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1 Wstęp

Problem momentów pochodzi od Stieltjesa (1894). Zagadnienie polega na
znalezieniu miary (lub funkcji niemalejącej) σ na półprostej [0,+∞) przy
zadanych momentach mn dla dowolnego n = 0, 1, 2, . . . . Momentami miary
nazywamy całki

mn =
∫ ∞

0
xndσ(x).

Pierwsze trzy momenty mają naturalną interpretację fizyczną.∫ ∞
0

dσ(x) całkowita masa miary∫ ∞
0

x dσ(x) moment statyczny∫ ∞
0

x2dσ(x) moment bezwładności

Około 1919 Hamburger badał rozszerzony problem momentów, gdzie rozwa-
żał miary o nośniku na całej prostej rzeczywistej.

Dwa podstawowe zagadnienia problemu momentów, Stieltjesa lub Ham-
burgera, to istnienie i jednoznaczność miary. Chcemy wiedzieć, czy dla da-
nego ciągu liczb {mn}∞n=0 istnieje miara σ na półprostej nieujemnej lub na
całej prostej, której momentami byłyby liczby mn. W przypadku, gdy taka
miara istnieje, chcemy stwierdzić, czy jest ona jedyna czy też takich miar jest
więcej. Problem jednoznaczności jest związany ze zbieżnością ułamków łań-
cuchowych, a także z istotną samosprzężonością pewnych operatorów, tzw.
macierzy Jacobi’ego. Stieltjes zajmował się problemem momentów w związ-
ku z badaniem własności ułamków łańcuchowych. Od niego pochodzą dwa
podstawowe narzędzia stosowane powszechnie w analizie: całka Stieltjesa -
tzn. całka względem funkcji o wahaniu ograniczonym, oraz wzór Stieltjesa
na odwrócenie - pozwalający wyznaczyć miarę przy pomocy transformaty
F (z) =

∫
(x− z)−1dσ(x).
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2 Ciągi dodatnio określone, wielomiany orto-
gonalne i macierze Jacobi’ego

Definicja 2.1. Ciąg liczb {mn}∞n=0 nazywamy dodatnio określonym, jeśli

N∑
i,j=0

mi+jzizj > 0

dla dowolnej liczby naturalnej N i dla dowolnego ciągu liczb zespolonych
z0, z1, . . . , zN , takiego, że |z1|2 + |z2|2 + . . .+ |zN |2 > 0.

Innymi słowy, ciąg {mn}∞n=0 jest dodatnio określony, jeśli dla dowolnej
liczby N macierz {mi+j}Ni,j=0 jest dodatnio określona. Niech

∆n =

∣∣∣∣∣∣∣∣∣∣
m0 m1 · · · mn

m1 m2 · · · mn+1
...

... · · · ...
mn mn+1 · · · m2n

∣∣∣∣∣∣∣∣∣∣
(2.1)

Twierdzenie 2.2. Ciąg {mn}∞n=0 jest dodatnio określony wtedy i tylko wtedy,
gdy ∆n > 0 dla każdej liczby n = 0, 1, 2, . . . .

Dowód. Por. podręcznik algebry liniowej.
W szczególności ciąg dodatnio określony spełnia ∆0 = m0 > 0. Bez straty

ogólności będziemy zawsze zakładać, że m0 = 1. Ponadto dodatnia określo-
ność wymusza m2n > 0 oraz m2n−1 ∈ R.

Definicja 2.3. Ciąg {mn}∞n=0 dodatnio określony będziemy nazywać cią-
giem momentów Hamburgera. Ciąg spełniający dodatkowo warunek, że
{mn+1}∞n=0 jest dodatnio określony, będziemy nazywać ciągiem momentów
Stieltjesa.

Przykład 2.4.

Niech σ będzie miarą na prostej, której nośnik jest nieskończonym zbio-
rem oraz całki

∫
x2ndσ(x) są zbieżne dla każdej liczby naturalnej n. Wtedy

momenty

mn =
∞∫
−∞

xndσ(x)
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są dobrze określone. Sprawdźmy, czy {mn}∞n=0 jest ciągiem momentów Ham-
burgera.

n∑
i,j=0

mi+jzizj =
∞∫
−∞

 n∑
i,j=0

xizix
jzj

 dσ(x) =
∞∫
−∞

∣∣∣∣∣
n∑
i=0

zix
i

∣∣∣∣∣
2

dσ(x) ­ 0.

Załóżmy niewprost, że ostatnia całka jest równa zeru. Wtedy
n∑
i=0

zix
i = 0 dla x ∈ suppσ.

Ponieważ nośnik miary σ jest nieskończony, to wielomian
∑n
i=0 zix

i jest tożsa-
mościowo równy zeru. Zatem z0 = z1 = . . . = zn = 0. Zauważmy, że warunek
m0 = 1 oznacza, że σ jest miarą probabilistyczną.

Przykład 2.5.
Rozważmy miarę probabilistyczną na półprostej [0,+∞), spełniającą za-

łożenia poprzedniego przykładu. Wiemy już, że ciąg {mn}∞n=0 jest dodatnio
określony. Z założenia ν(x) = xdσ(x) jest miarą nieujemną o skończonych
momentach. Ponieważ

∞∫
0

xndν(x) =
∞∫
0

xn+1dσ(x) = mn+1,

to ciąg {mn+1}∞n=0 jest dodatnio określony. Zatem {mn}∞n=0 jest ciągiem mo-
mentów Stieltjesa.

Za pomocą ciągu momentów Hamburgera {mn}∞n=0 wprowadzimy formę
hermitowską (·, ·) dla wielomianów o współczynnikach zespolonych, według
wzoru

(p, q) =
N∑

i,j=0

aibjmi+j,

gdzie

p(x) =
N∑
i=0

aix
i, q(x) =

N∑
j=0

bix
j.

Dzięki dodatniej określoności ciągu {mn}∞n=0 forma (p, q) określa iloczyn ska-
larny na przestrzeni liniowej P wszystkich wielomianów. Zauważmy, że mno-
żenie przez x jest operatorem symetrycznym na P. Wynika to ze wzoru

(xp, q) = (p, xq) =
N∑

i,j=0

aibjmi+j+1. (2.2)



Ciągi dodatnio określone, wielomiany ortogonalne i macierze Jacobi’ego 5

Z (2.2) natychmiast otrzymujemy

(hp, q) = (p, hq), p, q, h ∈ P. (2.3)

Przykład 2.6.

Niech mn =
∞∫
−∞

xndσ(x). Wtedy

(p, q) =
∞∫
−∞

p(x)q(x) dσ(x).

Naszym celem będzie teraz skonstruowanie bazy w przestrzeni wszystkich
wielomianów, ortonormalnej względem iloczynu skalarnego (·, ·). Zadanie po-
lega na znalezieniu ciągu wielomianów pn takich, że

pn(x) = knx
n + kn−1x

n−1 + . . .+ k0, gdzie kn > 0

(pn, pm) =
{

1 dla n = m
0 dla n 6= m.

Możemy otrzymać ciąg {pn}∞n=0 poprzez zastosowanie metody Grama-
Schmidta do ciągu jednomianów 1, x, x2, . . . , xn, . . . . Można też określić wie-
lomiany pn jawnym wzorem.

Wzór (2.4). Niech p0 = 1 oraz

pn(x) =
1√

∆n−1∆n

∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mn

m1 m2 · · · mn+1
...

... · · · ...
mn−1 mn · · · m2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.4)

dla n > 0. Wtedy wielomiany pn są ortonormalne względem (·, ·).

Dowód. Zauważmy, że

pn(x) = knx
n + . . .+ k0,

gdzie

kn =
∆n−1√
∆n−1∆n

=
√

∆n−1√
∆n

> 0. (2.5)
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Zatem pn jest wielomianem stopnia n. Mamy

(pn, xk) =
1√

∆n−1∆n

∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mn

m1 m2 · · · mn+1
...

... · · · ...
mn−1 mn · · · m2n−1

mk mk+1 · · · mn+k

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Zatem (pn, xk) = 0 dla k ¬ n− 1. Stąd (pn, pm) = 0 dla m < n. Dalej

(pn, xn) =
∆n√

∆n−1∆n

=
√

∆n√
∆n−1

.

Korzystając z (2.5) otrzymujemy

(pn, pn) = (pn, knxn + . . .) = kn(pn, xn) =
√

∆n−1√
∆n

√
∆n√

∆n−1
= 1.

Uwaga 2.7.

Ze wzoru 2.4 wynika, że wielomiany pn są funkcjami rzeczywistymi.

Każdy wielomian jest kombinacją liniową wielomianów p0, p1, . . . , pn, . . . ,
ponieważ

lin{1, x, . . . , xn} = lin{p0, p1, . . . , pn}.

W szczególności

xpn = an,n+1pn+1 + an,npn + an−1,npn−1 + . . .+ an,0p0.

Dzięki ortogonalności wielomianów pn i symetrii (2.2) otrzymujemy

an,k = (xpn, pk) = (pn, xpk) = 0, dla k ¬ n− 2,

oraz

an,n+1 = (xpn, pn+1) = (pn, xpn+1) =: λn,
an,n−1 = (xpn, pn−1) = (pn−1, xpn) =: λn−1,

an,n = (xpn, pn) =: βn.
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Reasumując otrzymujemy wzór rekurencyjny postaci

xpn = λnpn+1 + βnpn + λn−1pn−1, n ­ 1 (2.6)
xp0 = λ0p1 + β0p0. (2.7)

Porównując współczynniki przy xn+1 uzyskujemy

λn =
√

∆n−1∆n+1

∆n

> 0,

λ0 =
√

∆1

∆0
> 0.

Wzór rekurencyjny pozwala obliczyć kolejno wielomiany p1, p2, . . . , gdy znane
są liczby λn i βn, przy warunku początkowym p0 = 1. Najpierw obliczamy

p1 =
1
λ0

(x− β0).

Następnie korzystamy z

pn+1 =
1
λn

(xpn − βnpn − λn−1pn−1).

Wzory (2.6) i (2.7) można zapisać w postaci macierzowej. Wprowadźmy ozna-
czenia

P (x) =


p0(x)
p1(x)
p2(x)

...

 , J =



β0 λ0 0 0 0 · · ·
λ0 β1 λ1 0 0 · · ·
0 λ1 β2 λ2 0 · · ·
0 0 λ2 β3

. . .

0 0 0 . . . . . .
...

...
...


. (2.8)

Wtedy wzory (2.6) i (2.7) można krótko zapisać

J P (x) = xP (x). (2.9)

Macierz J nazywamy macierzą Jacobi’ego. Z jej postaci można odczytać sy-
metrię. Na przekątnej macierzy znajdują się liczby rzeczywiste, natomiast
liczby bezpośrednio pod i nad przekątną są dodatnie.
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Podany wyżej ciąg rozumowań pokazuje, że ciąg dodatnio określony {mn}∞n=0
wyznacza macierz Jacobi’ego J, której współczynniki pozwalają obliczyć re-
kurencyjnie wielomiany ortonormalne. Spróbujemy rozwiązać zagadnienie
odwrotne i odpowiedzieć na pytanie, czy każda macierz Jacobi’ego jest zwią-
zana w wyżej opisany sposób z ciągiem dodatnio określonym.

Rozważmy macierz postaci jak we wzorze (2.8), gdzie λn > 0 oraz βn ∈ R.
Określamy wielomiany p0, p1, p2, . . . rekurencyjnie korzystając ze wzorów (2.6)
i (2.7), przyjmując p0 = 1. W przestrzeni P wprowadzamy iloczyn skalarny
kładąc

(pn, pm) =
{

1 dla n = m
0 dla n 6= m.

i rozszerzamy liniowo na całą przestrzeń. W ten sposób układ {pn}∞n=0 sta-
nowi bazę ortonormalną. Rozważmy operator mnożenia przez zmienną x w
przestrzeni P. Wzory (2.6) i (2.7) oznaczają, że macierzą tego operatora w
bazie {pn}∞n=0 jest macierz Jacobi’ego zadana w (2.8). Z symetrii tej macierzy
wynika zatem tożsamość

(xpn, pm) = (pn, xpm).

Wzór ten można też sprawdzić bezpośrednim rachunkiem. Poprzez rozsze-
rzenie liniowe dostajemy

(xp, q) = (p, xq), p, q ∈ P. (2.10)

Określmy ciąg mn wzorem
mn = (xn, 1).

Wtedy z (2.10) wnioskujemy, że

mi+j = (xi+j, 1) = (xi, xj).

Sprawdzamy dodatnią określoność ciągu {mn}∞n=0.

N∑
i,j=0

mi+jzizj =
N∑

i,j=0

(xi, xj)zizj =

 N∑
i=0

zix
i,

N∑
j=0

zjx
j

 ­ 0. (2.11)

Pozostaje pokazać, że ostatnia nierówność jest ostra przy założeniu, że nie
wszystkie współczynniki zi zerują się. Załóżmy, że |z0|2+|z1|2+. . .+|zN |2 > 0
i zapiszmy wielomian

∑N
i=0 zix

i w bazie {pn}∞n=0. Otrzymamy

N∑
i=0

zix
i =

N∑
i=0

ξipi,
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dla pewnych współczynników ξi takich, że |ξ0|2 + . . . + |ξN |2 > 0. Ponieważ
wielomiany pn są ortogonalne, to N∑

i=0

zix
i,

N∑
j=0

zjx
j

 =
N∑
i=0

|ξi|2 > 0.

Reasumując, wychodząc od macierzy Jacobi’ego J skonstruowaliśmy ciąg
Hamburgera {mn}∞n=0. Zauważmy, że ze wzoru (2.11) wynika, że iloczyn ska-
larny określony przez nas w P i iloczyn skalarny wyznaczony przez ciąg
{mn}∞n=0 są identyczne. Zatem gdybyśmy dla ciągu {mn}∞n=0 powtórzyli kon-
strukcję wielomianów ortonormalnych, otrzymalibyśmy ciąg {pn}∞n=0 i ma-
cierz Jacobi’ego J.

3 Kilka użytecznych wzorów

Dla zadanego ciągu Hamburgera {mn}∞n=0 wprowadzamy iloczyn skalarny
(·, ·) w przestrzeni wielomianów P i konstruujemy macierz Jacobi’ego o współ-
czynnikach λn i βn, tak jak to było opisane w poprzednim rozdziale.

Rozważmy równanie różnicowe

xan = λnan+1 + βnan + λn−1an−1, n ­ 1, (3.1)

przy ustalonej wartości x. Przy zadanych wartościach początkowych a0 i a1

równanie (3.1) ma jednoznaczne rozwiązanie, bo λn > 0. Na przykład, gdy

a0 = p0 = 1,

a1 = p1(x) =
x− β0

λ0
,

to an = pn(x). Z kolei dla

a0 = q0 = 0,

a1 = q1(x) =
1
λ0
,

otrzymujemy rozwiązanie an = qn(x). Wyrażenie qn(x) jest wielomianem
stopnia n − 1 zmiennej x dla n ­ 1. Wielomiany qn(x) noszą nazwę wielo-
mianów drugiego rodzaju, lub wielomianów stowarzyszonych. Wprowadźmy
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oznaczenie

Q(x) =


q0(x)
q1(x)
q2(x)

...


Wtedy

(JQ(x))n = xqn(x), n ­ 1,
(JQ(x))0 = λ0q1(x) + β0q0(x) = xq0(x) + 1.

Powyższe wzory możemy zapisać łącznie jako

JQ(x) = xQ(x) + δ0, gdzie δ0 =


1
0
0
...

 . (3.2)

Wzór (3.3).

qn(x) =
(
pn(x)− pn(y)

x− y
, 1
)
y

, (3.3)

gdzie (·, ·)y oznacza iloczyn skalarny względem zmiennej y.

Dowód. Niech

an =
(
pn(x)− pn(y)

x− y
, 1
)
y

.

Widać, że a0 = 0 = q0(x). Dalej uwzględniając, że p1(x) = (x − β0)/λ0

otrzymujemy

a1 =
(
p1(x)− p1(y)

x− y
, 1
)
y

=
1
λ0

= q1(x).

Następnie dla n ­ 1 obliczamy xan.

xan =
(
x
pn(x)− pn(y)

x− y
, 1
)
y

=
(
xpn(x)− ypn(y)

x− y
− pn(y), 1

)
y

=
(
xpn(x)− ypn(y)

x− y
, 1
)
y

= λnan+1 + βnan + λn−1an−1.
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Ponieważ ciąg an spełnia równanie (3.1) i spełnia te same warunki począt-
kowe co ciąg qn(x), to an = qn(x).

Zapiszmy równanie (3.1) w następującej postaci.(
an
an+1

)
=
(

0 1
−λn−1

λn

x−βn
λn

)(
an−1

an

)
, n ­ 1.

Jeśli inny ciąg {bn}∞n=0 spełnia (3.1), to(
an bn
an+1 bn+1

)
=
(

0 1
−λn−1

λn

x−βn
λn

)(
an−1 bn−1

an bn,

)
, n ­ 1.

Obliczmy wyznaczniki obu stron ostatniej równości. Wtedy

anbn+1 − an+1bn =
λn−1

λn
(an−1bn − anbn−1).

Zatem
anbn+1 − an+1bn =

λ0

λn
(a0b1 − a1b0). (3.4)

Uwaga 3.1.
Wyrażenie

W (an, bn) =

∣∣∣∣∣ an bn
an+1 − an bn+1 − bn

∣∣∣∣∣ (3.5)

nazywamy, poprzez analogię z równaniami różniczkowymi drugiego rzędu,
dyskretnym wronskianem rozwiązań {an}∞n=0 i {bn}∞n=0. Zatem

W (an, bn) =
λ0

λn
W (a0, b0).

Stosując wzór (3.4) do ciągów an = pn(x) oraz bn = qn(x) otrzymujemy

Wzór (3.6).

pn(x)qn+1(x)− pn+1(x)qn(x) =
1
λn
. (3.6)

Rozważmy rozwiązania {an}∞n=0 i {bn}∞n=0 równania (3.1) odpowiadające
liczbom x i y, odpowiednio. Dla n > m ­ 0 mamy

(x− y)
n∑

k=m+1

akbk =
n∑

m+1

(xak)bk −
n∑

k=m+1

ak(ybk)

=
n∑

k=m+1

(λkak+1bk+βkakbk+λk−1ak−1bk)−
n∑

k=m+1

(λkakbk+1+βkakbk+λk−1akbk−1)

= λnan+1bn + λmambm+1 − λnanbn+1 − λmam+1bm.
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Wyprowadziliśmy zatem wzór

(x− y)
n∑

k=m+1

akbk = λmW (am, bm)− λnW (an, bn). (3.7)

Zastosujemy (3.7) dla an = pn(x), bn = pn(y) oraz m = 0. Najpierw zauwa-
żamy, że

λ0[p0(x)p1(y)− p1(x)p0(y)] = y − x = −(x− y)p0(x)p0(y).

Otrzymujemy wzór Christoffela-Darboux.

Wzór Christoffela-Darboux.
n∑
k=0

pk(x)pk(y) = λn
pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
, x 6= y. (3.8)

Podobnie stosując wzór (3.7) dla pary an = pn(x), bn = qn(y), lub an =
qn(x), bn = qn(y) otrzymamy trzy kolejne wzory.

(x− y)
n∑
k=0

pk(x)qk(y) = 1 + λn[pn+1(x)qn(y)− pn(x)qn+1(y)], (3.9)

(x− y)
n∑
k=0

qk(x)pk(y) = −1 + λn[qn+1(x)pn(y)− qn(x)pn+1(y)],(3.10)

(x− y)
n∑
k=0

qk(x)qk(y) = λn[qn+1(x)qn(y)− qn(x)qn+1(y)]. (3.11)

Wzór (3.10) można otrzymać z (3.9) przez zamianę x z y.
Przejście do granicy przy y → x we wzorze Christoffela-Darboux daje

Wzór (3.12).

n∑
k=0

p2
k(x) = λn{pn(x)p′n+1(x)− p′n(x)pn+1(x)}. (3.12)

Funkcja Kn(x, y) =
∑n
k=0 pk(x)pk(y) jest jądrem reprodukującym wielo-

miany stopnia niewiększego od n, tzn.

(p(y), Kn(x, y))y = p(x), p ∈ P, deg p ¬ n.
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Równość ta dla p(x) = pk(x), k ¬ n, wynika z ortogonalności. Dalej wy-
starczy skorzystać z faktu, że każdy wielomian stopnia co najwyżej n jest
kombinacją liniową wielomianów p0, p1, . . . , pn. Jądro Kn(x, y) można przed-
stawić w postaci wyznacznika.

Kn(x, y) = − 1
∆n

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 x · · · xn

1 m0 m1 · · · mn

y m1 m2 · · · mn+1

. . . . . . . . . . . . . . . . . . . . . .
yn mn mn+1 · · · m2n

∣∣∣∣∣∣∣∣∣∣∣∣
.

Wyprowadzimy jeszcze jeden wzór, który będzie przydatny w dalszej części.
W (3.1) podstawmy m = 0, x = z, y = z oraz

an = wpn(z) + qn(z),
bn = an,

gdzie z i w są ustalonymi liczbami zespolonymi.

n∑
k=0

|wpk(z) + qk(z)|2 =
n∑
k=0

akbk = |a0|2 + λn
Im (an+1bn)

Im z
− λ0

Im (a1b0)
Im z

Mamy |a0|2 = |w|2. Ponadto

λ0
Im (a1b0)

Im z
=

Im {λ0w[wp1(z) + q1(z)]}
Im z

=
Im {|w|2(z − β0) + w}

Im z

=
|w|2Im z − Imw

Im z
= |w|2 − Imw

Im z
.

