moments finite, and related by

+ o0

dﬂ1(Y)=C~1deo(J’), C=5 yduo(y) .

0

The corresponding orthonormal polynomials Qo , and Q,,, satisfy the recur-
rence formula

Vi w=A2inQin+1+Bi,nQintAin-1Qin-1, i=0,1. “4)

Let dv;(x) be a symmetric measure such that
1
dvi(x) ='2‘d#i(x2) x20

and P;, be the polynomials orthonormal with respect to dvi(x). Then the
polynomials P, ,, are even functions while P; 5,41 are odd ones, hence they
satisfy a recurrence formula of the form

xPi =0 nPip+1+%in-1Pin-1, i=0,1. 5)

There are certain relations between those polynomials as well as between
coefficients of the corresponding recurrence formulas. They are summarized in
the following proposition which should be compared with [2, Theorem 9.1].

Proposition 2 We have

P 2n(y'?)=Qin(y) i=0,1 (6)

Y 2 Po ans 1 (1) =c12 Q4 n(¥) ()

%, 200, 2n+ 1= Ai,n 0 -1+ 20=Bin» i=0,1 ®)
%o,2n+1%0,2n+2=A1,n 03, 2n+ %0, 2041 =B1,n - )

Proof. The first formula follows from the fact that the polynomials P;, 54( y1i2),
are orthonormal relative to du;(y). Next observe that the polynomials
c12y=12p; . . 1 (y'/?) are orthonormal relative to ¢~ ' ydpuo(y)=dp1 (y). This
gives (7).
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By (5) we obtain
X2 P a0 =00 2n% 20+ 1 Py 2m+ 2 (0 21+ ai?Zn)Pi‘Zn
T+ 0, 2n— 2%, 20— 1 Py 20— 2 (10)
x2Pi,2n+ 1= 2041020+ 2P 2043 +(ai?2n+ai2,2n+ 1)Pi 2041
t 0201020 P 20— 1 (11)
Now combining (4) through (7), we get the conclusion. O
The formulas (8) and (9) imply that Bt af 2n—1 ar€ parameter sequences
for (Bi,nBin+1) "' AZs. These are the minimal parameter sequences as they take
value zero for n=0. Also p L },océ, 2n IS @ parameter sequence for

(B1,wB1w+r1)” 1/112’,,. We are going to show that this one is a maximal para-
meter sequence.

Theorem 1 Let du(y) be a probability measure with all moments finite, whose
support is infinite and contained in [0, + o). Let the corresponding orthonormal
polynomials Q, satisfy

an='1nQn+1 +BnQn+}~n—1Qn—l .

Ifj; *y~tdu(y)= + oo, then (B,fn+ 1)~ ' A2 is a chain sequence that determines
its parameter sequence uniquely. If the integral c=f ; * y~tdu(y) is finite then
letting dpo(y)=c~ 'y~ du(y), and adopting the notation preceding the theorem,
implies that the sequence f, ! ocg’ 2n IS the maximal parameter sequence for

(ﬂnﬁn%—l)_llf-

Proof. Suppose that g, is a parameter sequence for (8,8, )~ 42, and go>0.
First we are going to show that du(y) has finite moment of order — 1. Then we
will show that g, <, *ag ,,.
We may assume that
Gzn
In =_ﬁ;,,— )

for a sequence of numbers &,,. Set

~2 ~2
O2p+1 =ﬁn—a2n .

Then
ln—1=a~2n-la~2n
12
{ﬁn =“~22n+&22n+1 . ( )
Define the polynomials P, by P,=1 and
xﬁn=&nﬁn+l+&n—lﬁn‘l . (13)

Hence they are orthonormal with respect to a symmetric probability measure
d¥(x). By (12) and (13) the polynomials B, , 1 satisfy the formula

x2ﬁ2n+1=lnﬁzn+3+ﬂnﬁ2n+1+ln—1ﬁzn—1 . (14)
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As the polynomials xQ,(x?) satisfy the same formula we get
ﬁ2n+l(x)=51/2xQn(x2)’ ¢>0.

The polynomials y~Y/2P,, , ;(y'/2), are orthogonal with respect to y di(y*/?),
hence

28y di(y*?)=dpu(y) . (15)
This implies that du(y) has finite moment of order —1. Set

duo(y)=c~ 'y tdu(y) .

Then dy, (y)=du(y). From now on we follow the notation introduced in the
beginning of this section, except for the subscript 1, which we tend to drop
when denoting objects associated to du(y). We thus have

y~tdu(y)=y tdpi(y)=2cdvo(y*?) . (16)

Therefore by (15) and (16) the measures dv,(x) and d¥(x) can differ by a point
mass at 0. However by (16) dv,(x) cannot carry an atom at the origin. In
conclusion we get

di=ave+(1—a)do , 17

for a number a, 0<a<1.
Now observe that by (5) and (13) we obtain

x=xPg 0=00,0P0,1
x=xpo=&0P1 .

Since P, and P, , are orthonormal relative to the measures v and v, respec-
tively, we have

=ago jw Py, 1(x)*d{avo+(1—a)do}(x

-

+
=a“3,o f Py, 1(x)2 dvo(x)=aoc§,0 .

= 0

This implies
_ 073 <°‘§,o
Jo=7=7 -
Bo™ Po

Both g, and B; ‘a3, are parameter sequences for (B,B,+1)” ' 4+, the first one
by assumption, the other one by the considerations preceding the theorem

(attention: we have set f; ,=B,). In view of [2, Theorems 5.2, 5.3, pp. 93-94]
this yields that §, laé,,, is the maximal parameter sequence. []
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Remark. The first part of the Theorem can be also obtained by means of
[1, Theorem 1]. Is is also worthwhile comparing the second part of the
theorem with [1, Theorem 2].

3 Perturbations of orthogonal polynomials

Let du(y) be a probability measure with infinite support contained in
[0, + o0). The corresponding orthonormal polynomials Q, satisfy the recur-
rence formula

an=AnQn+l+ﬂnQn+An-—lQn—1 .

By Proposition 1 we know that ,>0, and (BaBn+1)A7 is a chain sequence.
For the purpose of this paper we introduce the following notion.

Definition 1 Let A>0. We say that du(y) belongs to the class %(A), if
supp u < [0, + o0) and

bony, %.&\/Z.

’1n+1

Observe that

L

.Bn+1 ,ﬂnﬁn+1

Thus by [2, Theorem 6.4] (see also Appendix) the number A can take values
between 0 and 4.

The class ¥(A) is invariant for two types of perturbations. For 0<a <1, let
Ua=ap+(1—a)d,.
Theorem 2 (i) du(y)e%(A) iff ydu(y)e€(4).

(ii) du(y)e€(A) iff du.(y)e@(A).
Proof. (i) Adopting the notation of Sect. 2, we have to show that du,(y)e%(4)
iff dpy(y)eb(4).

Assume that du,(y)e%(A4). By Theorem 1 the sequence f; ,l,ocg, 2n 18 the

maximal parameter sequence for (Bi.aB1,n+1)"1A],,. As by (18) the latter
converges to A4, so by [2, Theorems 6.3, 6.4, p. 102] (see Appendix) we have

A3 2m n 14+/1—44
Gh=—m—> . (19)
ﬁl,n 2
By Proposition 2 (9) and (19) we have

(18)

du(y)e%(A)»( br oy, 2 )

2 2
%0, 2n+1 _ﬂl,n—ao,zn

2 2
0o, 2n %o, 2n

=1~g,,_,1>1—— 1~4A—B. (20)

9n 1+ /1—-44
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By (18) and (19) we also have

2
ao.;n+2=ﬁ1,n+1 gn+1_n_)1 . 21)
%0, 2n ﬂl.n 9n

Now (20) and (21) imply
2
n 1—
(:0,2,, X 1+\/ 44 ‘ (22)
%o,2n-1 1-ﬁ—-4A
Combining (20), (21) and (22) gives

%0,n+2 n
—= 1. 23
don (23)

Therefore by (8)

Z’O,n+1 ®0,2n+2%0,2n+3 n
= -1.

Ao,n %o0,2n%0,2n+1

Next, (8), (20), (22) and (23) give

2 2
Bo.n _%0,2n—1+ %0, 2n

Aon  Oo,2n%0,2n+1

__Oo,2n-1%0,2n-1 , %0,2n n

1 1
B+—=—.
Oo,2n+1 0,20 %0,2n+1 \/E \/—IZ

Hence duy,e%(A). The proof of the opposite implication of (i) is similar and is
left to the reader.