Ostatecznie otrzymujemy

Wzór (3.13).

n∑
k=0

|wpk(z) + qk(z)|2 − Imw

Im z

=
λn

Im z
|wpn(z) + qn(z)|2 Im

wpn+1(z) + qn+1(z)
wpn(z) + qn(z)

. (3.13)



Zera wielomianów ortogonalnych 14

4 Zera wielomianów ortogonalnych

Lemat 4.1. Każdy wielomian p(x) nieujemny na R ma postać p(x) = A2(x)+
B2(x), dla pewnych wielomianów A(x) i B(x) o współczynnikach rzeczywi-
stych.

Dowód. Z założenia wynika, że wielomian p(x) ma postać

p(x) = c
n∏
i=1

(x− ri)(x− ri), gdzie c ­ 0.

Niech

h(x) =
√
c

n∏
i=1

(x− ri).

Wtedy p(x) = A2(x) +B2(x) dla A(x) = Reh(x) i B(x) = Imh(x).

Lemat 4.2. Każdy wielomian p(x) nieujemny na [0,+∞) ma postać p(x) =
A2(x)+B2(x)+xC2(x)+xD2(x) dla pewnych wielomianów A(x), B(x), C(x)
i D(x) o współczynnikach rzeczywistych.

Dowód. Jeśli wielomian p(x) nie ma ujemnych pierwiastków o krotności
nieparzystej, to p(x) jest nieujemny na całej prostej, więc ma żądaną postać
z poprzedniego lematu.

Niech −r1,−r2, . . . ,−rn oznaczają ujemne pierwiastki o krotności niepa-
rzystej. Wtedy p(x) ma postać

p(x) = q(x)
n∏
j=1

(x+ rj), (4.1)

gdzie q(x) jest nieujemny na całej prostej. Z poprzedniego lematu q(x) ma
postać

q(x) = A2(x) +B2(x), (4.2)

dla pewnych rzeczywistych wielomianów A(x) i B(x). Dla x ­ 0 mamy
n∏
j=1

(x+ rj) =
n∏
j=1

(
√
x+ i

√
rj)

n∏
j=1

(
√
x− i√rj).

Zauważmy, że dla pewnych wielomianów rzeczywistych C(x) i D(x) mamy

g(x) =
n∏
j=1

(
√
x+ i

√
rj) =

C(x) + i
√
xD(x) dla parzystych n

√
xD(x) + iC(x) dla nieparzystych n.
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Zatem
n∏
j=1

(x+ rj) = C2(x) + xD2(x). (4.3)

Korzystając z (4.1), (4.2) i (4.3) otrzymujemy tezę lematu.

Wniosek 4.3. Niech r(x) będzie niezerowym wielomianem nieujemnym na
prostej. Wtedy (r, 1) > 0

Dowód. Z Lematu 4.1 wielomian r(x) ma postać r(x) = A2(x) + B2(x).
Zatem korzystając z (2.3) i z faktu, że A(x) i B(x) są rzeczywiste otrzymu-
jemy

(r, 1) = (A2 +B2, 1) = (A,A) + (B,B) > 0.

Wniosek 4.4. Załóżmy, że {mn}∞n=0 jest ciągiem momentów Stieltjesa. Niech
r(x) będzie niezerowym wielomianem nieujemnym na półprostej [0,+∞). Wte-
dy (r, 1) > 0.

Dowód. Niech (·, ·)1 oznacza iloczyn skalarny związany z ciągiem momen-
tów {mn+1}∞n=0. Mamy

(xp, q) = (p, q)1.

Z Lematu 4.2 wielomian r(x) ma postać

r(x) = A2(x) +B2(x) + xC2(x) + xD2(x).

Wtedy korzystając z (2.3) otrzymujemy

(r, 1) = (A,A) + (B,B) + (xC,C) + (xD,D)
= (A,A) + (B,B) + (C,C)1 + (D,D)1 > 0.
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Wielomiany postaci

pn(x, τ) = pn(x)− τpn−1(x), gdzie τ ∈ R

będziemy nazywali wielomianami quasiortogonalnymi. Wielomian pn(x, τ)
jest ortogonalny do wielomianów stopnia niższego niż n− 1.

Twierdzenie 4.5.

(i) Wielomian pn(x, τ) posiada n różnych rzeczywistych pierwiastków.

(ii) Załóżmy, że {mn}∞n=0 jest ciągiem momentów Stieltjesa. Wtedy wszyst-
kie pierwiastki wielomianu pn(x) są dodatnie.

(iii) Pierwiastki wielomianów pn(x) i pn+1(x) leżą na przemian, tzn. po-
między dwoma pierwiastkami wielomianu pn+1(x) leży dokładnie jeden
pierwiastek wielomianu pn(x).

(iv) Wielomian qn(x) posiada n − 1 różnych rzeczywistych pierwiastków,
które leżą na przemian z pierwiastkami wielomianu pn(x).

Dowód. (i) Załóżmy, że wielomian pn(x, τ) zmienia znak w punktach
x1 < x2 < . . . < xm. Liczba m nie może przekroczyć n. Wtedy wielo-
mian

r(x) = pn(x, τ)(x− x1)(x− x2) . . . (x− xm)

ma stały znak. Ponieważ współczynnik przy najwyższej potędze wielomianu
r(x) jest dodatni, to r(x) przyjmuje wartości nieujemne. Z Wniosku 4.3 mamy

(pn(x, τ), (x− x1) . . . (x− xm)) = (r(x), 1) > 0.

Ponieważ wielomian pn(x, τ) jest ortogonalny do wielomianów stopnia niż-
szego niż n− 1, to m ­ n− 1. To oznacza, że pn(x, τ) posiada przynajmniej
n − 1 pierwiastków rzeczywistych. Z własności deg pn(x, τ) = n wynika, że
takich pierwiastków jest n.

(ii) Dowód tej części jest podobny do dowodu (i), przy czym wybieramy
tylko dodatnie liczby x1 < x2 < . . . < xm, i korzystamy z Wniosku 4.4.

(iii) Rozważmy dwa kolejne pierwiastki x1 i x2 wielomianu pn+1. Wtedy
liczby p′n+1(x1) oraz p′n+1(x2) mają przeciwne znaki. Ze wzoru (3.12) wynika,
że

λnpn(xi)p′n+1(xi) =
n∑
k=0

p2
n(xi) > 0, i = 1, 2.
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Zatem liczby pn(x1) i pn(x2) mają przeciwne znaki. W związku z tym wielo-
mian pn ma pierwiastek w przedziale (x1, x2).

(iv) Rozważmy znowu dwa kolejne pierwiastki x1 i x2 wielomianu pn+1.
Z (iii) wynika, że wielomian pn ma dokładnie jeden pierwiastek w przedziale
(x1, x2). Zatem pn(x1)pn(x2) < 0. Ze wzoru (3.6) wynika, że

pn(xi)qn+1(xi) =
1
λn

> 0, i = 1, 2.

Stąd qn+1(x1)qn+1(x2) < 0 i w konsekwencji wielomian qn+1 musi mieć pier-
wiastek w przedziale (x1, x2).

5 Konstrukcja rozwiązania problemu momen-
tów i mechaniczna kwadratura Gaussa

Dla ustalonej liczby rzeczywistej τ rozważamy wielomiany

pn(x, τ)(x) = pn(x)− τpn−1(x),
qn(x, τ)(x) = qn(x)− τqn−1(x).

Niech x1 < x2 < . . . < xn oznaczają kolejne pierwiastki wielomianu pn(x, τ).
Liczby xi zależą również od n i τ, tzn. xi = x

(n)
i (τ). Dowolny wielomian r(x)

stopnia co najwyżej 2n− 2 możemy przedstawić w postaci

r(x) = r1(x)pn(x, τ) + r2(x),

dla pewnych wielomianów r1, r2 takich, że deg r1 ¬ n − 2 i deg r2 ¬ n − 1.
Ze wzoru interpolacyjnego Lagrange’a otrzymujemy

r2(x) =
n∑
i=1

r2(xi)
pn(x, τ)

p′n(xi, τ)(x− xi)
=

n∑
i=1

r(xi)
pn(x, τ)

p′n(xi, τ)(x− xi)
.

Z ortogonalności pn(x, τ) i r1(x) wynika

(r, 1) = (r2, 1) =
n∑
i=1

r(xi)
p′n(xi, τ)

(
pn(x, τ)
x− xi

, 1
)
.

Ze wzoru (3.3) mamy(
pn(x, τ)
x− xi

, 1
)

=
(
pn(x, τ)− pn(xi, τ)

x− xi
, 1
)

= qn(xi, τ).

Reasumując otrzymaliśmy
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Wzór (kwadratura Gaussa). Dla dowolnego wielomianu r(x) stopnia co
najwyżej 2n− 2 zachodzi wzór

(r, 1) =
n∑
i=1

qn(xi, τ)
p′n(xi, τ)

r(xi). (5.1)

Uwaga 5.1.
Dla τ = 0 mamy pn(x, τ) = pn(x) i qn(x, τ) = qn(x). W tym przypadku

wzór (5.1) jest spełniony dla deg r ¬ 2n− 1.

Wprowadzamy oznaczenie

µi = µ
(n)
i (τ) =

qn(xi, τ)
p′n(xi, τ)

. (5.2)

We wzorze (5.1) podstawmy r(x) ≡ 1. Wtedy

µ1 + µ2 + . . .+ µn = 1. (5.3)

Pomnóżmy licznik i mianownik we wzorze (5.2). Wtedy z własności pn(xi)−
τpn−1(xi) = 0 można wyprowadzić wzór

µi =
pn−1(xi)qn(xi)− pn(xi)qn−1(xi)
pn−1(xi)p′n(xi)− pn(xi)p′n−1(xi)

.

Następnie korzystając z (3.6) i (3.12) otrzymujemy

µi =
1

n−1∑
k=0

p2
k(xi)

> 0. (5.4)

Uwaga 5.2.
Wzór (5.4) nie oznacza, że µi nie zależy od parametru τ, ponieważ zależ-

ność od τ jest ukryta w xi = x
(n)
i (τ).

Podstawienie we wzorze (5.1) wielomianu

r(x) =
[

pn(x, τ)
p′n(xi, τ)(x− xi)

]2

daje jeszcze jedno przedstawienie liczb µi.

µi =
(

pn(x, τ)
p′n(xi, τ)(x− xi)

,
pn(x, τ)

p′n(xi, τ)(x− xi)

)
> 0. (5.5)
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Uwaga 5.3.

Na podstawie (5.3) i (5.4) kwadratura Gaussa oznacza, że wielkość (r, 1)
jest całką wielomianu r(x) względem miary probabilistycznej skupionej w
punktach x1, . . . , xn. Korzystając z dodatniości mas µi można udowodnić
też, że zera wielomianów pn(x, τ) i qn(x, τ) są położone naprzemiennie.

Niech σn = σn(τ) oznacza miarę

σn =
n∑
i=1

µiδxi . (5.6)

Ze wzoru (5.1) wynika, że

mk = (xk, 1) =
∞∫
−∞

xk dσn(x), k = 0, 1, 2, . . . , 2n− 2. (5.7)

To oznacza, że σn jest niepełnym rozwiązaniem problemu momentów, bo
tylko pierwsze 2n− 2 momenty są równe odpowiednim liczbom ciągu mn.

Twierdzenie 5.4 (Hamburger). Liczby {mn}∞n=0 są ciągiem momentów mia-
ry o nośniku nieskończonym na prostej wtedy i tylko wtedy, gdy ciąg {mn}∞n=0
jest dodatnio określony.

Dowód. Konieczność warunku została udowodniona w Przykładzie 2.4.
Dla dowodu dostateczności rozważmy ciąg miar σn przy ustalonej wartości
τ, na przykład τ = 0. Dystrybuanty miar σn

Fn(x) =
x∫

−∞

dσn(y),

są funkcjami niemalejącymi na prostej, przyjmującymi wartości w przedziale
[0, 1]. Na podstawie Pierwszego Twierdzenia Helly’ego o wyborze ciąg Fn(x)
posiada podciąg Fni(x), zbieżny w każdym punkcie do pewnej funkcji nie-
malejącej F (x). Pokażemy, że F (x) wyznacza miarę rozwiązującą problem
momentów. W dowodzie skorzystamy również z Drugiego Twierdzenia Hel-
ly’ego stanowiącego, że dla funkcji ciągłej f(x) zachodzi

b∫
a

f(x) dFni(x) −−−→
i→∞

b∫
a

f(x) dF (x).



Konstrukcja rozwiązania problemu momentów 20

Niech ni > l + 2. Na podstawie (5.7) dostajemy

ml =
∞∫
−∞

xl dFni(x) =
A∫
−A

xl dFni(x) +
∫
|x|>A

xl dFni(x).

dla liczby A takiej, że −A i A są punktami ciągłości dla wszystkich dystry-
buant Fn i dla F. Oszacujemy drugą całkę korzystając znowu z (5.7).

∫
|x|>A

xl dFni(x) = Al
∫
|x|>A

|x|l

Al
dFni(x) ¬ Al

∫
|x|>A

x2l+2

A2l+2
dFni(x)

¬ A−l−2
∞∫
−∞

x2l+2 dFni(x) = A−l−2m2l+2.

Zatem∣∣∣∣∣∣∣
A∫
−A

xl dF (x)−ml

∣∣∣∣∣∣∣ = lim
i→∞

∣∣∣∣∣∣∣
A∫
−A

xl dFni(x)−ml

∣∣∣∣∣∣∣ ¬ A−l−2m2l+2. (5.8)

Dla l = 2r ostatnia nierówność oznacza, że całka
∞∫
−∞

x2r dF (x) jest zbieżna.

Wtedy z nierówności

∞∫
−∞

|x|2r−1 dF (x) ¬

 ∞∫
−∞

|x|2r dF (x)

1/2 ∞∫
−∞

|x|2r−2 dF (x)

1/2

otrzymujemy zbieżność całki
∞∫
−∞

x2r−1 dF (x). Przechodzimy z A do nieskoń-

czoności w (5.8) i otrzymujemy

ml =
∞∫
−∞

xl dF (x).

Twierdzenie 5.5 (Stieltjes). Liczby {mn}∞n=0 są ciągiem momentów miary
o nośniku nieskończonym na półprostej [0,+∞) wtedy i tylko wtedy, gdy ciągi
{mn}∞n=0 oraz {mn+1}∞n=0 są dodatnio określone.
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Dowód. Konieczność warunków została wykazana w Przykładzie 2.5. Roz-
ważamy ciąg σn miar przy wartości τ = 0. Z Twierdzenia 4.5(ii) wynika, że
miary σn są skupione na półprostej (0,+∞). To oznacza, że ich dystrybuanty
Fn zerują się dla x < 0. Z dowodu poprzedniego twierdzenia wiemy, że roz-
wiązanie problemu momentów można uzyskać przez wzięcie granicy podciągu
ciągu Fn. Ale każda dystrybuanta będąca granicą podciągu zbieżnego ciągu
Fn również zeruje się dla x < 0. Zatem rozwiązanie problemu momentów jest
miarą skupioną na [0,+∞).

6 Narzędzia do badania jednoznaczności

Dla wartości parametru τ ∈ R∗ = R∪{∞} i z ∈ C wprowadzamy oznaczenie

wn(z, τ) = − qn(z)− τqn−1(z)
pn(z)− τpn−1(z)

= −qn(z, τ)
pn(z, τ)

. (6.1)

Dla z /∈ R liczba wn(z, τ) jest dobrze określona na podstawie Twierdzenia
4.5(i). Zauważamy, że

wn(z,∞) = wn−1(z, 0).

Twierdzenie 6.1 (Hellinger). Ustalmy liczbę z ∈ C o własności Im z > 0
(lub Im z < 0). Zbiór wartości w = wn(z, τ), dla τ ∈ R∗, tworzy okrąg ∂Kn(z)
położony w półpłaszczyżnie Imw > 0 (lub Imw < 0). Środek s i promień r
okręgu ∂Kn(z) wyrażone są wzorami

s = − qn(z)pn−1(z)− qn−1(z)pn(z)
pn(z)pn−1(z)− pn−1(z)pn(z)

,

r =
1

2|Im z|
n−1∑
i=0

|pi(z)|2
. (6.2)

Równanie okręgu ma postać

n−1∑
i=0

|wpi(z) + qi(z)|2 =
Imw

Im z
. (6.3)

Dowód. Podstawiamy

a = qn−1(z), b = qn(z), c = pn−1(z), d = pn(z)
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i korzystamy ze wzoru

aτ − b
cτ − d

=
ad− bc
cd− cd

+
bc− ad
cd− cd

cτ − d
cτ − d

.

Stąd od razy odczytujemy wzór na s. Ponadto ze wzorów (3.6) i (3.8) zasto-
sowanych dla x = z, y = z oraz n := n− 1 wynika, że

r =

∣∣∣∣∣bc− adcd− cd

∣∣∣∣∣ =

∣∣∣∣∣ pn−1(z)qn(z)− pn(z)qn−1(z)
pn−1(z)pn(z)− pn−1(z)pn(z)

∣∣∣∣∣ =
1

2|Im z|
n−1∑
i=0

|pi(z)|2
.

Ze wzoru (6.1) obliczamy τ

τ =
wn(z, τ)pn(z) + qn(z)

wn(z, τ)pn−1(z) + qn−1(z)

i korzystamy ze wzoru (3.13) dla w = wn(z, τ). Uwzględniając, że τ jest
liczbą rzeczywistą otrzymujemy (6.3).

Uwaga 6.2.
Z Twierdzenia 6.1 wynika, że wnętrze koła Kn(z) opisane jest nierówno-

ścią
n−1∑
i=0

|wpi(z) + qi(z)|2 ¬ Imw

Im z
. (6.4)

Stąd natychmiast wnioskujemy, że Kn(z) ⊂ Kn−1(z). Ponadto okręgi ∂Kn(z)
i ∂Kn−1(z) stykają się w jednym punkcie, bo jak wcześniej zauważyliśmy
wn(z,∞) = wn−1(z, 0).

Dla ustalonej liczby z, Im z 6= 0, rozważamy zstępujący ciąg kół {Kn(z)}∞n=1.
Zbiór K∞(z) =

⋂∞
n=1 Kn(z) jest kołem lub zbiorem jednopuktowym. Jeśli

w ∈ K∞(z), to w spełnia (6.4) dla każdej liczby n. Zatem
∞∑
n=0

|wpn(z) + qn(z)|2 ¬ Imw

Im z
< +∞. (6.5)

Z Twierdzenia Hellingera promień K∞(z) wynosi

1

2|Im z|
∞∑
n=0

|pn(z)|2
,

przy czym K∞(z) jest kołem, gdy szereg w mianowniku jest zbieżny.
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Twierdzenie 6.3.

(i) Dla z /∈ R istnieje przynajmniej jedno niezerowe rozwiązanie {yn}∞n=0
równania różnicowego

λnyn+1 + βnyn + λn−1yn−1 = zyn, n ­ 1

takie, że szereg
∑∞
n=0 |yn|2 jest zbieżny.

(ii) Każde rozwiązanie tego równania jest sumowalne z kwadratem wtedy i
tylko wtedy, gdy K∞(z) jest kołem.

Dowód. (i). Niech w ∈ K∞(z) oraz yn = wpn(z) + qn(z). Wtedy z (6.5)
ciąg {yn}∞n=0 jest sumowalny z kwadratem.

(ii). Jeśli każde rozwiązanie jest sumowalne z kwadratem, to również∑∞
n=0 |pn(z)|2 < +∞. Zatem promień zbioru K∞(z) jest dodatni, czyli K∞(z)

jest kołem. Aby udowodnić implikację przeciwną, załóżmy, że K∞(z) jest ko-
łem. Zatem

∑∞
n=0 |pn(z)|2 < +∞. Z dowodu (i) wynika, że

∑∞
n=0 |wpn(z) +

qn(z)|2 < +∞ dla pewnej liczby w. Stąd również szereg
∑∞
n=0 |qn(z)|2 jest su-

mowalny. Każde rozwiązanie równania jest kombinacją liniową ciągów {pn(z)}∞n=0
i {qn(z)}∞n=0, zatem każde rozwiązanie jest sumowalne z kwadratem.

Uwaga 6.4.
Rozważmy miarę probabilistyczną σ na prostej, o wszystkich momentach

skończonych. Obliczymy współczynniki Fouriera funkcji (x− z)−1 względem
układu ortonormalnego wielomianów {pn(x)}∞n=0. Dla z /∈ R niech

w =
∞∫
−∞

dσ(x)
x− z

.

Wtedy ze wzoru (3.3) wynika, że
∞∫
−∞

pn(x)
x− z

dσ(x) =
∞∫
−∞

pn(x)− pn(z)
x− z

dσ(x) + wpn(z) = wpn(z) + qn(z).