(ii) Observe that if we set po = p,, the measure y; does not depend on the
choice of a. Hence by the first part of the theorem, ue®(A4) if and only if
u1€%(A), and this holds if and only if u,e€(4). O

Theorem 3 Let Q, and Q\” be the polynomials orthonormal relative to the
measures y and p, = apu+(1—a)d, respectively. Assume that the support supp
is bounded. Let

an=ann+1+ﬂnQn+An—1Qn—1
YO =0+ B0+ A, 0,
If du(y)e¥(A), then
A2, 50 and BP—B,50.

Proof. Consider pairs of measures of the form (uo, 1), Where po=py, or
po=p. As we have already seen, in both cases the measures u; coincide.
However the coefficients «, , and B, , are not equal, and so we must denote
them differently according to the case. Let a, ,, Bo,» and ad, B5", denote the
sequences corresponding to uo=u and po = p'®, respectively. The correspond-

ing sequences with subscripts 1 are identical.
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By Proposition 2 and remarks following it, the sequences

h,= “3‘ 2n B = (O‘(()a,)zn)z (24)

ﬂl.n ﬁl.n

are the parameter sequences for (B1,aB1.n+1)” lif_,,. By Theorem 2 we have
dp; €¥€(A). Hence by already quoted Chihara’s result [2, p. 102] the sequences
h, and h{® are convergent and

nlty/1-44 0, 1+ /1-44
by B8 e n BN (25)
Actually, since by Theorem 1 A is not a maximal parameter sequence, then

by [2, Theorems 6.3, 6.4] it tends to 3(1—./1—44). Moreover we can assume
without loss of generality, that #({0})=0. Hence by Theorem 1, h, is the

maximal parameter sequence and as such must tend to 1(1+,/1-44). In any
case (25) is sufficient for our purposes.
By Proposition 2 and (24) we have

(A)> = (4”2 =(ho,n)? — (A5",)?
=BrnBron+ 1 {h(1=hy)—h"(1 - )}
Bu—B1" = Bo.n— BSs
=a3,2n““3,2n—2_(a({)‘f)2n)2+(a(()a,)2n-2)2
=Brnbn—Bin—1hu- 1 —Brahi® + By w1 B

Now the conclusion follows as sequences h, and h'® are convergent, f, , is
bounded and B, ,/B; 41 is convergent to 1 (in view of u;€%(4)), and finally
because

h(1—=h) 54 BO1—h")5 4.
O

Remark. 1t is worth observing that the polynomials Q, and Q' are cases of
the family denoted by P! in [1, Theorem 2].
Let Q, denote the polynomials orthonormal relative to the measure U, and

YOu=2n0ns 1+ PuQu+An-10p- .
Following [3] we say that a measure u belongs to M(a, b), if
In>2a, B, 5b.
Corollary 1 (Nevai) Let ueM(a, b), and (y—A) be positive on supp u. Then
(y—A)du(y)eM(a, b).

Proof. Translating the measure if necessary, we may assume that 4 =0. Then
supp p < [0, + 00). In that case we have b> 0. Hence the measure u, belongs to
%(a?/4b?). By Theorem 2 also the measure duy(y)=cydu(y) is in €(a?/4b?).
To complete the proof we need to show that either A1,n OI By, is convergent.
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This can be read off from the proof of Theorem 2. Indeed, by (8) and (9) we
have

A o= ) %o,2n+2
1,n=00,2n+1%0,2n+2=A0,n— -
%o, 2n

Thus by (23)

lim Ay = lim Ao, .

n—* oo

O
Let L and L@ denote difference operators associated with u and p'@, i.e.
Lay=/n0ns 1+ Pulnt An-18n-1
L9a,= A", 1+ B Gyt A2 1Gn 1 -
Theorem 3 states that if ue%(A4) then L@ is a compact perturbation of the
operator L. It is not so in general, as the following example shows.
Example I Roughly the construction consists in finding a chain sequence with
two parameter sequences that are not approximately equal at infinity. Let
2712 for n=4k, 4k+1
a,={ 3712 for n=4k+2
2123712 for n=4k+3
2123712 for n=4k
G, ={ 3712 for n=4k+1
2712 for n=4k+2, 4k+3.

K
]
|

Observe that
Ozt 1002n+2=02n+182n+2 > (26)

a22n+a22n+1=&22n+&22n+1 B (27)
On the other hand
. 1 J/2\
®2n02p+1— X2p 02041 = i(z-*{*) . (28)
Consider orthogonal polynomials defined by the recurrence relations
xpnzanPn+1+an—1Pn—la Py=1,
xﬁnz&nﬁn+1+&n~lﬁn—la ﬁ0=1 .

The polynomials P, and P, are orthonormal relative to symmetric measures
dv(x) and d7(x), respectively. Let

du(y)=2dv(y*'?)  dji(y)=2d%y""?).
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The polynomials y~'2P,,, , (y"/?) and y~ /2 Py 1(yV?) are orthogonal rela-
tive to ydu(y) and ydji(y), respectively. By (26) and (27) they satisfy the same
recurrence formula. Thus

ydu(y)=ydji(y) .

Hence the measures du(y) and dii(y) can differ by a point mass at 0. The
corresponding orthogonal polynomials are 0n(»)=Pu(y'?*) and Q,(y)=

Py,(y'?) which in view of (26), (27) satisfy the recurrence relations
an=/1nQn+1 +ﬂnQn+'1n—1Qn—1 H
yénz'TnQn-F 1 +Enén+Zn— lén— 1,

where A,=w,,a,,,,, and )T,,=o?2,,o?2,,+1. By (28) the difference 1,—4, stays
away from 0, despite the fact that the corresponding measures are equal
modulo point mass at 0.

4 Growth of orthogonal polynomials

Let Q, denote the polynomials orthonormal relative to the measure y, and

an='1nQn+1+ﬂnQn+'1n—lQn—1 .

Assume peM(a, b). It is well-known that since the formula is a compact
transformation of the constant-coefficients recurrence formula with 1,=a/2,
and B,=b, the support of the measure p consists of the interval [b—a, b+a]
and the denumerable set, whose accumulation points belong to this interval.
In [3, Theorem 3.9, p. 117 it was shown that if a measure y is in M(a, b), then

On(y)? _
Qo) +0:1(»)*+ - +0.(»)?

uniformly for ye[b—a, b+a]. In particular the polynomials Q,(y) have al-
most uniform subexponential growth in (a—b, a+b), ie.

limsup J/|Q,(y)| 1,

uniformly for ye[c,d] < (b—a, b+a). It took twelve years of efforts to drop
the word “almost” from the estimate. Namely in [4, Theorem 2] it is shown
that (29) holds without the factor b2 —(y—a)?, and also the exponent 2 can be
replaced by any positive p. In particular the polynomials have uniform
subexponential growth in the entire closed interval [b—a,b+a].

In this section we are going to show that there are cases when subexponen-
tial growth at the end points of the interval can be derived from Nevai’s result
(29) itself. By using affine transformations we can reduce considerations only
to the class M(4, }), We start with the simplest case.

lim [b*—(y—a)*] 0, (29)
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Proposition 3 (Nevai, Totik, Zhang) Assume that peM(3,%), and supppu=

[0, 1]. Then
limsup \/1Q.(y)|=1,
uniformly in [0, 1].

Proof. Let dv(x) be the symmetric measure defined by dv(x)=}du(x?), for
x>0. As we have seen in Sect. 2 the polynomials P,(x) that are orthonormal
relative to dv(x), satisfy

XP,,=a"Pn+1+¢X,,_1P,,_1 >

and P,,(x)=0.(x?). Also by (8) the sequence gn=02,_1/B, is a parameter
sequence for ap=A7_1/(Bu1PB»)- By assumption we have a,—1/4. Hence by
[2, Theorem 6.4] (see also Appendix) we have

oczz..-1=gnﬁ..—+% :
By (8) we also have
A 1
acz,,=a2n+1 ~5-

This implies that ve M (0, 1). By Nevai’s theorem (see (29)) we conclude that
limsup \/|P,(x)|<1,
uniformly for xe[ —1+g¢, 1 —¢], for any ¢>0. In particular

lim sup {/|Q4(y)| =limsup /| P2a(y*)| <1,

uniformly for any ye[0, 1 —¢]. By considering the reflected measure di(y)=
du(1—y), we can deduce that also

limsup /10.(»)I=1,

uniformly for any ye[e, 1]. This completes the proof. [

This method works also for measures that admit finitely many points off
the interval [0, 1].