Z nierówności Bessela otrzymujemy

∞∑
n=0

|wpn(z) + qn(z)|2 ¬
∞∫
−∞

dσ(x)
|x− z|2

=
1

2Im z

∞∫
−∞

( 1
x− z

− 1
x− z

)
dσ(x) =

Imw

Im z
. (6.6)
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Wprowadzamy cztery wielomiany

An(z, z0) = (z − z0)
n−1∑
i=0

qi(z0)qi(z), (6.7)

Bn(z, z0) = −1 + (z − z0)
n−1∑
i=0

qi(z0)pi(z), (6.8)

Cn(z, z0) = 1 + (z − z0)
n−1∑
i=0

pi(z0)qi(z), (6.9)

Dn(z, z0) = (z − z0)
n−1∑
i=0

pi(z0)pi(z). (6.10)

Ze wzorów (3.8), (3.9), (3.10) i (3.11) otrzymujemy

An(z, z0) = λn−1[qn−1(z0)qn(z)− qn(z0)qn−1(z)], (6.11)
Bn(z, z0) = λn−1[qn−1(z0)pn(z)− qn(z0)pn−1(z)], (6.12)
Cn(z, z0) = λn−1[pn−1(z0)qn(z)− pn(z0)qn−1(z)], (6.13)
Dn(z, z0) = λn−1[pn−1(z0)pn(z)− pn(z0)pn−1(z)]. (6.14)

Wzory te można łącznie zapisać w postaci(
An(z, z0) Bn(z, z0)
Cn(z, z0) Dn(z, z0)

)

= λn−1

(
qn−1(z0) −qn(z0)
pn−1(z0) −pn(z0)

)(
qn(z) pn(z)
qn−1(z) pn−1(z)

)
. (6.15)

Obliczamy wyznacznik obu stron i korzystamy z (3.6). Wtedy

An(z, z0)Dn(z, z0)−Bn(z, z0)Cn(z, z0) = 1. (6.16)

Ponadto otrzymujemy(
qn(z) pn(z)
qn−1(z) pn−1(z)

)

=
(
−pn(z0) qn(z0)
−pn−1(z0) qn−1(z0)

)(
An(z, z0) Bn(z, z0)
Cn(z, z0) Dn(z, z0)

)
. (6.17)
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Zestawienie wzorów (6.15) oraz (6.17) daje(
An(z, w) Bn(z, w)
Cn(z, w) Dn(z, w)

)

=
(
Cn(w, z0) −An(w, z0)
Dn(w, z0) −Bn(w, z0)

)(
An(z, z0) Bn(z, z0)
Cn(z, z0) Dn(z, z0)

)
(6.18)

Twierdzenie 6.5 (Hellinger-Nevanlinna). Jeśli K∞(z) jest kołem dla jednej
wartości z /∈ R, to również dla każdej wartości z /∈ R. W tym przypadku sze-

reg
∞∑
n=0

|pn(z)|2 jest zbieżny jednostajnie na zwartych podzbiorach płaszczyzny

zespolonej.

Przed dowodem twierdzenia wyprowadzimy kilka pomocniczych faktów.

Lemat 6.6.(
An+1(z, z0) Bn+1(z, z0)
Cn+1(z, z0) Dn+1(z, z0)

)
=
[
I + (z − z0)

×
(
−pn(z0)qn(z0) q2

n(z0)
−p2

n(z0) pn(z0)qn(z0)

)](
An(z, z0) Bn(z, z0)
Cn(z, z0) Dn(z, z0)

)
. (6.19)

Dowód. Ze wzorów (3.1) i (6.17) dla n := n+ 1 mamy(
qn+1(z) pn+1(z)
qn(z) pn(z)

)
=
(
−pn+1(z0) qn+1(z0)
−pn(z0) qn(z0)

)(
An+1(z, z0) Bn+1(z, z0)
Cn+1(z, z0) Dn+1(z, z0)

)

=
(
z0−βn
λn

−λn−1
λn

1 0

)(
−pn(z0) qn(z0)
−pn−1(z0) qn−1(z0)

)

×
(
An+1(z, z0) Bn+1(z, z0)
Cn+1(z, z0) Dn+1(z, z0)

)
. (6.20)

Podobnie otrzymujemy(
qn+1(z) pn+1(z)
qn(z) pn(z)

)
=
(
z−βn
λn

−λn−1
λn

1 0

)(
qn(z) pn(z)
qn−1(z) pn−1(z)

)

=
(
z−βn
λn

−λn−1
λn

1 0

)(
−pn(z0) qn(z0)
−pn−1(z0) qn−1(z0)

)(
An(z, z0) Bn(z, z0)
Cn(z, z0) Dn(z, z0)

)
. (6.21)

Zestawiając (6.20) i (6.21) otrzymujemy tezę lematu.
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Lemat 6.7. Załóżmy, że macierze Tn ∈M2×2(C) spełniają
∞∑
n=1

‖Tn‖ < +∞.

Niech

Sn(z) = [I + (z − z0)Tn] · . . . · [I + (z − z0)T2][I + (z − z0)T1].

Wtedy istnieje granica S∞(z) = lim
n→∞

Sn(z) i przedstawia funkcję całkowitą
spełniającą

‖S∞(z)‖ ¬ cε exp(ε|z|), (6.22)

dla każdego ε > 0.

Dowód. Zauważmy, że

‖(I +Bn) . . . (I +B1)‖ ¬
n∏
i=1

(1 + ‖Bi‖) ¬ exp
(

n∑
i=1

‖Bi‖
)
.

Podobnie otrzymujemy

‖(I +Bn) . . . (I +B1)− I‖ ¬
n∏
i=1

(1 + ‖Bi‖)− 1 ¬ exp
(

n∑
i=1

‖Bi‖
)
− 1.

Zatem

‖Sn+k(z)− Sn(z)‖ ¬

exp

|z| ∞∑
i=n+1

‖Ti‖

− 1

 exp
(
|z|

∞∑
i=1

‖Ti‖
)
.

Z ostatniej nierówności wynika zbieżność ciągu Sn(z). Ponadto

‖S∞(z)‖ ¬
∞∏
i=1

(1 + |z|‖Ti‖) ¬
n∏
i=1

(1 + |z|‖Ti‖) exp

|z| ∞∑
i=n+1

‖Ti‖

 .
Stąd otrzymujemy (6.22).

Dowód Twierdzenia Hellingera-Nevanlinny. Załóżmy, że K∞(z0) jest ko-
łem dla pewnej wartości z0 ∈ C. Z Lematów 6.6, 6.7 oraz z Twierdzenia
Hellingera ciąg macierzy (

An(z, z0) Bn(z, z0)
Cn(z, z0) Dn(z, z0)

)
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jest zbieżny jednostajnie na zwartych podzbiorach w C. W szczególności, przy
ustalonej wartości wyrazy macierzy są ciągami jednostajnie ograniczonymi
na zwartych podzbiorach w C. Ze wzoru (6.17) mamy

pn(z) = −pn(z0)Bn(z, z0) + qn(z0)Dn(z, z0).

Zatem ciąg {pn(z)}∞n=0 jest sumowalny z kwadratem jednostajnie na zwartych
podzbiorach w C.

Dla z0 = 0 będziemy stosować oznaczenie

An(z) = An(z, 0), Bn(z) = Bn(z, 0) (6.23)
Cn(z) = Cn(z, 0), Dn(z) = Dn(z, 0). (6.24)

Korzystając z (6.17) przekształcamy wzór na wn(z, τ).

wn(z, τ) = − qn(z)− τqn−1(z)
pn(z)− τpn−1(z)

= − [qn(0)− τqn−1(0)]Cn(z)− [pn(0)− τpn−1(0)]An(z)
[qn(0)− τqn−1(0)]Dn(z)− [pn(0)− τpn−1(0)]Bn(z)

= −An(z)t− Cn(z)
Bn(z)t−Dn(z)

, (6.25)

gdzie

t = −pn(0)− τpn−1(0)
qn(0)− τqn−1(0)

.

Wartość t jest dobrze określona, ponieważ wyznacznik współczynników jest
niezerowy ze wzoru (3.6), w związku z czym licznik i mianownik nie mogą
zerować się jednocześnie. W szczególności, jeśli qn(0) − τqn−1(0) = 0, to
t =∞.

Stąd przy ustalonej wartości z /∈ R liczby

−An(z)t− Cn(z)
Bn(z)t−Dn(z)

, t ∈ R∗ (6.26)

opisują okrąg ∂Kn(z).
Rozważmy przypadek koła. Wtedy ciągi An(z), Bn(z), Cn(z) i Dn(z) są

zbieżne do funkcji całkowitych A(z), B(z), C(z) i D(z). Ze wzoru (6.26)
wnioskujemy, że liczby

−A(z)t− C(z)
B(z)t−D(z)

, t ∈ R∗ (6.27)
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opisują okrąg ∂K∞(z).
Tabelę (

A(z) B(z)
C(z) D(z)

)
nazywamy macierzą Nevanlinny. Ze wzoru (6.16) otrzymujemy

A(z)D(z)−B(z)C(z) = 1. (6.28)

Z Lematów 6.6, 6.7 wynika, że elementy macierzy Nevanlinny są funkcjami
całkowitymi o wzroście podwykładniczym.

Twierdzenie 6.8. W przypadku koła mamy

∞∑
n=0

|pn(z)|2 ¬ cε exp ε|z|,

dla każdego ε > 0.

Dowód. Na podstawie (6.27) liczby A(z)/B(z) oraz C(z)/D(z) leżą na
okręgu ∂K∞(z). Ich odległość nie przekracza promienia tego okręgu, czyli

1
|B(z)D(z)|

=

∣∣∣∣∣A(z)
B(z)

− C(z)
D(z)

∣∣∣∣∣ ¬ 1

2|Im z|
∞∑
n=0

|pn(z)|2

Po przekształceniu dostajemy

∞∑
n=0

|pn(z)|2 ¬ 1
2|Im z|

|B(z)D(z)|.

Wiemy, że B(z) i D(z) są funkcjami całkowitymi spełniającymi (6.22), stąd
dla liczby z = x+ iy takiej, że |y| > 1 mamy

∞∑
n=0

|pn(x+ iy)|2 ¬ cε exp ε|z|. (6.29)

Ponieważ pierwiastki wielomianów pn są liczbami rzeczywistymi, lewa strona
nierówności rośnie wraz ze wzrostem |y|. Zatem dla |y| < 1 otrzymujemy

∞∑
n=0

|pn(x+ iy)|2 ¬
∞∑
n=0

|pn(x+ i)|2 ¬ cε exp ε(|x|+ 1) ¬ cεe
ε exp ε|z|.
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Gdy K∞(z) jest punktem dla Im z 6= 0, czyli K∞(z) = {w(z)}, to w =
w(z) jest jedyną liczbą taką, że

∞∑
n=0

|wpn(z) + qn(z)|2 < +∞.

W ten sposób w(z) określa funkcję dla Im z 6= 0.

Twierdzenie 6.9 (o analityczności). W przypadku punktu funkcja w(z) jest
analityczna w każdej z półpłaszczyzn Im z > 0 i Im z < 0. Ponadto

Imw(z)
Im z

> 0. (6.30)

Dowód. Własność (6.30) wynika z (6.5).Wiemy, że liczby wn(z, 0) = −qn(z)/pn(z)
leżą na okręgu ∂Kn(z). Zatem wn(z, 0) → w(z), gdy n → ∞. Funkcje
z 7→ wn(z, 0) są analityczne dla Im z 6= 0. W celu udowodnienia analitycz-
ności funkcji granicznej z 7→ w(z), wystarczy pokazać, że funkcje wn(z, 0)
tworzą rodzinę normalną, tzn. są wspólnie ograniczone na każdym zwartym
podzbiorze zbioru Im z 6= 0. Ten ostatni fakt wynika z następnego lematu,
którego elementarny dowód pozostawiamy czytelnikowi.

Lemat 6.10. Dla liczb x1 < y1 < x2 < y2 < . . . < xn−1 < yn−1 < xn
zachodzi nierówność∣∣∣∣∣ (z − y1)(z − y2) . . . (z − yn−1)

(z − x1)(z − x2) . . . (z − xn−1)(z − xn)

∣∣∣∣∣ ¬ 1
|Im z|

.

Uwaga 6.11.

Twierdzenie o analityczności można też udowodnić korzystając z Twier-
dzenia 5.4. Niech σ będzie rozwiązaniem problemu momentów. Wtedy z Uwa-
gi 6.4 mamy

w(z) =
∞∫
−∞

dσ(x)
x− z

.

Prawa strona przedstawia funkcję analityczną dla Im z 6= 0.
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7 Jednoznaczność problemu momentów Ham-
burgera i gęstość wielomianów

Twierdzenie 7.1. Dla Im z 6= 0 zbiór wartości

w(z) =
∞∫
−∞

dσ(x)
x− z

,

gdzie σ jest miarą będącą rozwiązaniem problemu momentów dla ciągu {mn}∞n=0,
pokrywa się ze zbiorem K∞(z).

Dowód. Niech σ będzie rozwiązaniem problemu momentów oraz w =∫
(x− z)−1dσ(x). Z nierówności (6.6) otrzymujemy w ∈ K∞(z).

Odwrotnie, załóżmy, że w ∈ K∞(z). Wtedy w można zapisać w postaci
w = θw1 +(1−θ)w2, gdzie 0 ¬ θ ¬ 1 oraz w1, w2 ∈ ∂K∞(z). Jeśli znajdziemy
dwa rozwiązania problemu momentów σ1 i σ2 odpowiadające liczbom w1 i
w2, to miara θσ1 +(1−θ)σ2 będzie rozwiązaniem problemu momentów odpo-
wiadającym liczbie w. Zatem wystarczy rozpatrzyć przypadek w ∈ ∂K∞(z).
Ponieważ K∞(z) jest przekrojem kół Kn(z), to istnieją liczby wn ∈ ∂Kn(z)
takie, że wn → w, gdy n→∞.

Lemat 7.2. Miara σn = σn(τ) określona w (5.6) spełnia

wn(z, τ) =
∞∫
−∞

dσn(x)
x− z

, Im z 6= 0.

Dowód lematu. Zastosujmy wzór interpolacyjny Lagrange’a do wielomia-
nu qn(z, τ) względem zer wielomianu pn(z, τ). Wtedy

wn(z, τ) = −qn(z, τ)
pn(z, τ)

= −
n∑
i=1

qn(xi, τ)
p′n(xi, τ)(z − xi)

=
∞∫
−∞

dσn(x)
x− z

.

Liczby wn należą do ∂Kn(z), zatem są postaci wn = wn(z, τn) dla pewnych
wartości τn ∈ R∗. Z lematu dostajemy

wn =
∞∫
−∞

dσn(x)
x− z

,
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gdzie σn = σn(τn). Z ciągu miar probabilistycznych σn wybieramy podciąg σni
słabo zbieżny do pewnej miary σ. Z rozdziału 5 wiemy, że σ jest rozwiązaniem
problemu momentów. Mamy

wni =
∞∫
−∞

dσni(x)
x− z

=
∫

[−A,A]

dσni(x)
x− z

+
∫
|x|>A

dσni(x)
x− z

.

Dalej∣∣∣∣∣∣∣
∫
|x|>A

dσni(x)
x− z

∣∣∣∣∣∣∣ ¬
1
A

∫
|x|>A

∣∣∣∣ x

x− z

∣∣∣∣ dσni(x)

¬ 1
A

sup
x∈R

∣∣∣∣ x

x− z

∣∣∣∣
∞∫
−∞

dσni(x) ¬ 1
A

(
1 +

|z|
|Im z|

)
=
C(z)
A

.

Zatem∣∣∣∣∣∣∣
∫

[−A,A]

dσ(x)
x− z

− w

∣∣∣∣∣∣∣ = lim
i→∞

∣∣∣∣∣∣∣
∫

[−A,A]

dσni(x)
x− z

− wni

∣∣∣∣∣∣∣
= lim

i→∞

∣∣∣∣∣∣∣
∫
|x|>A

dσni(x)
x− z

∣∣∣∣∣∣∣ ¬
C(z)
A

.

Tezę otrzymujemy przez przejście do granicy, gdy A→ +∞.

Wniosek 7.3. W przypadku koła problem momentów jest niezdeterminowa-
ny, tzn. rozwiązanie nie jest jednoznaczne.

Twierdzenie 7.4. W przypadku punktu problem momentów jest zdetermi-
nowany, tzn. rozwiązanie jest jednoznaczne.

Dowód. Załóżmy, że σ1 i σ2 są rozwiązaniami problemu momentów. Liczby
w1(z) i w2(z) określone wzorami

w1(z) =
∞∫
−∞

dσ1(x)
x− z

, w2(z) =
∞∫
−∞

dσ2(x)
x− z

,

należą do K∞(z) dla każdej liczby z /∈ R. Zatem w1(z) = w2(z). Teza twier-
dzenia wynika ze wzoru Stieltjesa na odwrócenie, który dowodzimy poni-
żej.
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Twierdzenie 7.5 (wzór Stieltjesa na odwrócenie). Niech σ będzie miarą
probabilistyczną na prostej. Określamy transformatę R(z) wzorem

R(z) =
∞∫
−∞

dσ(x)
x− z

.

Wtedy

lim
ε→0+

1
π

t2∫
t1

ImR(t+ iε) dt = σ(t1, t2) +
1
2
σ({t1}) +

1
2
σ({t2}).

Dowód. Mamy

1
x− t− iε

− 1
x− t+ iε

=
2iε

(x− t)2 + ε2
.

Zatem

1
π

t2∫
t1

ImR(t+ iε) dt =
1
π

t2∫
t1

∞∫
−∞

ε

(x− t)2 + ε2
dσ(x) dt

=
1
π

∞∫
−∞

t2∫
t1

ε

(x− t)2 + ε2
dt dσ(x) =

1
π

∞∫
−∞

arctg
t− x
ε

∣∣∣∣t=t2
t=t1

dσ(x)

Obliczamy granicę funkcji podcałkowej.

1
π

(
arctg

t2 − x
ε
− arctg

t1 − x
ε

)
−−−→
ε→0+


1 dla t1 < x < t2,
1
2 dla x = t1, x = t2,

0 dla x < t1, x > t2.

Wzór Stieltjesa otrzymujemy przez przejście w całce do granicy, gdy
ε→ 0+.

Uwaga 7.6.

Wzór Stieltjesa jest spełniony dla miar znakowanych o wahaniu ograni-
czonym, jak również dla miar zespolonych o wahaniu ograniczonym.
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Definicja 7.7. Miarę σ będącą rozwiązaniem problemu momentów będziemy
nazywać N-ekstremalną w punkcie z /∈ R, jeśli liczba w =

∫
R
dσ(x)/(x− z)

należy do zbioru ∂K∞(z), tzn. zachodzi

∞∑
n=0

|wpn(z) + qn(z)|2 =
Imw

Im z
.

Twierdzenie 7.8 (M. Riesz). Jeśli wielomiany tworzą gęstą podprzestrzeń w
przestrzeni L2(R, σ), to miara σ jest N-ekstremalna w każdym punkcie z /∈ R.
Jeśli miara σ jest N-ekstremalna w pewnym punkcie z /∈ R, to wielomiany
leżą gęsto w L2(R, σ).

Dowód. Załóżmy, że wielomiany leżą gęsto w L2(R, σ). Zatem układ {pn}∞n=0
tworzy bazę ortonormalną. Z równości Parsevala zastosowanej do funkcji
(x− z)−1 (por. Uwaga 6.4) otrzymujemy

∞∑
i=0

|wpn(z) + qn(z)|2 =
∞∫
−∞

dσ(x)
|x− z|2

=
Imw

Im z
.

Zatem σ jest N -ekstremalna dla każdej liczby z /∈ R.
Załóżmy, że σ jest N -ekstremalna w punkcie z0, Im z0 6= 0. Zatem

∞∑
i=0

|wpn(z0) + qn(z0)|2 =
Imw

Im z0
=

∞∫
−∞

dσ(x)
|x− z0|2

,

gdzie w = w(z0) =
∫

(x − z0)−1dσ(x). Ta równość oznacza, że funkcja
(x − z0)−1 może być aproksymowana wielomianami względem normy prze-
strzeni L2(R, σ). Zastosowanie sprzężenia zespolonego implikuje, że również
funkcja (x−z0)−1 może być aproksymowana wielomianami. Każdy wielomian
można zapisać w postaci A+ (x− z0)p(x). Wtedy z nierówności

∞∫
−∞

∣∣∣∣∣ 1
(x− z0)2

− A

x− z0
− p(x)

∣∣∣∣∣
2

dσ(x)

¬ 1
(Im z0)2

∞∫
−∞

∣∣∣∣ 1
x− z0

− A− (x− z0)p(x)
∣∣∣∣2 dσ(x)

wynika, że funkcja (x − z0)−2 może być aproksymowana wielomianami, jak
również funkcja (x − z0)−2. Dalej, przez indukcję, dowodzimy, że funkcje
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(x− z0)−n i (x− z0)−n można aproksymować wielomianami dla każdej liczby
naturalnej n.

Załóżmy niewprost, że dla pewnej funkcji g(x) ∈ L2(R, σ) zachodzi

∞∫
−∞

g(x)xndσ(x) = 0, n ­ 0.

Zatem
∞∫
−∞

g(x)
(x− z0)n+1

dσ(x) =
∞∫
−∞

g(x)
(x− z0)n+1

dσ(x) = 0, n ­ 0.

Rozważmy funkcję

ϕ(z) =
∞∫
−∞

g(x)
x− z

dσ(x).

Funkcja ϕ(z) jest holomorficzna dla Im z 6= 0, zatem rozwija się w zbież-
ny szereg Taylora w otoczeniu każdego punktu. Obliczymy współczynniki
Taylora funkcji ϕ(z) w punktach z0 i z0. Mamy

ϕ(n)(z0) = n!
∞∫
−∞

g(x)
(x− z0)n+1

dσ(x) = 0,

ϕ(n)(z0) = n!
∞∫
−∞

g(x)
(x− z0)n+1

dσ(x) = 0.

Zatem ϕ(z) = 0 dla z /∈ R. Z Twierdzenia Stieltjesa o odwróceniu zastoso-
wanego do miary zespolonej g(x)dσ(x) otrzymujemy g(x) = 0 prawie wszę-
dzie.

Definicja 7.9. Rozwiązane σ problemu momentów będziemy nazywać N-
ekstremalnym, jeśli spełniony jest jeden z warunków

(a) σ jest jedynym rozwiązaniem problemu momentów, tzn. problem mo-
mentów jest zdeterminowany.

(b) σ nie jest jedynym rozwiązaniem problemu momentów, ale liczba w =∫
(x−z)−1dσ(x) należy do ∂K∞(z) dla pewnej (każdej) wartości z /∈ R.

Uwaga 7.10.
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Miarę σ będziemy nazywali zdeterminowaną, jeśli problem momentów
związany z momentami miary σ jest zdeterminowany. Podobnie miarę σ bę-
dziemy nazywali miarą N -ekstremalną, jeśli σ jest N -ekstremalnym rozwią-
zaniem problemu momentów związanego z momentami miary σ.

Poprzednie rozważania możemy teraz podsumować następująco.

Twierdzenie 7.11. Niech σ będzie rozwiązaniem problemu momentów. Wie-
lomiany tworzą gęstą podprzestrzeń w L2(R, σ) wtedy i tylko wtedy, gdy σ
jest N-ekstremalna. Z kolei miara σ jest N-ekstremalna, jeśli funkcję x 7→
(x− i)−1 można aproksymować wielomianami w przestrzeni L2(R, σ).

Wniosek 7.12. Jeśli σ jest zdeterminowna, to wielomiany leżą gęsto w
L2(R, σ).

Lemat 7.13. Dla z ∈ C zachodzi wzór

min
p∈Pn−1

‖1− (x− z)p(x)‖2 =
(

n∑
i=0

|pi(z)|2
)−1

,

gdzie Pn−1 oznacza przestrzeń wielomianów stopnia mniejszego niż n, oraz
‖ · ‖2 = (·, ·).

Dowód. Dla p ∈ Pn−1 rozważamy wielomian P (x) = 1−(x−z)p(x). Wtedy
P (z) = 1 oraz degP ¬ n. Wielomian P (x) możemy zapisać w postaci

P (x) =
n∑
i=0

aipi(x).

Podstawiamy x = z i otrzymujemy

1 =

∣∣∣∣∣
n∑
i=0

aipi(z)

∣∣∣∣∣
2

¬
n∑
i=0

|ai|2
n∑
i=0

|pi(z)|2 = ‖P‖2
n∑
i=0

|pi(z)|2.

Stąd

‖P‖2 ­
(

n∑
i=0

|pi(z)|2
)−1

.

Niech

P (x) =
(

n∑
i=0

|pi(z)|2
)−1 n∑

i=0

pi(z)pi(x).
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Wtedy P (z) = 1, degP = n. Zatem P (x) można zapisać w postaci

P (x) = 1− (x− z)p(x), gdzie p ∈ Pn−1.

Ponadto ‖P‖2 = (
∑n
i=0 |pi(z)|2)−1

.

Wniosek 7.14. Zachodzi wzór

inf
p∈P
‖1− (x− z)p(x)‖2 =

( ∞∑
n=0

|pn(z)|2
)−1

.

Twierdzenie 7.15 (M. Riesz). Miara σ jest zdeterminowana wtedy i tylko
wtedy, gdy miara (1 + x2)dσ(x) jest N-ekstremalna.

Dowód. Zauważamy, że

∞∫
−∞

|1− (x− i)p(x)|2dσ(x) =
∞∫
−∞

∣∣∣∣ 1
x− i

− p(x)
∣∣∣∣2 (1 + x2) dσ(x).

Na podstawie Wniosku 7.14 mamy( ∞∑
n=0

|pn(i)|2
)−1

= inf
p∈P

∞∫
−∞

∣∣∣∣ 1
x− i

− p(x)
∣∣∣∣2 (1 + x2) dσ(x).

Lewa strona równości zeruje się wtedy i tylko wtedy, gdy σ jest zdetermino-
wana. Z kolei z drugiej części Twierdzenia 7.11 prawa strona zeruje się tylko
wtedy, gdy (1 + x2)dσ(x) jest N -ekstremalna.

8 Rozwiązania N-ekstremalne

Rozważamy niezdeterminowany problem momentów Hamburgera. Z Lematu
7.2 i ze wzoru (6.25) wiemy, że dla ustalonej liczby t ∈ R∗ istnieje miara σn,t,
będąca zredukowanym rozwiązaniem problemu momentów taka, że

−An(z)t− Cn(z)
Bn(z)t−Dn(z)

=
∞∫
−∞

dσn,t(x)
x− z

, Im z 6= 0.
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Niech miara σt będzie punktem skupienia miar σn,t. Wtedy σt jest rozwiąza-
niem problemu momentów oraz

−A(z)t− C(z)
B(z)t−D(z)

=
∞∫
−∞

dσt(x)
x− z

, Im z 6= 0. (8.1)

Miara σt jest N -ekstremalna, ponieważ liczby w =
∫

(x − z)dσt(x) leżą na
okręgu ∂K∞(z) (por. (6.26)). Okazuje się, że nie ma już innych rozwiązań
N -ekstremalnych.

Twierdzenie 8.1. Każde N-ekstremalne rozwiązanie niezdeterminowanego
problemu momentów ma postać σt dla pewnej liczby t ∈ R∗.

Dowód. Załóżmy, że σ jest rozwiązaniem N -ekstremalnym. Wtedy

w(z) =
∞∫
−∞

dσ(x)
x− z

∈ ∂K∞(z).

Stąd na podstawie (6.26) dla każdej liczby z /∈ R istnieje liczba ϕ(z) ∈ R∗
taka, że

w(z) = −A(z)ϕ(z)− C(z)
B(z)ϕ(z)−D(z)

.

Obliczamy ϕ(z) i otrzymujemy

ϕ(z) =
D(z)w(z) + C(z)
B(z)w(z) + A(z)

.

Ułamek ma dobrze określoną wartość w R∗, bo licznik i mianownik nie mogą
się zerować jednocześnie. Niech Z oznacza zbiór zer mianownika leżących w
górnej półpłaszczyźnie. Punkty zbioru Z są biegunami funkcji ϕ(z). Załóżmy
najpierw, że zbiór Z nie ma punktów skupienia w półpłaszczyźnie Im z > 0.
Wtedy funkcja ϕ(z) jest analityczna i rzeczywista w C+ \Z. Zatem ϕ(z) jest
funkcją stałą na tym zbiorze. To oznacza, że ϕ(z) nie ma biegunów w górnej
półpłaszczyźnie, czyli Z = ∅. Funkcja ϕ(z) jest więc funkcją stałą w górnej
półpłaszczyźnie. Przyjmijmy, że ϕ(z) = t dla Im z > 0 i pewnej stałej liczby
rzeczywistej t. To oznacza, że

w(z) = −A(z)t− C(z)
B(z)t−D(z)

, Im z > 0.
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Stosując sprzężenie zespolone do obu stron otrzymamy

w(z) = −A(z)t− C(z)
B(z)t−D(z)

, Im z < 0.

Ostatecznie mamy
∞∫
−∞

dσ(x)
x− z

=
∞∫
−∞

dσt(x)
x− z

, Im z 6= 0.

Z Twierdzenia Stieltjesa o odwróceniu wnioskujemy, że σ = σt.
Pozostaje zbadać przypadek, gdy zbiór Z ma punkty skupienia w gór-

nej półpłaszczyźnie. Wtedy B(z)w(z) + A(z) = 0 dla z z górnej półpłasz-
czyzny. W konsekwencji w(z) = −A(z)/B(z) dla Im z > 0, co pociąga
w(z) = −A(z)/B(z) dla Im z 6= 0. Otrzymujemy

∞∫
−∞

dσ(x)
x− z

= −A(z)
B(z)

=
∞∫
−∞

dσ∞(x)
x− z

, Im z 6= 0.

Zatem σ = σ∞.

Definicja 8.2. Dla miary σ na prostej rzeczywistej, funkcję

F (z) =
∞∫
−∞

dσ(x)
x− z

, Im z 6= 0 (8.2)

nazywamy transformatą Cauchy’ego miary σ.

Z postaci funkcji F (z) wynika, że jest ona analityczna dla Im z 6= 0.
Z poprzedniego twierdzenia wynika, między innymi, że transformata Cau-
chy’ego rozwiązania N -ekstremalnego jest ilorazem dwu funkcji całkowitych
(tzn. analitycznych w całej płaszczyźnie zespolonej). Ponadto, jeśli

w(z, t) = −A(z)t− C(z)
B(z)t−D(z)

=
∞∫
−∞

dσt(x)
x− z

,

to
Imw(z, t)

Im z
=

∞∫
−∞

dσt(x)
|x− z|2

> 0, Im z 6= 0.

Zatem ani licznik A(z)t − C(z) ani mianownik B(z)t − D(z) nie zerują się
dla Im z 6= 0. Dodatkowo wszystkie cztery funkcje A(x), B(x)C(x) i D(x)
przyjmują wartości rzeczywiste dla x ∈ R.
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Uwaga 8.3. Wielomiany pn(x) i qn(x) możemy zastąpić wielomianami pn(x+
u) i qn(x + u) dla ustalonego parametru rzeczywistego u. Nowe wielomiany
odpowiadają momentom

mn(u) =
n∑
k=0

(−1)k
(
n

k

)
ukmn−k.

Zatem własności funkcji A(z), B(z), C(z) oraz B(z) przenoszą się na wła-
sności funkcji A(z, u), B(z, u), C(z, u) i B(z, u).

Lemat 8.4. Załóżmy, że transformata Cauchy’ego miary σ jest ilorazem
dwu funkcji całkowitych G(z)/H(z), przy czym G(x) oraz H(x) przyjmują
wartości rzeczywiste dla x ∈ R. Wtedy miara σ jest skupiona na zbiorze
Z = {x ∈ R : H(x) = 0}. W szczególności σ jest miarą dyskretną. Jeśli
G(x) nie zeruje się w punktach zbioru Z, to suppσ = Z.

Dowód. Z jest co najwyżej przeliczalnym podzbiorem w R bez punktów
skupienia. Zatem Z jest zbiorem dyskretnym. Wtedy funkcja F (z) przedłuża
się wzorem F̃ (z) = G(z)/H(z) do funkcji analitycznej w C\Z. Funkcja F̃ (x)
przyjmuje wartości rzeczywiste dla x ∈ R \ Z. Zatem dla x ∈ R \ Z i ε > 0
mamy

ImF (x+ iε) = Im F̃ (x+ iε) −−−→
ε→0+

Im F̃ (x) = 0.

Rozważmy przedział [a, b] rozłączny z Z. Wtedy

lim
ε→0+

b∫
a

ImF (x+ iε) dx = 0.

Ze wzoru Stieltjesa na odwrócenie wnioskujemy, że σ([a, b]) = 0. Stąd
suppσ ⊆ Z.

Niech x ∈ Z. Załóżmy, niewprost, że σ({x}) = 0. Wtedy funkcja F (z)
przedłuża się do funkcji analitycznej w otoczeniu punktu x wzorem (8.2).
Zatem granica

lim
ε→0+

G(x+ iε)
H(x+ iε)

istnieje i jest skończona. Ponieważ H(x) = 0, to G(x) = 0, co przeczy zało-
żeniom. W związku z tym otrzymujemy σ({x}) > 0.

Z Lematu 8.4 wynika, że miara σt jest skoncentrowana na zbiorze Zt =
{x ∈ R : B(x)t−D(x) = 0} dla t ∈ R i na zbiorze Z∞ = {x ∈ R : B(x) = 0}
dla t =∞.
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Twierdzenie 8.5. Jeśli σ jest rozwiązaniem problemu momentów, to dla
a ∈ R zachodzi nierówność

σ({a}) ¬ 1
∞∑
n=0

p2
n(a)

.

Jeśli σ jest N-ekstremalnym rozwiązaniem i σ({a}) > 0, to

σ({a}) =
1

∞∑
n=0

p2
n(a)

.

Jeśli szereg
∞∑
n=0

p2
n(a) jest zbieżny, to istnieje rozwiązanie N-ekstremalne σ

problemu momentów spełniające

σ({a}) =
1

∞∑
n=0

p2
n(a)

.

Dowód. Załóżmy, że σ jest rozwiązaniem problemu momentów. Dla ε > 0
niech fε będzie funkcją ciągłą taką, że 0 ¬ fε(x) ¬ 1 oraz fε(x) = 1 dla
|x− a| ¬ ε i fε(x) = 0 dla |x− a| ­ 2ε. Z nierówności Bessela otrzymujemy

∞∑
n=0

∣∣∣∣∣∣
∞∫
−∞

fε(x)pn(x)dσ(x)

∣∣∣∣∣∣
2

¬
∞∫
−∞

|fε(x)|2dσ(x).

Przechodząc do granicy przy ε→ 0+ otrzymujemy
∞∑
n=1

p2
n(a)σ2({a}) ¬ σ({a}).

Jeśli miara σ jest N -ekstremalna, to z równości Parsevala dostajemy

∞∑
n=0

∣∣∣∣∣∣
∞∫
−∞

fε(x)pn(x)dσ(x)

∣∣∣∣∣∣
2

=
∞∫
−∞

|fε(x)|2dσ(x).

Obliczamy granicę obu stron, gdy ε dąży do zera. Jeśli można wejść z granicą
pod znak sumy nieskończonej, to

∞∑
n=1

p2
n(a)σ2({a}) = σ({a}).
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Prawidłowość takiego postępowania wynika z lematu, którego nietrudny do-
wód pozostawiamy czytelnikowi.

Lemat 8.6. Rozważmy bazę ortonormalną {ei}∞i=0 w przestrzeni Hilberta H
oraz ciąg Cauchy’ego {xn}∞n=1 w H. Wtedy

lim
n→∞

∞∑
i=0

|(xn, ei)|2 =
∞∑
i=0

lim
n→∞

|(xn, ei)|2.

Załóżmy, że szereg
∑
p2
n(a) jest zbieżny. Wielomiany pn−1 i pn nie mają

wspólnych zer, zatem pn−1(a) 6= 0 dla nieskończenie wielu n. Jeśli pn−1(a) 6=
0, to wybieramy τn ∈ R tak, aby pn(a)− τnpn−1(a) = 0. Wtedy miara σn(τn)
(por. Uwaga 5.3) określona przy pomocy kwadratury Gaussa spełnia

σn({a}) =
1

n−1∑
i=0

p2
i (a)

.

Niech σ będzie punktem skupienia miar σn. Zatem σ jest rozwiązaniem pro-
blemu momentów oraz

σ({a}) =
1

∞∑
n=0

p2
n(a)

.

Z konstrukcji liczby wn(z) =
∫

(x− z)−1 dσn(x) leżą na okręgu ∂Kn(z). Stąd
w(z) =

∫
(x − z)−1dσ(x) leży na okręgu ∂K∞(z). Zatem miara σ jest N -

ekstremalna.

Uwaga 8.7.

Jeśli problem momentów jest niezdeterminowany, to dla każdej liczby rze-
czywistej x istnieje rozwiązanie σ problemu momentów spełniające σ({x}) >
0. Co więcej można zażądać, aby miara σ była N -ekstremalna.

Wniosek 8.8. Niech σ będzie N-ekstremalnym rozwiązaniem niezdetermino-
wanego problemu momentów oraz a ∈ suppσ. Wtedy miara σ̃ = σ−σ({a})δa
jest zdeterminowana.

Dowód. Załóżmy, że miara σ̃ jest niezdeterminowana. Z Uwagi 8.7 istnieje
miara µ̃ o tych samych momentach co miara σ̃ taka, że µ̃({a}) > 0. Wtedy
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miary σ = σ̃ + σ({a})δa oraz µ = µ̃ + σ({a})δa mają te same momenty.
Ponadto

µ({a}) = σ({a}) + µ̃({a}) =
1

∞∑
n=0

p2
n(a)

+ µ̃({a}),

gdzie {pn}∞n=0 oznacza układ wielomianów ortogonalnych względem momen-
tów miary σ. Otrzymujemy sprzeczność z Twierdzeniem 8.5.

Twierdzenie 8.9. Załóżmy, że

σ({a}) =
1

∞∑
n=0

p2
n(a)

,

dla pewnej liczby a ∈ R. Wtedy miara σ jest N-ekstremalna.

Dowód. Jeśli σ jest zdeterminowana, to σ jest N -ekstremalna. Załóżmy,
że σ nie jest zdeterminowana. Zatem istnieje rozwiązanie N -ekstremalne µ
takie, że µ({a}) > 0. Z Twierdzenia 8.5 mamy σ({a}) = µ({a}). Miary
σ − σ({a})δa oraz µ − σ({a})δa mają te same momenty. Z poprzedniego
wniosku te miary są równe. Zatem σ = µ, czyli σ jest N -ekstremalna

Wniosek 8.10. Jeśli miara σ jest rozwiązaniem problemu momentów i σ
nie jest N-ekstremalna, to

σ({a}) < 1
∞∑
n=0

p2
n(a)

,

dla a ∈ R.

Zajmiemy się obecnie zbadaniem N -ekstremalnych rozwiązań niezdeter-
minwanego problemu momentów. Rozwiązania te mają postać σt, gdzie t ∈
R∗ oraz

w(z, t) =
∞∫
−∞

dσt(x)
x− z

= −A(z)t− C(z)
B(z)t−D(z)

.

Z Lematu 8.4 miara σt jest skupiona na zbiorze Zt = {x ∈ R : B(x)t−D(x) =
0}, jeśli t ∈ R lub na zbiorze Z∞ = {x ∈ R : B(x) = 0}, jeśli t = ∞. Stąd
zbiór Zt jest przeliczalny i nie posiada punktów skupienia, jako zbiór zer



Rozwiązania N -ekstremalne 43

funkcji całkowitej. Na podstawie wzoru (6.28) funkcje B(x) i D(x) nie mają
wspólnych zer. Zatem dla s 6= t zbiory Zt i Zs są rozłączne. Ponieważ problem
momentów jest niezdeterminowany, to zbiór Zt nie może być ograniczony
(por. Zadanie 2). Jednakże może się zdarzyć, że Zt jest ograniczony z dołu
lub ograniczony z góry. Niech Zt = {xk(t)}k∈I , przy czym xk(t) < xk+1(t). W
zależności, czy zbiór Zt jest ograniczony z dołu, z góry lub jest nieograniczony
z obu stron, zbiór indeksów I jest równy Z+, Z− lub Z. Miara σt posiada atom
w każdym z punktów xk(t) oraz masa µk(t) miary σt w tym punkcie wynosi

µk(t) =
1

∞∑
n=0

p2
n(xk(t))

.

Zatem

−A(x)t− C(x)
B(x)t−D(x)

=
∞∫
−∞

dσt(y)
y − x

=
∑
k∈I

µk(t)
xk(t)− x

, x ∈ R \ Zt.

Twierdzenie 8.11. Niech σ∞ = {xk(∞)}k∈I . W przedziale (xk(∞), xk+1(∞))
znajduje się dokładnie jeden punkt xk(t) ze zbioru Zt, dla każdej liczby t ∈ R.
Ponadto odwzorowanie t 7→ xk(t) jest funkcją ciągłą i malejącą na prostej,
przyjmującą wszystkie wartości z przedziału (xk(∞), xk+1(∞)). Jeśli I =
Z+ (I = Z−), to istnieje liczba t0 ∈ R ∪ {+∞}, (t0 ∈ R ∪ {−∞}) ta-
ka, że w przedziale (−∞, x1(∞)) ((x−1(∞),+∞)) znajduje się dokładnie je-
den punkt x0(t) ze zbioru Zt dla t < t0 (t > t0). Ponadto odwzorowanie
t 7→ x0(t) (t 7→ x−1(t)) jest funkcją ciągłą i malejącą na przedziale (−∞, t0)
((t0,+∞))przyjmującą wszystkie wartości z przedziału (−∞, x1(∞)) ((x−1(∞),+∞)).

Dowód. Na podstawie (6.12), (6.14) oraz (3.12) otrzymujemy

Wzór (8.3).

B′n(x)Dn(x)−Bn(x)D′n(x) =
n−1∑
i=0

p2
i (x). (8.3)

Ze wzoru (8.3) dla z /∈ Z∞ otrzymujemy

d

dx

(
D(x)
B(x)

)
= −B−2(x)[B′(x)D(x)−B(x)D′(x)] = −B−2(x)

∞∑
n=0

p2
n(x) < 0.
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FunkcjaD(x)/B(x) jest zatem malejąca w każdym z przedziałów (xk(∞), xk+1(∞)).
Ponieważ punkty xk(∞) są jej biegunami, to funkcja D(x)/B(x) odwzoro-
wuje każdy z przedziałów (xk(∞), xk+1(∞)) na prostą R. Zauważmy, że xk(t)
jest funkcją odwrotną do D(x)/B(x).

W przypadku, gdy I = Z+ (I = Z−) funkcja D(x)/B(x) jest malejąca w
przedziale (−∞, x1(∞)) ((x−1(∞),+∞)), zatem ma granicę t0 w −∞ (+∞).
Wtedy funkcja odwrotna x0(t) (x−1(t)) spełnia tezę twierdzenia.

Uwaga 8.12.

Przechodząc do granicy we wzorze (8.3) dostajemy

B′(x)D(x)−B(x)D(x) =
∞∑
n=0

p2
n(x).

Zatem jeśli B(x) = 0, to B′(x) 6= 0. To oznacza, że wszystkie zera funkcji
B(z) mają krotność 1. To samo dotyczy D(z) oraz pozostałych dwu funkcji
A(z) i C(z).

9 Parametryzacja Nevanlinny rozwiązań
niezdeterminowanego problemu momentów

W poprzednim rozdziale otrzymaliśmy opis wszystkich rozwiązań N -ekstre-
malnych niezdeterminowanego problemu momentów. Wiemy, że rozwiąza-
nia N -ekstremalne są miarami dyskretnymi, że dwa różne rozwiązania N -
ekstremalne mają rozłączne nośniki, i że suma nośników wszystkich rozwią-
zań N -ekstremalnych jest równa R. Każda nietrywialna kombinacja liniowa
rozwiązań N -ekstremalnych jest nowym rozwiązaniem problemu momentów,
już nie N -ekstremalnym. Jednakże wszystkich rozwiązań problemu momen-
tów jest znacznie więcej.