Proposition 4 (Nevai, Totik, Zhang) Assume that ueM (3, %), and supp p=
[0, 1]UF, where F is a finite set of points disjoint from [0, 1]. Then

limsup 1/1Q.(»I=1,
uniformly in [0, 1].

Proof. We will show the conclusion for ye[0, 1 —¢], and then extend it to the
entire interval by considering, as at the end of the preceding proof, the
measure reflected about the point 3.
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Let y, be the least negative point in F. Let duo(y)=du(y—yo). Then
Ho€M(a, b—y,). By Corollary 1 we have u1€M(a, b—y,), where du,(y)=
¢y dpo(y). By (5) and Proposition 2 (6), (7) the polynomials Q, , and Q 1,n are
related by

Qo,n=00,20Q1,n+0%0,20-1Q1 n—1 -

The sequence o, is bounded as the corresponding measure dv, has bounded
support. If polynomials Q, , satisfy

limsup /10, .())I<1,

uniformly on [0, 1 —¢], then also

lim sup 3/ Qo.a(y)| <1 .

Thus it suffices to consider the measure dui(y +yo), whose support contains
fewer points off the interval [0, 1]. Repeating this argument we can reduce the
problem to the case of measure in M (3,4), when we don’t have any mass
point to the left from 0. Then we can apply Proposition 3. []

It would be interesting to know if there is a similar way of handling the
case of infinitely many points off the interval.

Appendix

For the sake of selfcontainment we will give an alternative proof of the fact
that if a chain sequence is convergent then any parameter sequence is conver-
gent as well. The result is due to Chihara [1], and can be found in [2], too. The
proof is based on a theory of chain sequences developed by Wall [5]. We
present a straightforward proof for the sake of completeness.

Proposition 5 Let a sequence a, be of the form a,=(1—g,)gn+1, where
0=<g.<1.Ifa, is convergent then also gn is convergent. Moreover, if lim, a,=a,

then 0<a<1/4, and
1+./1—4a
—

Proof. First we show that a < 1/4. For a contradiction assume a> 1 /4. Then
In+1(1—g,)=1/4 for n large. Thus

lima,=
n

1
> >g .
gn+1=4(1 ~gn)=gn

This means g, is increasing, hence it converges to g,for 0 < g < 1. Consequently
a=(1-g)g<1/4.
Let

s,,=%(1—./(1—4a,,)+) S..=%(1+\/(1—4an)+)~



70 R. Szwarc

Observe that
gn_>—_-gn+1¢>an§1/4 and Suégnésrw (30)

We have s,—s, and S,—S, where

s=%(1——«/1—4a), S=%(1+«/1—4a).

Let 6>0. Take N large so that |Sy—S| <4, for n>N. Assume that gy>S+9.
Thus gy=Sy. In view of (30) this implies

IN+12gN>S+0.

Now by induction one can show that g, is increasing beginning from N. Thus
gn converges to a number strictly greater than S. This gives a contradiction.
Therefore we can conclude that

limsupg,=S. (31)

The case a=4 requires a special approach. If a=%, then s=S=3. Let

e,=3+/(1—4a,),. Then by (30) we obtain

1<8
gn—3

In+12Gn<>

As ,—0, we get either liminfg, >3 or g, is decreasing beginning from some N.
In view of (31) this completes the proof in this case.
Let’s turn to the case a<%. Then s<3<S.

(1) Assume that d=liminfg,e(s, S). Let 0 <8 < S —d. Then there is N, such
that
GnZSn, |S,—S|<6 forn=N.

Since d < S —9, there exists n= N with
SnSgu=S—0=S, .
By virtue of (30) we obtain
Snt1S5gn+1SgnSS—0=Sp+1 -

Now by induction we can show that limsup g,< S —d. Letting 6 tend to S—d
we end up with

limsupg,<d=liminfg, .

(2) Assume that d=liminf g,<s. Fix § >0 such that d+ 6 <1, There exists
N, such that

a,£(d+d6)(1—d—9) fornz=N. (32)
By assumption g,<d+ 9, for some n=N. Then by (32) we have

a, < a,

= <
gn+1 1-—g,, l_d—6=d+5'
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By induction we conclude that gm=d+96, for any m>n. Consequently
limsup g,<d+ 4. Since § is arbitrary we get liminf g, =lim sup g,.
(3) liminf g,>S. By (31) this implies
liminf g, =limsup g,=S. [
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