Lemat 9.1. Niech M oznacza zbiór wszystkich rozwiązań niezdetermino-
wanego problemu momentów Hamburgera {mn}∞n=0. Dla σ ∈ M oznaczmy

F (z) =
∞∫
−∞

dσ(x)
x− z

. Dla liczby naturalnej N niech

RF
N(y) = yN+1

[
F (iy) +

N∑
n=0

(iy)−(n+1)mn

]
.
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Wtedy
lim

y→+∞
RF
N(y) = 0 (9.1)

i zbieżność jest jednostajna względem σ ∈M.
Jeśli F (z) jest funkcją holomorficzną w C+ spełniającą ImF (z) > 0 i

warunek (9.1) dla każdej wartości N, to istnieje rozwiązanie σ ∈ M takie,

że F (z) =
∞∫
−∞

dσ(x)
x− z

.

Dowód. Mamy

N∑
n=0

(iy)−(n+1)mn =
∞∫
−∞

N∑
n=0

(iy)−(n+1)xn dσ(x) =
∞∫
−∞

(
x
iy

)N+1
− 1

x− iy
dσ(x).

Zatem

RF
N(y) =

∞∫
−∞

(−i)N+1xN+1

x− iy
dσ(x).

Otrzymujemy wtedy

|RF
N(y)| ¬ 1

y

∞∫
−∞

|x|N+1 dσ(x)

¬ 1
y


∞∫
−∞

x2N+2 dσ(x)


1/2

=
1
y
m

1/2
2N+2 −−−−→y→+∞

0.

Dla dowodu drugiej części lematu wykorzystamy Twierdzenie Herglotza∗,
które stanowi, że jeśli F (z) jest funkcją holomorficzną odwzorowującą górną
półpłaszczyznę w siebie, to istnieją stałe c ­ 0, d ∈ R oraz miara σ takie, że
∞∫
−∞

dσ(x)
1 + x2

< +∞ oraz

F (z) = cz + d+
∞∫
−∞

( 1
x− z

− x

1 + x2

)
dσ(x). (9.2)

∗Patrz zadania 44–48
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Z (9.1) dla N = 0 otrzymujemy

yF (iy) −−−−→
y→+∞

im0. (9.3)

Z kolei wzór (9.2) daje
y−1F (iy) −−−−→

y→+∞
ic.

Zatem c = 0. Przechodząc do granicy przy y → +∞ w równości

y ImF (iy) =
∞∫
−∞

y2

x2 + y2
dσ(x)

i korzystając z (9.3) dostajemy

m0 =
∞∫
−∞

dσ(x). (9.4)

W szczególności σ ma skończoną całkowitą masę. Obliczamy

ReF (iy) = d+
∞∫
−∞

(
x

x2 + y2
− x

1 + x2

)
dσ(x) −−−−→

y→+∞
d−

∞∫
−∞

x

1 + x2
dσ(x).

W związku z (9.3) mamy ReF (iy)→ 0, gdy y → +∞. Zatem d =
∞∫
−∞

x

1 + x2
dσ(x),

co pociąga

F (z) =
∞∫
−∞

dσ(x)
x− z

.

Pozostaje pokazać, że σ ∈M. Udowodnimy indukcyjnie, że

mn =
∞∫
−∞

xndσ(x). (9.5)

Dla n = 0 równość jest spełniona na podstawie (9.4). Załóżmy, że (9.5)
zachodzi dla n = 0, 1, 2, . . . , 2M − 2. Zastosujemy (9.1) dla N = 2M po
pomnożeniu przez i2M+1. Otrzymamy wtedy

∞∫
−∞

(iy)2x2M−1

x− iy
dσ(x) + iy m2M−1 +m2M −−−−→

y→+∞
0.
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Obliczamy części rzeczywistą i urojoną, aby dostać

m2M−1 = lim
y→+∞

+∞∫
−∞

y2x2M−1

x2 + y2
dσ(x) =

+∞∫
−∞

x2M−1 dσ(x),

m2M = lim
y→+∞

+∞∫
−∞

y2x2M

x2 + y2
dσ(x) =

+∞∫
−∞

x2M dσ(x).

Lemat 9.2. Dla Im z > 0 funkcja Gz określona wzorem

Gz(u) = −A(z)u− C(z)
B(z)u−D(z)

odwzorowuje C+ w intK∞(z).

Dowód. Wiemy, że dla z /∈ R funkcja Gz odwzorowuje R∗ na ∂K∞(z).
Aby zakończyć dowód pokażemy, że Gz(C−) ⊂ C ∪ ∞ \ K∞(z). W tym
celu wystarczy sprawdzić, że liczba G−1

z (∞) = D(z)/B(z) leży w dolnej
półpłaszczyźnie dla Im z > 0.

Ze wzorów (6.8) i (6.10) wynika, że przy |z| → 0

B(z) = −1 + O(|z|),

D(z) = az + O(|z|2), a =
∞∑
n=0

p2
n(0).

Zatem

lim
x→0

1
x

D(ix)
B(ix)

= −ia.

W szczególności Im D(ix)
B(ix) < 0 dla małych dodatnich wartości x. Z ciągło-

ści funkcji D(z)/B(z) wynika, że ImD(z)/B(z) < 0 dla Im z > 0 albo
D(z)/B(z) jest liczbą rzeczywistą dla pewnej wartości z, Im z > 0. Ostat-
nia ewentualność nie jest możliwa, bo z rozważań po Definicji 8.2 wynika,
że funkcja D(z)t − B(z) nie zeruje się w górnej półpłaszczyźnie dla żadnej
wartości rzeczywistej t.
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Twierdzenie 9.3. Niech {mn}∞n=0 będzie niezdeterminowanym ciągiem mo-
mentów Hamburgera. Istnieje wzajemnie jednoznaczne odwzorowanie zbioru
rozwiązań M problemu momentów na zbiór Φ wszystkich funkcji holomor-
ficznych ϕ takich, że ϕ : C+ → C+ lub φ(z) ≡ t ∈ R∗. Odwzorowanie to jest
wyznaczone przez

Fσ(z) =
∞∫
−∞

dσ(x)
x− z

= −A(z)ϕ(z)− C(z)
B(z)ϕ(z)−D(z)

.

Dowód. Pokażemy, że jeśli ϕ ∈ Φ, to dla funkcji

F (z) = −A(z)ϕ(z)− C(z)
B(z)ϕ(z)−D(z)

istnieje miara σ ∈ M taka, że F (z) = Fσ(z). Jeśli ϕ(z) ≡ t, to σ = σt.
Załóżmy zatem, że ϕ : C+ → C+. Wtedy

F (z) = Gz(ϕ(z)). (9.6)

Zatem F (z) ∈ intK∞(z) dla Im z > 0. Twierdzimy, że F (z) spełnia (9.1).
Rzeczywiście, możemy zapisać

F (iy) = αFσt1 (iy) + (1− α)Fσt2 (iy),

gdzie t1, t2 ∈ R∗ oraz α ∈ (0, 1) zależą od y. Na podstawie Lematu 9.1
otrzymujemy

|RF
N(y)| ¬ sup

t∈R∗
|RFσt

N (y)| −−−−→
y→+∞

0.

Zatem istnieje miara σ ∈M taka, że F (z) = Fσ(z).
Odwrotnie, załóżmy, że σ ∈ M. Jeśli σ jest N -ekstremalna, to σ = σt

dla pewnego t ∈ R∗, w związku z czym możemy przyjąć ϕ(z) ≡ t. Jeśli σ
nie jest N -ekstremalna, to Fσ odwzorowuje C+ w intK∞(z). Wtedy funkcja
ϕ(z) = G−1

z (Fσ(z)) odwzorowuje C+ w C+. Ponadto Gz(ϕ(z)) = Fσ(z).

10 Rozszerzenia samosprzężone operatorów
symetrycznych

Niech H będzie przestrzenią Hilberta z iloczynem skalarnym (·, ·). Będziemy
rozważać operatory liniowe A odwzorowujące podprzestrzeń D(A) ⊂ H, na-
zywaną dziedziną operatora A, w przestrzeń H. Wykresem ΓA operatora A
nazywamy zbiór

ΓA = {〈v,Av〉 : v ∈ D(A)}.



Rozszerzenia samosprzężone operatorów symetrycznych 49

Definicja 10.1. Operator liniowy A : D(A) → H, gdzie dziedzina D(A)
jest liniową podprzestrzenią w H, nazywamy symetrycznym, jeśli (Ax, y) =
(x,Ay) dla dowolnych wektorów x, y ∈ D(A).

Korzystając z tożsamości polaryzacyjnej można udowodnić, że operator
liniowy A jest symetryczny wtedy i tylko wtedy, gdy dla każdego wektora
x ∈ D(A) liczba (Ax, x) jest rzeczywista.

Okazuje się, że operator symetryczny o pełnej dziedzinie jest ograniczony.

Twierdzenie 10.2 (Hellinger, Toeplitz). Jeśli operator liniowy A : H → H
jest symetryczny, to A jest ograniczony.

Dowód. Pokażemy, że wykres operatora A jest domknięty. Niech xn → x
oraz Axn → y, gdy n→∞. Dla dowolnego wektora z ∈ H mamy

(y, z) = lim
n→∞

(Axn, z) = lim
n→∞

(xn, Az) = (x,Az) = (Ax, z).

Zatem y = Ax.

Dla dwu operatorów liniowych A i B zawieranie A ⊂ B oznacza, że
D(A) ⊂ D(B) orazAx = Bx dla wszystkich wektorów x ∈ D(A).OperatorA
jest zawarty wB wtedy i tylko wtedy, gdy wykres ΓA operatora A jest zawarty
w wykresie ΓB operatora B. Będziemy zajmować się wyłącznie operatorami
liniowymi A o gęstej dziedzinie D(A).

Definicja 10.3. Dla operatora liniowego A : H → H o gęstej dziedzinie
D(A) operator sprzężony A∗ jest określony na dziedzinie

D(A∗) = {x ∈ H : istnieje z ∈ H taki, że (Ay, x) = (y, z) dla y ∈ D(A)}.

Dla x ∈ D(A∗) określamy A∗x = z.

Uwaga 10.4.

Z Twierdzenia Riesza wektor x należy do D(A∗) wtedy i tylko wtedy,
gdy funkcjonał D(A) 3 y 7→ (Ay, x) jest ograniczony. Z gęstości dziedziny
D(A) wynika, że operator A∗ jest dobrze określony, bo dla x ∈ H co najwyżej
jeden element z ∈ H może spełniać (Ay, x) = (y, z) dla wszystkich wektorów
y ∈ D(A).

Jeśli A jest operatorem symetrycznym, to D(A) ⊂ D(A∗) oraz A∗x = Ax
dla x ∈ D(A). Zatem A ⊂ A∗. Ponadto
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Definicja 10.5. Operator symetryczny A : H → H nazywamy samosprzę-
żonym, jeśli A = A∗, tzn. D(A∗) = D(A).

Naszym głównym zadaniem jest znalezienie samosprzężonych rozszerzeń
operatora symetrycznego. Jeśli operatory symetryczne spełniają A ⊂ B, to

A ⊂ B ⊂ B∗ ⊂ A∗.

Zatem jeśli A jest operatorem samosprzężonym, to A = B, czyli A jest
maksymalnym symetrycznym operatorem.

Dla operatora symetrycznego A o gęstej dziedzinie i dla liczby zespolonej
z /∈ R symbolami Rz i Rz będziemy oznaczać obrazy operatorów A− zI oraz
A−zI, odpowiednio. Dopełnienia ortogonalne tych przestrzeni, tzn. Nz = R⊥z
oraz Nz = R⊥z , nazywamy podprzestrzeniami defektu.

Twierdzenie 10.6. Przestrzenie Nz i Nz są podprzestrzeniami własnymi
operatora A∗ odpowiadającymi wartościom własnym z i z, odpowiednio.

Dowód. Dla ustalonego wektora v ∈ Nz i dowolnego wektora w ∈ D(A)
mamy ((A−zI)w, v) = 0. Zatem (Aw, v) = (w, zv). To oznacza, że v ∈ D(A∗)
oraz A∗v = zv. Odwrotnie, jeśli A∗v = zv, to powyższe obliczenia implikują
v ∈ Nz.

Dla operatorów A i B dziedziną operatora A + B jest część wspólna
dziedzin, czyli D(A + B) = D(A) ∩ D(B). Z kolei dziedziną operatora AB
jest przestrzeń tych wektorów x ∈ D(B), dla których Bx ∈ D(A). Wtedy
(AB)x = A(Bx). Jeśli operator A jest różnowartościowy na swojej dziedzinie
D(A), to dziedziną operatora A−1 jest obraz operatora A oraz A−1(Ax) = x.

Definicja 10.7. Dla z /∈ R operator

Uz = (A− zI)(A− zI)−1

nazywamy transformatą Cayley operatora symetrycznego A.

Uwaga 10.8.

Definicja operatora Uz jest poprawna, bo operator A− zI jest różnowar-
tościowy na D(A). Istotnie dla x ∈ D(A) oraz x 6= 0 mamy

Im ((A− zI)x, x) = Im z(x, x) 6= 0. (10.1)

Nietrudno sprawdzić, że dziedziną operatora Uz jest D(Uz) = Im (A− zI).
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Twierdzenie 10.9.

(i) Transformata Cayley jest izometrią z przestrzeni Rz na przestrzeń Rz.

(ii) Zbiór wektorów Uzv − v, gdzie v ∈ D(Uz), jest gęstą podprzestrzenią w
H.

(iii) Każda izometria U spełniająca warunek (ii) jest transformatą Cayley
pewnego symetrycznego operatora.

Dowód. (i) Niech x ∈ D(A). Wtedy z równości

‖(A− zI)x‖2 = ‖Ax‖2 + |z|2‖x‖2 − 2(Re z)(Ax, x)

wynika, że
‖(A− zI)x‖ = ‖(A− zI)x‖. (10.2)

To kończy dowód części (i), ponieważ

Uz : (A− zI)x 7→ (A− zI)x.

Część (ii) wynika natychmiast ze wzoru

(A− zI)x− (A− zI)x = 2i(Im z)x,

jeśli przyjmiemy v = (A− zI)x dla x ∈ D(A).
(iii) Najpierw sprawdzimy, że operator U−I jest różnowartościowy. Niech

Uw = w, dla w ∈ D(U). Wtedy

(Uv − v, w) = (Uv,w)− (v, w) = (Uv, Uw)− (v, w) = 0,

dla dowolnego wektora v ∈ D(U). Z założenia wynika, że w = 0.
Określmy

A = (zI − zU)(I − U)−1. (10.3)

Wtedy dziedzina D(A) = Im (I−U) jest gęstą podprzestrzenią wH. Ponadto

A(w − Uw) = zw − zUw.

Dalej obliczamy

(A(w − Uw), w − Uw) = (zw − zUw,w − Uw)
= (z + z)(w,w)− z(Uw,w)− z(w,Uw) ∈ R.
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Zatem A jest operatorem symetrycznym. Pokażemy, że U = Uz. Z równości

A− zI = (zI − zU)(I − U)−1 − z(I − U)(I − U)−1 = (z − z)(I − U)−1,

A− zI = (zI − zU)(I − U)−1 − z(I − U)(I − U)−1 = (z − z)U(I − U)−1

wynika Im (A− zI) = Im (I − U)−1 = D(U) oraz U(A− zI) = A− zI.
Następne twierdzenie jest natychmiastową konsekwencją definicji trans-

formaty Cayley i wzoru (10.3).

Twierdzenie 10.10. Niech A1 i A2 będą operatorami symetrycznymi, któ-
rych transformaty Cayley są równe Uz,1 i Uz,2. Zawieranie A1 ⊂ A2 jest
równoważne zawieraniu transformat Cayley Uz,1 ⊂ Uz,2.

Definicja 10.11. Operator A nazywamy domkniętym, jeśli wykres ΓA ope-
ratora A jest domkniętym podzbiorem H×H.

Lemat 10.12. Każdy operator symetryczny można rozszerzyć do domknię-
tego operatora symetrycznego.

Dowód. Z definicji operatora sprzężonego 〈x, y〉 należy do ΓA∗ wtedy i
tylko wtedy, gdy (Av, x) = (v, y) dla każdego v ∈ D(A). Stąd wykres ΓA∗
jest domknięty. Wtedy domknięcie V wykresu ΓA w H × H jest zawarte w
ΓA∗ . Zatem V jest wykresem operatora liniowego Ã. Symetria operatora Ã
wynika z tego, że jeśli xn

n→ x oraz Axn
n→ Ãx, to

(Ãx, x) = lim
n→∞

(Axn, xn) ∈ R.

Rozszerzenie skonstruowane w dowodzie lematu nazywamy domknię-
ciem operatora A i oznaczamy symbolem Ā.

Lemat 10.13. Dla operatora symetrycznego A zachodzi równość Ā∗ = A∗.

Dowód. Ponieważ A ⊂ Ā, to (Ā)∗ ⊂ A∗. Niech 〈x, y〉 należy do ΓA∗ . To
oznacza, że (x,Av) = (y, v) dla każdego v ∈ D(A). Dla w ∈ D(Ā) istnieje
ciąg vn ∈ D(A) taki, że vn → w oraz Avn → Āw. Zatem (x, Āw) = (y, w).
Stąd x ∈ D((Ā)∗) oraz (Ā)∗x = y, czyli 〈x, y〉 należy do Γ(Ā)∗ .

Twierdzenie 10.14. Operator symetryczny A jest domknięty wtedy i tylko
wtedy, gdy przestrzeń Rz jest domknięta dla pewnej (każdej) wartości z /∈ R.
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Dowód. Dla z = a+ bi, gdzie b 6= 0, oraz v ∈ D(A) mamy

‖(A− zI)v‖2 = ‖(A− aI)v‖2 + |b|2‖v‖2 ­ |b|2‖v‖2. (10.4)

Załóżmy, że A jest operatorem domkniętym. Niech (A − zI)xn
n→ y. Pod-

stawiając v = xn − xm do wzoru (10.4) wyciągamy wniosek, że ciąg xn
spełnia warunek Cauchy’ego. Zatem xn → x dla pewnego wektora x ∈ H.
Otrzymujemy Axn

n→ y + zx. Z domkniętości operatora A wnioskujemy, że
Ax = y + zx, czyli (A − zI)x = y. To oznacza, że Rz jest podprzestrzenią
domkniętą.

Odwrotnie, załóżmy, że podprzestrzeń Rz jest domknięta. Niech xn → x
oraz Axn

n→ y. Wtedy (A− zI)xn
n→ y − zx. Z domkniętości podprzestrzeni

Rz wynika, że dla pewnego wektora w ∈ D(A) zachodzi

(A− zI)w = y − zx. (10.5)

Zatem
(A− zI)(xn − w) −−−→

n→∞
0.

Podstawiamy v = xn − w do wzoru (10.4), aby otrzymać xn
n→ w. Stąd

x = w. Teraz z (10.5) dostajemy (A− zI)x = y − zx, czyli Ax = y.

Twierdzenie 10.15. Dla domkniętego operatora symetrycznego A i dla z /∈
R przestrzenie D(A), Nz oraz Nz są liniowo niezależne oraz

D(A∗) = D(A) +Nz +Nz.

Dowód. Niech a + b + c = 0 dla a ∈ D(A), b ∈ Nz i c ∈ Nz. Wtedy z
Twierdzenia 10.6 otrzymujemy

0 = (A∗ − zI)(a+ b+ c) = (A− zI)(a) + (z − z)b.

Składniki po prawej stronie są ortogonalne do siebie, bo (A−zI)(a) ∈ Rz oraz
b ∈ Nz. Zatem b = 0 i (A− zI)(a) = 0. Na podstawie (10.1) wnioskujemy, że
a = 0. Wtedy c = 0.

Z Twierdzenia 10.6 mamy, że D(A∗) ⊇ D(A) + Nz + Nz. Niech v ∈
D(A∗). Twierdzenie 10.14 implikuje domkniętość podprzestrzeni Rz. Zatem
H = Rz +Nz. Wektor (A∗ − zI)v możemy więc rozłożyć w postaci

(A∗ − zI)v = (A− zI)a+ (z − z)b,
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gdzie a ∈ D(A) oraz b ∈ Nz. Otrzymujemy

(A∗ − zI)v = (A∗ − zI)(a+ b),

czyli
(A∗ − zI)(v − a− b) = 0.

To oznacza, że v − a− b ∈ Nz. Stąd v = a+ b+ c, gdzie c ∈ Nz

Wniosek 10.16. Domknięty operator symetryczny jest samosprzężony wtedy
i tylko wtedy, gdy jego przestrzenie defektu są zerowe.

Wniosek 10.17. Domknięty operator symetryczny jest samosprzężony wtedy
i tylko wtedy, gdy Rz = H i Rz = H dla z /∈ R.

Definicja 10.18. Operator symetryczny nazywamy istotnie samosprzę-
żonym, jeśli jego domknięcie jest operatorem samosprzężonym.

Na podstawie Lematu 10.13 i Wniosku 10.16 otrzymujemy

Wniosek 10.19. Operator symetryczny jest istotnie samosprzężony wtedy i
tylko wtedy, gdy jego przestrzenie defektu są zerowe.

Z kolei z Lematu 10.13 i Wniosku 10.17 dostajemy

Wniosek 10.20. Operator symetryczny jest istotnie samosprzężony wtedy i
tylko wtedy, gdy przestrzenie Rz oraz Rz są gęste w H.

Lemat 10.21. Niech A będzie operatorem domkniętym spełniającym

‖Ax‖ ­ λ‖x|, x ∈ D(A).

Dla dowolnego operatora ograniczonego B spełniającego ‖B‖ < λ/2 operator
A+B jest domknięty oraz

dim ker(A+B)∗ = dim kerA∗.

Dowód. Z założenia mamy

‖(A+B)x‖ ­ λ

2
‖x|, x ∈ D(A).

Domkniętość operatora A+B wynika natychmiast z ograniczoności operatora
B. Ponadto, podobnie jak w dowodzie Twierdzenia 10.14, dowodzimy, że
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przestrzenie ImA oraz Im (A+B) są domknięte. Niech y ∈ ker(A+B)∗ oraz
‖y‖ = 1. Załóżmy, że y jest ortogonalny do kerA∗. To oznacza, że y ∈ ImA
(por. dowód Twierdzenia 10.6). Stąd y = Ax dla pewnego wektora x ∈ D(A).
Z założenia otrzymujemy ‖y‖ ­ λ‖x‖. Ponadto

0 = ((A+B)∗y, x) = (y, Ax+Bx) = (y, y) + (y,Bx)

­ ‖y‖2 − ‖B‖‖x‖‖y‖ > ‖y‖2 − 1
2
λ‖x‖‖y‖ ­ 0,

co prowadzi do sprzeczności. Zatem przestrzeń ker(A+B)∗ nie posiada nie-
zerowego wektora ortogonalnego do kerA∗. To oznacza, że†

dim ker(A+B)∗ ¬ dim kerA∗.

Podobnie pokazujemy nierówność w drugą stronę stosując poprzednie rozu-
mowanie dla operatorów A′ = A+B oraz B′ = −B.

Wniosek 10.22. Dla operatora symetrycznego A i dowolnej liczby zespolonej
z, spełniającej Im z > 0 mamy

dimNz = dimN−i, dimNz = dimNi.

Dowód. Możemy założyć, że A jest domknięty. Niech Im z0 = b 6= 0.
Wiemy, że (por. (10.4))

‖(A− z0I)x‖ ­ |b|‖x‖, x ∈ D(A).

Z Lematu 10.21 zastosowanego do A − z0I oraz B = (z0 − z)I wynika, że
liczba dimNz jest stała dla |z− z0| < |b|/2. Zatem wartość dimNz jest stała
w każdej z półpłaszczyzn Im z > 0 i Im z < 0.

Liczby dimNi oraz dimN−i nazywamy indeksami defektu operatora
symetrycznego A. Z Wniosku 10.16 domknięty operator symetryczny jest
samosprzężony wtedy i tylko wtedy, gdy jego indeksy defektu są równe zero.

Twierdzenie 10.23. Niech A będzie domkniętym operatorem symetrycznym
natomiast B ograniczonym operatorem samosprzężonym. Wtedy operatory A
i A+B mają te same indeksy defektu.

†por. Zadanie 56
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Dowód. Niech λ = 3‖B‖. Skorzystamy z nierówności (10.4)

‖(A± λiI)x‖ ­ λ‖x‖, x ∈ D(A).

Wtedy z Lematu 10.21 zastosowanego do A± λiI otrzymujemy

dim ker((A+B)∗ ∓ λiI) = dim ker(A∓ λiI).

Z Wniosku 10.22 indeksy defektu operatorów A i A+B są zatem równe.

Twierdzenie 10.24. Operator symetryczny posiada samosprzężone rozsze-
rzenie wtedy i tylko wtedy, gdy jego indeksy defektu są równe sobie. Każde
samosprzężone rozszerzenie można utożsamić z izometrią z podprzestrzeni
N−i na podprzestrzeń Ni.

Dowód. Na podstawie Lematu 10.12 możemy założyć, że operator A jest
domknięty, bo w razie konieczności możemy go zastąpić domkniętym syme-
trycznym rozszerzeniem. Załóżmy, że dimNi = dimN−i. Niech V1 będzie
dowolną izometrią z N−i na Ni. Przez V2 oznaczymy transformatę Cayley’a
operatora A odpowiadającą liczbie i. Wiemy, że V2 jest izometrią odwzo-
rowującą R−i na Ri. Określmy operator U na przestrzeni H = N−i + R−i
przez

U |N−i = V1, U |R−i = V2.

Wtedy U jest operatorem unitarnym oraz V2 ⊂ U. Z Twierdzenia 10.9 odwzo-
rowanie U jest transformatą Cayley’a operatora symetrycznego Ã. Z Twier-
dzenia 10.10 operator Ã jest rozszerzeniem operatora A. Ponieważ U jest
operatorem unitarnym, to Im (Ã − iI) = Im (Ã + iI) = H. Zatem indeksy
defektu operatora Ã są równe zero, czyli (Ã)∗ = Ã.

Odwrotnie, załóżmy, że A ⊂ Ã oraz (Ã)∗ = Ã. Wtedy transformata
Cayley Ui operatora Ã jest operatorem unitarnym. Z Twierdzenia 10.10 od-
wzorowanie Ui jest rozszerzeniem transformaty Cayley Vi operatora A. Zatem
Ui(R−i) = Vi(R−i) = Ri. Z unitarności operatora Ui wynika, że U(N−i) = Ni.
Stąd dimN−i = dimNi.

Definicja 10.25. Odwzorowanie C : H → H nazywamy sprzężeniem, jeśli
C jest antyliniowe, C2 = I, oraz C zachowuje normę, tzn. ‖Cx‖ = ‖x‖, dla
x ∈ H.

Twierdzenie 10.26. Niech A będzie operatorem symetrycznym. Załóżmy, ze
istnieje sprzężenie C spełniające C : D(A) → D(A) oraz AC = CA. Wtedy
operator A posiada samosprzężone rozszerzenie.
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Dowód. Z tożsamości polaryzacyjnej i z antyliniowości operatora C otrzy-
mujemy

(Cx,Cy) = (y, x), dla x, y ∈ H.

Pokażemy, że wymiary Ni i N−i są równe. Najpierw udowodnimy, że C od-
wzorowuje Ni w N−i. Niech x ∈ Ni i y ∈ D(A). Wtedy

0 = ((A∗+ iI)x,Cy) = (x, (A− iI)Cy) = (x,C(A+ iI)y) = ((A+ iI)y, Cx).

Zatem Cx ∈ ker(A∗ − iI) = N−i. Podobnie dowodzimy, że C odwzorowuje
N−i w Ni. Ponieważ C jest bijekcją, to dimN−i = dimNi.

11 Problem momentów Hamburgera jako sa-
mosprzężone rozszerzenie operatora syme-
trycznego

Dla ciągu momentów Hamburgera {mn}∞n=0 niech J będzie odpowiadającą
temu ciągowi macierzą Jacobi’ego. Macierz J możemy traktować jako opera-
tor liniowy w przestrzeni Hilberta `2(N) z dziedziną

D(J) = lin{δ0, δ1, . . . , δn, . . .}.

Jak wiemy, J jest operatorem symetrycznym oraz

Jδn = λnδn+1 + βnδn + λn−1δn−1, n ­ 1
Jδ0 = λ0δ1 + β0δ0.

Przyjmując umowę, że λ−1 = δ−1 = 0 działanie J można zapisać jednym
wzorem

Jδn = λnδn+1 + βnδn + λn−1δn−1, n ­ 0.

Operator C określony przez

C

( ∞∑
n=0

anδn

)
=
∞∑
n=0

anδn

jest sprzężeniem na `2(N). Co więcej JC = CJ, zatem J posiada samosprzę-
żone rozszerzenia na podstawie Twierdzenia 10.26.
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Zbadajmy przestrzenie defektu dla operatora J. W tym celu rozwiązujemy
równanie

(J∗ − zI)v = 0

dla z /∈ R i dla v ∈ D(J∗). Otrzymujemy

0 = ((J∗−zI)v, δn) = (v, (J−zI)δn) = (v, λnδn+1+βnδn+λn−1δn−1−zδn).

Przy oznaczeniu vn = (v, δn) dostajemy

zvn = λnvn+1 + βnvn + λn−1vn−1, n ­ 0.

Stąd wnioskujemy, że vn = v0pn(z).

Wniosek 11.1. Przestrzeń defektu Nz jest niezerowa wtedy i tylko wtedy,

gdy
∞∑
n=0

|pn(z)|2 < +∞.

Twierdzenie 11.2. Problem momentów Hamburgera {mn}∞n=0 jest zdeter-
minowany wtedy i tylko wtedy, gdy macierz Jacobi’ego J jest istotnie samo-
sprzężona.

Symbolem {pn}∞n=0 oznaczamy układ wielomianów ortonormalnych zwią-
zany z ciągiem momentów Hamburgera {mn}∞n=0. Niech H będzie uzupełnie-
niem przestrzeni P wielomianów względem iloczynu skalarnego wyznaczonego
przez momenty. Wtedy układ {pn}∞n=0 stanowi bazę ortonormalną przestrze-
ni Hilberta H. Niech U będzie operatorem liniowym z przestrzeni `2(N) w
przestrzeń H określonym przez

Uδn = pn. (11.1)

U jest operatorem unitarnym, bo odwzorowuje bazę ortonormalną przestrzeni
`2(N) na bazę ortonormalną przestrzeni H.

W przestrzeni H określamy operator M z dziedziną D(M) = P wzorem
(Mp)(x) = xp(x). Operator M jest symetryczny, bo (Mxk, xl) = (xk,Mxl) =
mk+l+1. Zauważmy, że UD(J) = D(M) oraz

UJU−1 = M. (11.2)

Rzeczywiście, równość (11.2) wystarczy sprawdzić na bazie przestrzeni H.

UJU−1pn = UJδn = U(λnδn+1 + βnδn + λn−1δn−1)
= λnpn+1 + βnpn + λn−1pn−1 = xpn = Mpn.
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Rozważania powyższe dowodzą, że operator J jest unitarnie równoważ-
ny z operatorem M. W szczególności J jest istotnie samosprzężony wtedy i
tylko wtedy, gdy M jest istotnie samosprzężony. Ponadto każde samosprzę-
żone rozszerzenie M̃ operatora M wyznacza samosprzężone rozszerzenie J̃
operatora J wzorem J̃ = U−1M̃U.

Lemat 11.3. Zachodzi wzór pn(J)δ0 = δn.

Dowód. Ze wzoru (11.2) wynika, że pn(J) = U−1pn(M)U. Zatem

pn(J)δ0 = U−1pn(M)Uδ0 = U−1pn(M)1 = U−1pn = δn.

Dowód następnego lematu pozostawiamy czytelnikowi.

Lemat 11.4. Niech σ będzie miarą probabilistyczną na prostej a Mx opera-
torem liniowym w przestrzeni L2(R, σ) określonym wzorem Mxf(x) = xf(x)
z dziedziną

D(Mx) = {f ∈ L2(R, σ) : xf ∈ L2(R, σ)}.
Wtedy Mx jest operatorem samosprzężonym. Rozkład jedności‡ F (x) związa-
ny z Mx ma postać F (x)f = χ(−∞,x)f, dla f ∈ L2(R, σ).

Twierdzenie 11.5. Niech J̃ będzie samosprzężonym rozszerzeniem opera-
tora J. Niech E(x) będzie rozkładem jedności związanym z J̃ . Wtedy miara
dσ(x) = d(E(x)δ0, δ0) jest N-ekstremalnym rozwiązaniem problemu momen-
tów {mn}∞n=0. Każde N-ekstremalne rozwiązanie może być otrzymane w ten
sposób.

Dowód. Dla odróżnienia iloczynów skalarnych w `2(N) i w przestrzeni
wielomianów, ten pierwszy oznaczymy przez (·, ·)`2 . Z Lematu 11.3 mamy

(pn(J)δ0, pm(J)δ0)`2 = (pn, pm).

Zatem
(Jkδ0, J

lδ0)`2 = (xk, xl) = mk+l. (11.3)

Mamy δ0 ∈ D(Jn) ⊂ D(J̃n). Zatem

∞∫
−∞

x2n dσ(x) =
∞∫
−∞

x2n d(E(x)δ0, δ0)`2 < +∞.

‡Podstawowe fakty dotyczące twierdzenia spektralnego są umieszczone w Dodatku.
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Ponadto z (11.3) wynika, że

mn = (Jnδ0, δ0)`2 = (J̃nδ0, δ0)`2 =
∞∫
−∞

xn d(E(x)δ0, δ0)`2 =
∞∫
−∞

xn dσ(x).

Pokażemy, że wielomiany tworzą gęstą podprzestrzeń w L2(R, σ). Niech f ∈
Cc(R). Wtedy operator f(J̃) jest ograniczony oraz

an =
∞∫
−∞

f(x)pn(x) dσ(x) = (pn(J̃) f(J̃)δ0, δ0)`2

= (f(J̃)δ0, pn(J̃)δ0)`2 = (f(J̃)δ0, δn)`2 .

Zatem
∞∫
−∞

|f(x)|2 dσ(x) = (f(J̃)f(J̃)δ0, δ0)`2

= ‖f(J̃)δ0‖2
`2 =

∞∑
n=0

|(f(J̃)δ0, δn)`2|2 =
∞∑
n=0

|an|2.

Ostatnia równość oznacza, że funkcja f może być przybliżona wielomianami
w normie przestrzeni L2(R, σ). Zatem σ jest N -ekstremalnym rozwiązaniem
problemu momentów {mn}∞n=0.

Pokażemy, że każdemu N -ekstremalnemu rozwiązaniu odpowiada samo-
sprzężone rozszerzenie operatora J. Niech σ będzie N -ekstremalnym rozwią-
zaniem problemu momentów. Wtedy przestrzeń H określona po Twierdzeniu
11.2 można utożsamić z przestrzenią L2(R, σ), bo wielomiany leżą gęsto w
L2(R, σ). Zatem U określony w (11.1) jest operatorem unitarnym z `2(N) na
L2(R, σ). Ze wzoru (11.2) operator J jest unitarnie równoważny z operato-
rem M. Z kolei z Lematu 11.4 operator M posiada samosprzężone rozsze-
rzenie Mx, bo dziedzina operatora Mx zawiera wielomiany. Wtedy operator
J posiada samosprzężone rozszerzenie J̃ = U−1MxU. Rozkład jedności E(x)
związany z operatorem J̃ otrzymujemy z rozkładu jedności F (x) związanego
z operatorem Mx za pomocą wzoru E(x) = U−1F (x)U. Znowu korzystamy z
Lematu 11.4, aby otrzymać

(E(x)δ0, δ0)`2 = (U−1F (x)Uδ0, δ0)`2

= (F (x)1, 1) =
∞∫
−∞

χ(−∞,x)(y) dσ(y) = σ((−∞, x)).
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12 Wektory analityczne i wektory jednoznacz-
ności

Definicja 12.1. Dla operatora symetrycznego A zbiór

C∞ =
∞⋂
n=1

D(An)

nazywamy przestrzenią wektorów gładkich operatora A. Wektor v ∈ C∞(A)
nazywamy analitycznym, jeśli dla pewnej liczby t > 0 mamy

∞∑
n=0

‖Anx‖
n!

tn <∞.

Przykład 12.2.
Rozważmy operator A = i

d

dx
w przestrzeni L2(R, dx) z dziedziną C ′c(R).

Funkcje C∞c (R) są wektorami gładkimi. Niech f(z) będzie funkcją całkowitą
spełniającą oszacowanie |f(z)| ¬ cea|z| dla pewnych stałych c, a i wszystkich

liczb z ∈ C, oraz
∞∫
−∞
|f(x)|2 dx < +∞. Z twierdzenia Paley-Wienera funkcja

f(z) ma postać

f(z) =
a∫
−a

g(y)e−iyz dy,

dla pewnej funkcji g ∈ L2(R, dx). Wtedy

Anf(x) =
a∫
−a

yng(y)e−iyx dy.

Ze wzoru Plancherela otrzymujemy zatem

∞∫
−∞

|Anf(x)|2 dx = 2π
a∫
−a

y2n|g(y)|2 dy

¬ 2πa2n
a∫
−a

|g(y)|2 dy = a2n
∞∫
−∞

|f(x)|2 dx.
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Dostajemy oszacowanie ‖Anf‖2 ¬ an ‖f‖2, z którego wynika, że f jest wek-
torem analitycznym.

Jeśli operator A jest samosprzężony, to wektory analityczne tego opera-
tora tworzą gęstą podprzestrzeń w D(A). Rzeczywiście, mamy

D(A) =

v ∈ H :
∞∫
−∞

x2d(E(x), v, v) < +∞

 .
Dla k ∈ N niech Hk = (Ek − E−k)H. Zatem

E(x)(E(k)− E(−k)) =

0 dla x < −k,
E(k)− E(−k) dla x > k.

Dla wektora v ∈ Hk mamy wtedy

∞∫
−∞

x2n d(E(x)v, v) =
∞∫
−∞

x2n d(E(x)(E(k)− E(−k))v, v)

==
∫

[−k,k]

x2n d(E(x)v, v) ¬ k2n‖v‖2.

Stąd v ∈ D(An) dla dowolnej liczby n oraz

(Anv,Anv) = (A2nv, v) =
∞∫
−∞

x2nd(E(x)v, v) ¬ k2n‖v‖2.

Otrzymujemy
∞∑
n=0

‖Anv‖
n!

tn ¬
∞∑
n=0

kn‖v‖
n!

tn < +∞.

Wektory z Hk są więc analityczne. Ponieważ

H =
∞⋃
k=1

Hk

to wektory analityczne leżą gęsto w H.
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Definicja 12.3. Niech v ∈ C∞(A) oraz

Dv = {p(A)v : p ∈ P},
Hv = Dv.

Wektor v nazywamy wektorem jednoznaczności, jeśli operator A ograni-
czony do dziedziny Dv jest istotnie samosprzężony jako operator w Hv.

Definicja 12.4. Podzbiór V ⊂ C∞(A) nazywamy totalnym, jeśli zbiór
{p(A)v : v ∈ V, p ∈ P} jest liniowo gęsty w H.

Twierdzenie 12.5 (Nussbaum). Załóżmy, że dla operatora symetrycznego
dziedzina D(A) zawiera totalny podzbiór wektorów jednoznaczności. Wtedy A
jest operatorem istotnie samosprzężonym.

Dowód. Z Wniosku 10.20 wystarczy pokazać, że przestrzenie Ri oraz R−i
są gęste w H. Ustalmy wektor v ∈ H oraz liczbę ε > 0. Z założenia moż-
na znaleźć wektory jednoznaczności v1, v2, . . . , vn ∈ C∞(A) oraz wielomiany
P1, P2, . . . , Pn spełniające

‖v − [P1(A)v1 + P2(A)v2 + . . .+ Pn(A)vn]‖ < ε

2
.

Ponieważ vi są wektorami jednoznaczności, to istnieją wektory u1, u2, . . . , un
takie, że ui ∈ Dvi ⊂ C∞(A) oraz

‖Pi(A)vi − (A− iI)ui‖ <
ε

2n
.

Wtedy u1 + u2 + . . .+ un ∈ C∞(A) i

‖v − (A− iI)(u1 + u2 + . . . un)‖ < ε.

Twierdzenie 12.6. Załóżmy, że dla operatora symetrycznego A oraz dla

wektora v ∈ C∞(A) spełniony jest warunek
∞∑
n=1

‖Anv‖−1/n = +∞. Wtedy v

jest wektorem jednoznaczności.
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Dowód. Możemy założyć, że ‖v‖ = 1. Rozważmy ciąg wektorów {Anv}∞n=0.
Jeśli wektory tego ciągu są liniowo zależne, to przestrzeń liniowa określona
w Definicji 12.3 ma skończony wymiar. Wtedy A jest operatorem ograniczo-
nym na Hv. W szczególności A jest tam samosprzężony. Załóżmy zatem, że
wektory ciągu {Anv}∞n=0 są liniowo niezależne. Wtedy ciąg mn = (Anv, v)

jest ciągiem momentów Hamburgera. Z założenia mamy
∞∑
n=1

m
−1/(2n)
2n = +∞.

Zatem z kryterium Carlemana (patrz zadanie 36) macierz Jacobi’ego J zwią-
zana z tym ciągiem jest istotnie samosprzężona. Niech Hm oznacza uzupeł-
nienie przestrzeni P względem iloczynu skalarnego wyznaczonego przez ciąg
{mn}∞n=0. Wtedy operator M mnożenia przez x z dziedziną P jest istotnie sa-
mosprzężony. Rozważmy odwzorowanie liniowe U : Dv → P określone przez
U(Anv) = xn. Ponieważ U zachowuje iloczyn skalarny, to można rozszerzyć
U do operatora unitarnego z Hv na Hm. Operator U wiąże operatory A|Dv i
M poprzez A|Dv = U−1MU. Zatem A|Dv jest również istotnie samosprzężo-
ny.

Wniosek 12.7. Każdy wektor analityczny operatora symetrycznego jest wek-
torem jednoznaczności.

Dowód. Załóżmy, że
∞∑
n=1

‖Anv‖
n!

tn < +∞ dla pewnej liczby t > 0. Wtedy

‖Anv‖
nn

tn ¬ ‖A
nv‖
n!

tn ¬ 1

dla n ­ N. Zatem ‖Anv‖−1/n ­ t

n
dla n > N. Z Twierdzenia 12.6 wynika,

że v jest wektorem jednoznaczności.

Wniosek 12.8 (Twierdzenia Nelsona). Załóżmy, że dziedzina operatora sy-
metrycznego A zawiera totalny podzbiór wektorów analitycznych. Wtedy A
jest operatorem istotnie samosprzężonym.

13 Problem momentów Stieltjesa i rozszerze-
nia operatorów nieujemnych

Definicja 13.1. Operator A nazywamy nieujemnym, jeśli (Ax, x) ­ 0, dla
każdego wektora x ∈ D(A).
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W szczególności operator nieujemny jest symetryczny.

Twierdzenie 13.2. Indeksy defektu operatora nieujemnego są sobie równe.
Operator A jest istotnie samosprzężony wtedy i tylko wtedy, gdy przestrzeń
N = ker(A∗ + I) jest trywialna.

Dowód. Domknięcie operatora A jest znowu operatorem nieujemnym. Za-
tem bez straty ogólności możemy założyć, że A jest operatorem domkniętym.
Mamy

‖(A+ I)v‖2 = ‖Av‖2 + 2(Av, v) + ‖v‖2 ­ ‖v‖2.

Podobnie jak w dowodzie Twierdzenia 10.14 wnioskujemy, że przestrzeń
R−1 = Im (A + I) jest domknięta. Z Lematu 10.21 zastosowanego do A + I
oraz do B = −(z + 1)I otrzymujemy równość

dim ker(A∗ − zI) = dim ker(A∗ + I)

dla |z + 1| < 1/2.
Z dowodu Twierdzenia 13.2 otrzymujemy następujący wniosek.

Wniosek 13.3. Symetryczny domknięty operator nieujemny jest samosprzę-
żony wiedy i tylko wtedy, gdy Im (A+ I) = H.

Dla operatora A możemy określić formę kwadratową q(x, y) wzorem

q(x, y) = (x,Ay), x ∈ D(A).

Jeśli operator A jest symetryczny, to q(y, x) = q(x, y). Z kolei, jeśli A jest
nieujemny, to q(x, x) ­ 0 dla x ∈ D(A).

Ogólnie formą kwadratową q(x, y) określoną na podprzestrzeni D(q) ⊂ H
nazywamy odwzorowanie q : D(q)×D(q)→ H, które jest liniowe ze względu
na pierwszą zmienną i antyliniowe ze względu na drugą zmienną.

Formę kwadratową nazywamy nieujemną , jeśli q(x, x) ­ 0 dla x ∈
D(q). Nieujemną formę kwadratową nazywamy domkniętą , jeśli z faktu
xn ∈ D(q), xn → x oraz q(xn−xm, xn−xm)→ 0, przy n,m→∞ wynika, że
x ∈ D(q) oraz q(xn− x, xn− x)→ 0. Równoważnie, nieujemna forma q(x, y)
jest domknięta wtedy i tylko wtedy, gdy przestrzeń Hq = D(q) jest zupełna
względem normy

‖x‖q =
√
‖x‖2 + q(x, x).

Przykład 13.4.
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Niech A będzie operatorem domkniętym o gęstej dziedzinie D(A). Wtedy
forma kwadratowa

q(x, y) = (Ax,Ay), D(q) = D(A)

jest domknięta. Rzeczywiście, jeśli xn → x oraz q(xn − xm, xn − xm)→ 0, to
Axn jest ciągiem Cauchy’ego wH. Niech Axn → y. Z domkniętości operatora
A otrzymujemy x ∈ D(A) oraz Ax = y.

Lemat 13.5. Niech B będzie różnowartościowym operatorem samosprzężo-
nym. Wtedy operator B−1 jest samosprzężony.

Dowód. Ponieważ B jest różnowartościowy, to przestrzeń ImB jest gęsta
w H. Z samosprzężoności wynika, że wykres operatora B jest domknięty, za-
tem wykres operatora B−1 jest również domknięty. Niech C = B−1. Mamy
D(C) = ImB oraz (CBx,Bx) = (x,Bx) ∈ R. Zatem C jest operatorem sy-
metrycznym o gęstej dziedzinie. Dla zakończenia dowodu wystarczy pokazać,
że przestrzenie defektu operatora C są zerowe. Niech C∗x = ±ix. Wtedy

(x, y) = (x,CBy) = (C∗x,By) = ±i(x,By), y ∈ D(B).

Zatem (x, (I ∓ iB)y) = 0 dla y ∈ D(B). Ale z samosprzężoności operatora
B mamy Im (I ∓ iB) = H, czyli x = 0.

Twierdzenie 13.6. Dla każdej domkniętej nieujemnej formy kwadratowej
q(x, y) istnieje operator samosprzężony A taki, że dziedzina D(A) jest gęsta
w D(q) oraz q(x, y) = (x,Ay) dla x, y ∈ D(A).

Dowód. Z założenia Hq = D(q) jest przestrzenią Hilberta z iloczynem
skalarnym

(x, y)q = (x, y) + q(x, y).

Każdy wektor y ∈ H wyznacza ograniczony funkcjonał liniowy na przestrzeni
Hq wzorem

Hq 3 x 7→ (x, y),

bo
|(x, y)| ¬ ‖y‖‖x‖ ¬ ‖y‖‖x‖q,

gdzie ‖x‖q = (x, x)1/2
q . Z Twierdzenia Riesza istnieje jedyny wektor By ∈ Hq

taki, że
(x, y) = (x,By)q, x ∈ H. (13.1)
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Przyporządkowanie y 7→ By jest odwzorowaniem liniowym określonym na H
oraz ImB ⊂ Hq ⊂ H. Co więcej B jest ograniczonym różnowartościowym
operatorem samosprzężonym na H. Istotnie z (13.1) otrzymujemy

(By,By) ¬ (By,By)q = (By, y) ¬ ‖By‖‖y‖.

Różnowartościowość wynika ze wzoru (y, y) = (y,By)q. Ponadto obraz ope-
ratora B jest gęsty w Hq. Rzeczywiście, załóżmy, że wektor x ∈ Hq jest
ortogonalny do obrazu operatora B. Wtedy

(x, y) = (x,By)q = 0, y ∈ H.

Zatem x = 0.
Z Lematu 13.5 operator B−1 jest samosprzężony. Ze wzoru (13.1) wnio-

skujemy, że dla x, z ∈ ImB

q(x, z) = (x,B−1z)− (x, z) = (x, (B−1 − I)z).
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Uwaga 13.7.
Z dowodu wynika, że dziedziną operatora A jest zbiór

D(A) = {z ∈ H : ∃y∈H∀x∈D(q) (x, z) + q(x, z) = (x, y)}

Jeśli z ∈ D(A) oraz (x, z) + q(x, z) = (x, y) dla pewnego y ∈ H i wszystkich
x ∈ D(q), to Az = y − z.

Wniosek 13.8. Niech A będzie operatorem domkniętym o gęstej dziedzinie.
Wtedy złożenie A∗A jest operatorem samosprzężonym.

Dowód. Na podstawie Przykładu 13.4 forma q(x, y) = (Ax,Ay) określo-
na na D(q) = D(A) jest domknięta. Z Twierdzenia 13.6 istnieje operator
samosprzężony S taki, że dziedzina D(S) jest gęstym podzbiorem w D(A)
oraz

(Ax,Ay) = (x, Sy), x, y ∈ D(S).

Z gęstości dziedziny D(S) w D(A) i z domkniętości operatora A wynika, że

(Ax,Ay) = (x, Sy), x ∈ D(A), y ∈ D(S).

Zatem Ay ∈ D(A∗) oraz A∗Ay = Sy. Stąd S ⊂ A∗A. Ale operator A∗A jest
symetryczny, bo jeśli x, y ∈ D(A∗A), to

(A∗Ax, y) = (Ax,Ay) = (x,A∗Ay).

Stąd S = A∗A.

Mówimy, że forma kwadratowa q(x, y) określona na Hq ⊂ H jest domy-
kalna , jeśli istnieje domknięta forma kwadratowa q̃(x, y) określona na Hq̃ ⊃
Hq taka, że q̃(x, y) = q(x, y) dla x, y ∈ Hq. Można pokazać, że forma kwa-
dratowa jest domykalna wtedy i tylko wtedy, gdy z warunku ‖xn−xm‖q → 0
i ‖xn‖ → 0 wynika, że ‖xn‖q → 0.

Twierdzenie 13.9 (Rozszerzenie Friedrichsa). Niech A będzie nieujemnym
operatorem symetrycznym. Wtedy forma kwadratowa jest q(x, y) = (x,Ay)
określona na D(q) = D(A) jest domykalna. Domknięcie q̃ formy q odpowiada
samosprzężonemu rozszerzeniu Ã operatora A. Operator Ã jest nieujemny
oraz

inf{(x, Ãx) : x ∈ D(Ã), ‖x‖ = 1} = inf{(x,Ax) : x ∈ D(A), ‖x‖ = 1}
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Dowód. Dla x, y ∈ Hq = D(A) określamy iloczyn skalarny i normę wzorem

(x, y)q = (x, y) + q(x, y), ‖x‖q = (x, x)1/2
q .

Niech Hq̃ oznacza uzupełnienie przestrzeni Hq względem normy ‖ · ‖q. Roz-
szerzenie normy na tę przestrzeń oznaczymy przez ‖ · ‖q̃. Pokażemy, że Hq̃

jest podprzestrzenią w H. W tym celu rozważmy włożenie i : Hq → H
dane wzorem i(x) = x. Ponieważ ‖x‖ ¬ ‖x‖q, dla x ∈ Hq, to i rozsze-
rza się do ograniczonego odwzorowania ĩ z Hq̃ w H. Wystarczy wykazać, że
ĩ jest odwzorowaniem różnowartościowym. Załóżmy więc, że ĩ(x) = 0 dla
x ∈ Hq̃. Wtedy istnieje ciąg elementów xn ∈ Hq taki, że ‖xn‖q → ‖x‖q̃ oraz
‖xn‖ → 0. Zatem

‖x‖2
q̃ = lim

n,m→∞
(xn, xm)q lim

n,m→∞
[(xn, Axm) + (xn, xm)] = 0.

W przestrzeni Hq̃ określamy formę q̃(x, y) wzorem

q̃(x, y) = lim
n→∞

q(xn, yn),

jeśli xn, yn ∈ Hq oraz ‖xn−x‖q → 0 i ‖yn−y‖q → 0. Forma q̃ jest domknięta,
bo przestrzeń Hq̃ jest zupełna względem normy ‖ · ‖q̃. Z Twierdzenia 13.6
istnieje nieujemny samosprzężony operator Ã taki, że dziedzina D(Ã) jest
gęstą podprzestrzenią w Hq̃ oraz q(x, y) = (x, Ãy) dla x ∈ D(Ã). Z Uwagi
13.7 wynika, że dziedzina operatora Ã zawiera dziedzinę operatora A oraz,
że Ãx = Ax dla x ∈ D(A).

Niech m = inf{(x,Ax) : x ∈ D(A), ‖x‖ = 1}. Z konstrukcji formy q̃
mamy m = inf{q̃(x, x) : x ∈ Hq̃, ‖x‖ = 1}. To pociąga

m ¬ inf{(x, Ãx) : x ∈ D(Ã), ‖x‖ = 1}.

Nierówność w przeciwną stronę wynika z tego, że Ã jest rozszerzeniem ope-
ratora A.

Uwaga 13.10.

Z konstrukcji przestrzeni D(q̃) = Hq̃ wynika, że dla x ∈ D(Ã) ⊂ Hq̃

istnieją elementy xn ∈ D(A) takie, że ‖xn − x‖q̃ → 0. Zatem ‖xn‖ → ‖x‖
oraz

(xn, Axn) = q(xn, xn)→ q̃(x, x) = (x, Ãx).
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Uwaga 13.11.
Twierdzenie stanowi, że forma kwadratowa związana z operatorem nie-

ujemnym jest domykalna. Okazuje się, że nie każda nieujemna forma kwadra-
towa ma domknięte rozszerzenie. Rozważmy formę określoną na przestrzeni
Cc(R) ⊂ L2(R, e−x2) wzorem

q(f, g) = f(0)g(0).

Niech fn ∈ Cc(R) spełnia fn(0) = 1 oraz supp fn ⊂ [−1/n, 1/n]. Wtedy {fn}
jest ciągiem Cauchy’ego względem normy ‖ · ‖q. Ponadto ‖fn‖L2 → 0 ale
q(fn, fn) = 1.

Uwaga 13.12.
Dla nieujemnego nieograniczonego operatora samosprzężonego A dziedzi-

na domknięcia q̃ formy kwadratowej q(x, y) = (x,Ay) jest większa niż D(A).
Z twierdzenia spektralnego istnieje nieujemny samosprzężony operator

√
A

oraz A =
√
A

2
. Zatem (x,Ay) = (

√
Ax,
√
Ay). Stąd przestrzeń D(q̃) jest

równa D(
√
A).

Lemat 13.13. Niech A będzie nieujemnym domkniętym operatorem syme-
trycznym. Niech Ã oznacza samosprzężone nieujemne rozszerzenie operatora
A. Wtedy przestrzenie D(Ã) i N = ker(A∗ + I) są liniowo niezależne oraz

D(A∗) = D(Ã) +N.

Dowód. Zawieranie D(A∗) ⊃ D(Ã) + N jest oczywiste, bo Ã ⊂ A∗.
Załóżmy, że x ∈ D(A∗). Z Wniosku 13.3 istnieje y ∈ D(Ã) spełniający
(A∗ + I)x = (Ã+ I)y. Zatem (A∗ + I)(x− y) = 0. To oznacza, że x = y+ n,
gdzie n ∈ N.

Pozostaje pokazać liniową niezależność. Załóżmy, że a + n = 0, gdzie
a ∈ D(Ã) oraz n ∈ N. Wtedy (I + Ã)a = (I + A∗)(a+ n) = 0. Ale operator
I + Ã jest różnowartościowy. Zatem a = 0, co pociąga n = 0.

Uwaga 13.14.
Przy oznaczeniach Lematu 13.13 można pokazać, że

D(Ã) = D(A) + (I + Ã)−1(N),

przy czym składniki w sumie są liniowo niezależne. Rzeczywiście, ponieważ
Ã jest nieujemnym operatorem samosprzężonym, to (I + Ã)H = H. Zatem

D(Ã) = (I + Ã)−1(H) = (I + Ã)−1(Im (I +A) +N) = D(A) + (I + Ã)−1(N).
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Wniosek 13.15. Niech A będzie nieujemnym niesamosprzężonym operato-
rem symetrycznym . Załóżmy, że

inf{(x,Ax) : x ∈ D(A), ‖x‖ = 1} = α > 0.

Wtedy nieujemne samosprzężone rozszerzenie operatora A nie jest jedno-
znaczne.

Dowód. Niech

inf{(x,Ax) : x ∈ D(A), ‖x‖ = 1} = α > 0.

Bez straty ogólności możemy przyjąć, że α = 1 oraz, że A jest operato-
rem domkniętym. Wtedy operator C = A − I jest nieujemny, domknięty
i symetryczny. Niech CF oznacza rozszerzenie Friedrichsa operatora C oraz
AF = CF − I. Z Lematu 13.13 mamy

D(A∗) = D(C∗) = N +D(CF ) = N +D(AF ),

gdzie N = ker(C∗ + I) = kerA∗. Przestrzeń N jest nietrywialna, bo z
założenia A nie jest samosprzężony. Określmy operator AK na dziedzinie
D(AK) = D(A) +N wzorem AK(a+ n) = Aa. Wtedy AK jest nieujemnym,
symetrycznym rozszerzeniem operatora A. Zauważmy, że operator AK nie
jest zawarty w AF , bo N ∪D(AF ) = {0}. Zatem nieujemne samosprzężone
rozszerzenie operatora AK jest różne od AF .

Uwaga 13.16.

Jeśli indeksy defektu operatora A są skończone, to operator AK skonstru-
owany w dowodzie twierdzenia jest samosprzężony. Możemy założyć, że A
jest operatorem domkniętym. Zbadajmy obraz operatora λI+AK dla λ > 0.
Jeśli a ∈ D(A) oraz n ∈ N = kerA∗, to

(λI + AK)(a+ n) = (λI + A)a+ λn.

Zatem Im (λI + AK) = Im (λI + A) + N. Ponieważ N jest podprzestrzenią
skończonego wymiaru i Im (λI+A) jest domknięta, to przestrzeń Im (λI+AK)
jest też domknięta. Niech v będzie wektorem ortogonalnym do Im (λI+AK).
Wtedy v ∈ ker(λI+A∗) oraz v jest ortogonalny do kerA∗. Z dowodu Lematu
10.21 zastosowanego do λ < α/2 wynika, że v = 0. Stąd Im (λI + AK) = H,
dla 0 < λ < α/2. Z Wniosku 13.3 wynika, że AK jest samosprzężony.
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Twierdzenie 13.17. Niech {mn}∞n=0 będzie ciągiem momentów Stieltjesa
niezdeterminowanym jako ciąg momentów Hamburgera. Istnieje jedyne roz-
wiązanie problemu momentów Stieltjesa wtedy i tylko wtedy, gdy

inf{(xp, p) : p ∈ P, ‖p‖ = 1} = 0.

Równoważnie, macierz Jacobi’ego J ma jednoznaczne nieujemne samosprzę-
żone rozszerzenie.

Dowód. Rozważmy odwzorowanie liniowe U z D(J) w P określone wzorem
Uδn = pn. Operator U jest izometrią oraz UJU−1p = xp, dla p ∈ P. Zatem

inf{(Jv, v) : v ∈ D(J), ‖v‖`2 = 1} = {(xp, p) : p ∈ P, ‖p‖ = 1}. (13.2)

Załóżmy, że
inf{(xp, p) : p ∈ P, ‖p‖ = 1} > 0.

Wtedy z Wniosku 13.15 macierz J ma różne nieujemne samosprzężone roz-
szerzenia. Każdemu rozszerzeniu odpowiada inna miara N -ekstremalna σ.
Rozszerzenie operatora J jest wtedy unitarnie równoważne operatorowi Mx

na przestrzeni L2(R, σ). Z nieujemności operatora Mx wynika, że nośnik mia-
ry σ jest zawarty w [0,+∞). Zatem problem momentów Stieltjesa nie jest
jednoznaczny.

Odwrotnie, załóżmy, że

inf{(xp, p) : p ∈ P, ‖p‖ = 1} = 0. (13.3)

Wiadomo, że (xp, p) ­ 0 dla p ∈ P. Stąd wynika, że (Jv, v) ­ 0 dla v ∈ D(J).
Rozszerzenie Friedrichsa JF odpowiada mierze N -ekstremalnej σ. Nośnik
miary σ musi być zawarty w [0,+∞), bo JF jest operatorem nieujemnym.
Co więcej operator Mx w przestrzeni L2(R, σ) jest rozszerzeniem Friedrichsa
operatora M mnożenia przez x określonego na wielomianach P. Na podsta-
wie (13.3) liczba 0 jest atomem miary σ. Niech σ({0}) = a > 0. Oznaczmy
przez x1 najmniejszy dodatni atom miary σ. Symbolem f oznaczymy funkcją
przyjmującą wartość 1 w przedziale zawierającym wewnątrz liczbę 0 i zeru-
jącą się w przedziale [x1/2,+∞). Wtedy ‖f‖2

L2(σ) = a. Zauważmy, że xf = 0
w przestrzeni L2(R, σ). Forma kwadratowa operatora Mx jest domknięciem
formy operatora M (por. dowód Twierdzenia 13.9). Zatem na podstawie
Uwagi 13.10 istnieje ciąg wn ∈ P taki, że ‖wn − f‖L2(σ), ‖wn‖2

L2(σ) = a oraz
(xwn, wn)→ (xf, f)L2(σ) = 0. Stąd wynika, że wn(0)→ f(0) = 1.
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Pokażemy, że problem momentów Stieltjesa ma jednoznaczne rozwiąza-
nie. Załóżmy, że % jest rozwiązaniem. Wtedy wn jest ciągiem Cauchy’ego w
L2(R, %). Niech wn → g w L2(R, %). Zatem ‖g‖2

L2(%) = a. Ponadto∫
[0,+∞)

xw2
n(x) d%(x) −−−→

n→∞
0,

i w konsekwencji ∫
[0,+∞)

xg2(x) d%(x) = 0.

Stąd wynika, że g(x) = 0 dla x > 0, czyli % ma atom w punkcie x = 0.
Ponieważ wn(0) → 1, to g(0) = 1. Z warunku ‖g‖2

L2(%) = a otrzymujemy
%({0}) = a = σ({0}). Z Twierdzenia 8.9 dostajemy % = σ.

Z jednoznaczności rozwiązania problemu momentów Stieltjesa wynika na-
tychmiast jednoznaczność nieujemnego samosprzężonego rozszerzenia macie-
rzy J.

Dodatek
Podamy tu podstawowe fakty dotyczące twierdzenia spektralnego dla opera-
tora samosprzężonego.

Niech A będzie operatorem samosprzężonym. Wtedy istnieje niemalejąca
rodzina E(x), x ∈ R, rzutów ortogonalnych taka, że dla v ∈ H mamy

lim
x→−∞

E(x)v = 0,

lim
x→+∞

E(x)v = v, (13.4)

lim
y→x

E(y)v = E(x)v.

Dzięki monotoniczności, dla dowolnego wektora v ∈ H funkcja liczbowa
x 7→ (E(x)v, v) jest lewostronnie ciągła i niemalejąca. Przyrosty tej funk-
cji wyznaczają miarę borelowską oznaczaną przez d((E(x)v, v)). Ze wzorów
(13.4) całkowita masa tej miary wynosi ‖v‖2.

Każdy rzut E(x) jest przemienny z A w następującym sensie

E(x)D(A) ⊂ D(A) i E(x)A = AE(x).
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Dziedzina operatora A oraz działanie operatora są opisane równościami

D(A) =

v ∈ H :
∞∫
−∞

x2 d(E(x)v, v) < +∞

 , (13.5)

(Av, v) =
∞∫
−∞

x d(E(x)v, v), v ∈ D(A). (13.6)

Rodzinę rzutów E(x), x ∈ R nazywamy rozkładem jedności związanym z
operatorem samosprzężonym A.

Dla dowolnej zespolonej, lokalnie ograniczonej funkcji borelowskiej g(x),
określamy operator g(A) podobnie jak w (13.5) i (13.6).

D(g(A)) =

v ∈ H :
∞∫
−∞

|g(x)|2 d(E(x)v, v) < +∞

 , (13.7)

(g(A)v, v) =
∞∫
−∞

g(x) d(E(x)v, v), v ∈ D(g(A)). (13.8)

Dziedziny D(g(A)) są gęste dla dowolnej funkcji g. Ponadto zachodzą wzory

(g(A))∗ = g(A),
f(A)g(A) = (fg)(A).

W szczególności potęgi An są operatorami samosprzężonymi oraz

D(An) =

v ∈ H :
∞∫
−∞

x2n d(E(x)v, v) < +∞

 (13.9)

(Anv, v) =
∞∫
−∞

xn d(E(x)v, v), v ∈ D(g(A)). (13.10)

Jeśli funkcja g jest jednostajnie ograniczona, to D(g(A)) = H oraz g(A) jest
operatorem ograniczonym. Istotnie dla v ∈ H mamy

∞∫
−∞

|g(x)|2 d(E(x)v, v) ¬ ‖g‖∞
∞∫
−∞

d(E(x)v, v) = ‖g‖∞‖v‖2 < +∞.
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Zatem

‖g(A)v‖2 = (g(A)v, g(A)v) = (g(A)g(A)v, v) = (|g|2(A)v, v)

=
∞∫
−∞

|g(x)|2 d(E(x)v, v) ¬ ‖g‖∞‖v‖2.

To oznacza, że ‖g(A)‖ ¬ ‖g‖∞.
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Zadania

1. Obliczyć momenty miar

dµ(x) = xα dx, x ∈ [0, 1], α > −1,
dµ(x) = xαe−xdx, x > 0, α > −1,

dµ(x) =
1
2
dδ−1(x) +

1
2
dδ1(x),

dµ(x) = e−x
2
dx.

2. Miara probabilistyczna µ na prostej ma nośnik ograniczony. Pokazać, że
problem momentów {mn} =

∫
xndµ(x) jest jednoznaczny. Wskazówka:

Udowodnić, że jeśli suppµ ⊂ [−a, a], to m2n ¬ a2n. Wykazać też, że
jeśli b ∈ suppµ, to limm

1/2n
2n ­ |b|.

3. Miara probabilistyczna µ na prostej spełnia |mn| ¬ CRnn!, dla pew-
nych stałych C > 0 i R > 0. Pokazać, że problem momentów {mn} =∫
xndµ(x) jest jednoznaczny. Wskazówka: Udowodnić, że eαx ∈ L1(R, µ)

dla |α| < R−1. Zauważyć, że funkcja Fµ(z) =
∫
eixzdµ(x) jest analitycz-

na dla |Im z| < R−1. Udowodnić, że współczynniki Taylora w punkcie
z = 0 dla funkcji F (z) są równe inmn/n!. Zatem Fµ(z) = Fσ(z), dla
|Im z| < R−1, jeśli σ jest innym rozwiązaniem problemu momentów.
Wykazać, że wtedy µ = σ.

4. Pokazać, że funkcje postaci p(x)e−x, gdzie p(x) jest wielomianem, leżą
gęsto w przestrzeni C0(R+). Wskazówka: Pokazać, że

e−x/2
∣∣∣∣e−x − (1− x

n

)n∣∣∣∣→ 0, gdy n→∞

jednostajnie dla x ­ 0. Niech V oznacza domknięcie przestrzeni funkcji
postaci p(x)e−x w normie sup . Pokazać indukcyjnie, że V zawiera funk-
cje postaci p(x)e−nx, gdzie p(x) jest wielomianem i n ­ 2. Następnie
skorzystać z Twierdzenia Stone’a-Weierstrassa.

5. Pokazać, że wielomiany leżą gęsto w przestrzeni Hilberta L2(µ), gdzie

(a) dµ(x) = xae−xdx, x > 0, a > −1.

(b) dµ(x) = e−x
2
dx,
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6. Pokazać, że dla dowolnej stałej rzeczywistej c mamy

∞∫
0

xn[1 + c sin(2π log x)]e− log2 xdx =
√
πe(n+1)2/4.

Wywnioskować, że odpowiedni problem momentów Stieltjesa jest nie-
jednoznaczny.

7. Wyprowadzić wzór

∞∫
0

xn sin(xb sin a)e−x
b cos a =

1
b

Γ
(
n+ 1
b

)
sin

(n+ 1)a
b

dla 0 < a < π/2, b > 0 i n = 0, 1, 2, . . . . Rozważyć przypadek
a = πb. Wskazać odpowiedni niejednoznaczny problem momentów.
Wskazówka: W całce ∞∫

0

xne−x
beiadx

dokonać zamiany zmiennych z = xbeia, otrzymując wielokrotność całki∫
z(n+1)/b−1e−zdz

po łuku arg z = a. Zauważyć, że ostatnia całka jest równa Γ((n+1)/b).

8. Pokazać, że jeśli dµ1(x) ¬ cdµ2(x) dla x ∈ R, to gęstość wielomianów
w L2(µ2) pociąga gęstość wielomianów w L2(µ1).

9. Pokazać, że jeśli dµ1(x) ¬ cdµ2(x) dla x ∈ R, oraz miara µ2 jest zwią-
zana z jednoznacznym problemem momentów, to również miara µ1 jest
związana z jednoznacznym problemem momentów.

10. Dla niejednoznacznego ciągu momentów Stieltjesa {mn} określamy m̃2n =
mn i m̃2n+1 = 0. Pokazać, że {m̃n} jest niejednoznacznym ciągiem mo-
mentów Hamburgera.

11. Korzystając z zadań 3 i 9, wykazać, że jeśli miara probabilistyczna µ na
półprostej [0,+∞) spełnia |mn| ¬ CRn(2n)!, dla pewnych stałych C >
0 i R > 0, to problem momentów {mn} =

∫
xndµ(x) jest jednoznaczny.
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12. Miara µ na R+ całkuje e2πx. Pokazać, że

∞∑
n=1

(−4π2)nm2n

(2n)!
= 0,

gdzie mn =
∞∫
0
xndµ(x), wtedy i tylko wtedy, gdy µ jest skupiona na

liczbach 0, 1, 2, . . . .

13. Pokazać, że jeśli n pierwszych momentów funkcji f(x) ciągłej o warto-
ściach rzeczywistych w przedziale a < x < b znika

b∫
a

f(x)dx =
b∫
a

xf(x)dx = . . . =
b∫
a

xn−1f(x)dx = 0,

to f(x) zmienia znak w tym przedziale n razy.

14. Wyrazić momenty miary dµ(x) = (1 − x2)αdx, −1 < x < 1, α > −1,
przy pomocy funkcji Γ(x).

15. Wielomiany pn spełniają p0 = 1, p1 = 2x oraz

xpn =
1
2
pn+1 +

1
2
pn−1.

Pokazać, że momenty związane ze wzorem rekurencyjnym wynoszą

m2n =
1

4n(n+ 1)

(
2n
n

)
m2n+1 = 0.

Wskazówka:Wprowadzić operator przesunięcia na wielomianach P wzo-
rem Sp0 = 0 i Spn = pn−1, dla n ­ 1. Wtedy

xpn =
1
2

(S + S∗)pn.

Zatem
mn = (xn, 1) =

1
2n

((S + S∗)n1, 1) .

Pokazać, że wielkość ((S + S∗)2n1, 1) jest równa liczbie wszystkich dróg
długości 2n przechodzących przez punkty kratowe płaszczyzny łączą-
cych punkty (0, 0) i (n, n), leżących pod główną przekątną (patrz W.
Feller, Wstęp do rachunku prawdopodobieństwa, tom 1).
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16. Pokazać, że jeśli wielomian trygonometryczny (tzn. kombinacja liniowa
funkcji cosnx i sinnx dla n ∈ N) jest nieujemny, to jest on postaci
|h(eix)|2 dla pewnego wielomianu h(x). Pokazać, że jeśli wielomian try-
gonometryczny jest funkcją parzystą, to można zażądać, aby h(x) miał
współczynniki rzeczywiste.

17. Pokazać, że liczby {mn}∞n=−∞ są współczynnikami Fouriera miary µ na
przedziale [0, 2π), tzn.

mn =
2π∫
0

einxdµ(x),

wtedy i tylko wtedy, gdy {mn} jest dodatnio określony w następującym
sensie

n∑
i,j=0

mi−jzizj ­ 0,

dla dowolnego ciągu {zi}∞i=0, w którym tylko skończenie wiele wyrazów
nie zeruje się.

18. Udowodnić, że każdy wielomian przyjmujący nieujemne wartości dla
0 ¬ x ¬ 1 ma postać

A(x)2 + x(1− x)B(x)2,

dla pewnych wielomianów A(x) i B(x). Wskazówka: Zastosować drugą
część zadania 16.

19. Dla ciągu {mn}∞n=0, m0 = 1, określamy

∆0mn = mn, ∆mn = mn −mn+1, ∆k+1mn = ∆kmn −∆kmn+1.

Pokazać, że {mn}∞n=0 jest ciągiem momentów miary probabilistycz-
nej określonej na przedziale [0, 1] wtedy i tylko wtedy, gdy ∆kmn ­
0 dla każdego k i n (Twierdzenie Hausdorffa). Wskazówka: Obliczyć
∆kx

n. Pokazać, że ∆k(1 − x)n−k = xk(1 − x)n−k. Wywnioskować, że∑n
k=0

(
n
k

)
∆kmn−k = m0 = 1. Dla funkcji f(x) ∈ C[0, 1] określamy wie-

lomiany Bernsteina Bn(f) =
∑n
k=0 f(k/n)

(
n
k

)
xk(1− x)n−k. Pokazać, że

Bn(xl) = xl + pn(x), gdzie pn,l(x) jest wielomianem stopnia nie więk-
szego niż l oraz współczynniki tego wielomianu dążą do zera. Określmy
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miarę probabilistyczną σn wzorem σn =
n∑
k=0

(
n

k

)
∆kmn−kδk/n. Jeśli σ

jest punktem skupienia miar σn, to ml =
1∫

0

xl dσ.

20. Pokazać, że dla ciągu momentów Stieltjesa wielomian pn(x)− τpn−1(x)
ma n−1 pierwiastków dodatnich. Czy mogą istnieć pierwiastki ujemne ?
Dla jakich wartości τ ?

21. Wyprowadzić wzór Christoffela–Darboux używając relacji ortogonalno-
ści. Wskazówka: Obliczyć iloczyn skalarny względem zmiennej y obu
stron wzoru z wielomianem pk(y).

22. Przeanalizować rozwiązalność problemu momentów w przypadku cią-
gu momentów, który jest nieujemnie określony ale nie jest dodatnio
określony, tzn. spełnia

∑
mi+jziz̄j ­ 0.

23. Przeanalizować wzór rekurencyjny w przypadku nieujemnie określone-
go ciągu momentów.

24. Dla ciągu {mn}∞n=0 określamy

m̃2n = mn,

m̃2n+1 = 0.

Pokazać, że ciąg {m̃n} jest dodatnio określony wtedy i tylko wtedy,
gdy ciągi {mn} i {mn+1} są dodatnio określone, tzn. {m̃n} jest ciągiem
momentów Hamburgera wtedy i tylko wtedy, gdy {mn} jest ciągiem
momentów Stieltjesa.

25. Pokazać, że wielomiany p̃n i pn ortonormalne względem {m̃n} i {mn}
odpowiednio, spełniają

p̃2n(
√
x) = pn(x).

26. W oparciu o poprzednie zadanie podać inny dowód twierdzenia, że
dla ciągu {mn} momentów Stieltjesa wielomian pn posiada n różnych
dodatnich pierwiastków.

27. Pokazać, że jeśli {mn} jest ciągiem dodatnio określonym oraz m2n+1 =
0 dla n ∈ N, to pn(−x) = (−1)npn(x). Pokazać, że wzór rekurencyjny
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ma wtedy postać

xpn(x) = λnpn+1 + λn−1pn−1(x) n = 0, 1, . . . ,

p−1 = 0, p0 = 1. Udowodnić, że jeśli wielomiany pn zadane są tym
wzorem, gdzie λn > 0, to ciąg momentów związanych z wielomianami
pn spełnia m2n+1 = 0.

28. Udowodnić, że wielomiany pn spełniające wzór

xpn(x) = λnpn+1 + βnpn(x) + λn−1pn−1(x) n = 0, 1, . . . ,

p−1 = 0, p0 = 1, można określić wzorem pn(x) = det(xI − Jn), gdzie
Jn oznacza obciętą macierz Jacobi’ego, tzn.

Jn =



β0 λ0 0 · · · 0 0
λ0 β1 λ1 · · · 0 0

0 λ1 β2
. . . ...

...
...

... . . . . . . λn−3 0
0 0 · · · λn−3 βn−2 λn−2

0 0 · · · 0 λn−2 βn−1


.

29. Pokazać, że jeśli wyrazy macierzy Jacobi’ego są ograniczone oraz

sup |βn|+ 2 supλn ¬ R,

to formy kwadratowe

n∑
i,j

(Rmi+j ±mi+j+1)xixj

są dodatnio określone. Pokazać, że wynikanie odwrotne też jest praw-
dziwe.

30. Załóżmy, że ciąg momentów Hamburgera mn spełnia m2n ¬ R2n. Po-
kazać, że pn(x) > 0 dla x ­ R, oraz (−1)npn(x) > 0 dla x ¬ R.

31. Ciąg liczb {an}∞n=1 nazywamy ciągiem łańcuchowym, jeśli istnieje ciąg
{gn}∞0 spełniający 0 ¬ gn ¬ 1 oraz an = gn(1−gn−1), dla n = 1, 2, . . . .
Pokazać, że (−1)npn(0) > 0 dla każdego n ∈ N wtedy i tylko wtedy,
gdy β0 > 0 oraz λ2

n/(βnβn+1) jest ciągiem łańcuchowym.
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32. Pokazać, że jeśli (−1)npn(0) > 0 dla każdego n ∈ N, to (−1)nqn(0) > 0
dla każdego n ∈ N.

33. Udowodnić, że dla liczb x1 < y1 < x2 < y2 < . . . < xn−1 < yn−1 < xn
zachodzi nierówność∣∣∣∣∣ (z − y1)(z − y2) . . . (z − yn−1)

(z − x1)(z − x2) . . . (z − xn−1)(z − xn)

∣∣∣∣∣ ¬ 1
|Im z|

.

34. (Kryterium Carlemana) Pokazać, że problem momentów jest zdetermi-
nowany, jeśli szereg

∑
λ−1
n jest rozbieżny. Wskazówka: pnqn+1−pn+1qn =

λ−1
n .

35. Udowodnić, że jeśli
∞∑
n=0

|βn+1|
λnλn+1

= +∞,

to problem momentów jest zdeterminowany. Wskazówka:Obliczyć pn(x)qn+2(x)−
pn+2(x)qn(x).

36. (Kryterium Carlemana) Pokazać, że problem momentów {mn}∞n=0 jest
zdeterminowany, jeśli

∞∑
n=1

m
−1/2n
2n = +∞.

Wskazówka: Dla xpn = λnpn+1 + βnpn + λn−1pn−1, mamy

λ0λ1 . . . λn−1pn(x) = xn + . . . .

Zatem
λ0λ1 . . . λn−1(pn, pn) = (xn, pn) ¬

√
m2n.

Stąd
∞∑
n=1

m
−1/2n
2n ¬

∞∑
n=1

(λ0λ1 . . . λn−1)−1/n.

Pokazać, że jeśli szereg jest rozbieżny, to również szereg
∑
λ−1
n jest

rozbieżny. W tym celu skorzystać z nierówności Carlemana

∞∑
n=1

(a1a2 . . . an)1/n ¬ e
∞∑
n=1

an.
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37. (Kryterium Hamburgera) Pokazać, że problem momentów {mn}∞n=0 jest
zdeterminowany wtedy i tylko wtedy, gdy przynajmniej jeden z szere-
gów

∑
p2
n(0) lub

∑
q2
n(0) jest rozbieżny. Wskazówka: Skorzystać z do-

wodu Twierdzenia Hellingera–Nevanlinny.

38. Pokazać, że jeśli (−1)npn(0) > 0 dla n ∈ N, to {mn}∞n=0 jest ciągiem
momentów Stieltjesa.

39. Dla ciągu liczb dodatnich λn znaleźć ciąg liczb rzeczywistych βn tak,
że odpowiadający tym ciągom problem momentów jest zdeterminowa-
ny. Czy można wybrać ciąg βn tak, że nośnik miary jest zawarty w
półprostej [0,+∞) ?

40. Dla ciągu liczb rzeczywistych βn znaleźć ciąg liczb dodatnich λn tak,
że odpowiadający tym ciągom problem momentów jest niezdetermino-
wany.

41. Czy problem momentów odpowiadający ciągom λ2n = λ2n−1 = n2 oraz
βn ≡ 0 jest zdeterminowany ? Czy problem momentów odpowiadający
ciągom λ2n = λ2n+1 = n2 oraz βn ≡ 0 jest zdeterminowany ?

42. Przy założeniach zadania 3 pokazać, że dla liczb Im z < 0 zachodzi
wzór

−i
∞∫
0

e−ixzFµ(y) dy =
∞∫
−∞

dµ(x)
x− z

.

Udowodnić, że jeśli Fµ = Fσ, to µ = σ, korzystając z Twierdzenia
Stieltjesa o odwróceniu.

43. Czy ciąg mn spełniający ce
√
n ¬ m2n ¬ Ce

√
n dla pewnych stałych c

i C, może być dodatnio określony ? Czy ciąg mn spełniający ed
√
n ¬

m2n ¬ De
√
n dla pewnych dodatnich stałych d i D, może być dodatnio

określony

44. Niech G(z) będzie funkcją analityczną w kole jednostkowym {z ∈ C :
|z| < 1}. Pokazać, że dla 0 < R < 1 oraz dla |z| ¬ 1 zachodzi wzór

G(Rz) = iImG(0) +
1

2π

π∫
−π

eit + z

eit − z
ReG(Reit) dt.

Wskazówka: Pokazać, korzystając z całki Poissona dla funkcji harmo-
nicznych, że części rzeczywiste obu stron wzoru są równe. Następnie
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zauważyć, że obie strony wzoru przedstawiają funkcje analityczne dla
|z| < 1, zatem obie strony mogą różnić się o stałą.

45. Niech G(z) będzie funkcją analityczną przekształcającą koło jednost-
kowe w półpłaszczyznę Re z ­ 0. Pokazać, że z rodziny miar dσR(t) =
ReG(Reit) dt określonych na przedziale [−π, π] można wybrać podciąg
zbieżny dσRk(t) taki, że Rk → 1−. W tym celu obliczyć całkowitą masę
miary dσR(t).

46. Korzystając z zadań 44 i 45 pokazać, że funkcja analityczna przekształ-
cającą koło jednostkowe w górną półpłaszczyznę ma postać

G(z) = iv +
1

2π

π∫
−π

eit + z

eit − z
dσ(t),

dla pewnej miary σ, gdzie v = ImG(0).

47. Niech F (w) będzie funkcją analityczną przekształcającą górną pół-
płaszczyznę w siebie. Pokazać, że funkcja

G(z) = −iF
(
i
1− z
1 + z

)
odwzorowuje otwarte koło jednostkowe półpłaszczyznę Re z ­ 0. Ko-
rzystając z poprzedniego zadania pokazać, że istnieje skończona miara
dτ(x) na prostej taka, że

F (w) = cw + d+
∞∫
−∞

1 + xw

x− w
dτ(x),

gdzie c ­ 0 oraz d ∈ R. Wskazówka: W całce z zadania 46 podstawić
u = tg(t/2).

48. Przy oznaczeniach z poprzedniego zadania pokazać, że przyjmując dσ(x) =
(1 + x2) dτ(x) otrzymujemy

F (w) = cw + d+
∞∫
−∞

( 1
x− w

− x

1 + x2

)
dσ(x).
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49. Niech A będzie macierzą samosprzężoną wymiaru n × n z wartościa-
mi własnymi λ1, . . . , λn uporządkowanymi tak, że |λ1| ­ . . . ­ |λn|.
Udowodnić wzór ”minimax”

λk = min
dimV=k−1

max
x⊥V

(Ax, x)
(x, x)

.

Wskazówka: Niech x1, . . . , xn będą odpowiednimi wektorami własnymi
i Vk = span{x1, . . . , xk}. Pokazać, że dla dowolnej podprzestrzeni V
wymiaru k− 1 istnieje wektor x ∈ Vk taki, że x 6= 0 oraz x ⊥ V. Wtedy
(Ax, x)/(x, x) ­ λk.

50. Zastosować poprzednie zadanie i zadanie 25 do podania innego dowodu
o wzajemnym położeniu zer dla wielomianów pn i pn+1.

51. Niech A będzie operatorem liniowym o gęstej dziedzinie w przestrzeni
Hilberta H. Wykres ΓA określamy jako

ΓA = {〈x,Ax〉 | x ∈ D(A)}.

Niech J(x, y) = 〈−y, x〉 dla x, y ∈ H. Pokazać, że

ΓA∗ = J(ΓA)⊥,

gdzie symbol ⊥ oznacza dopełnienie ortogonalne w przestrzeni H×H.
W szczególności A∗ jest operatorem domkniętym.

52. Pokazać, że jeśli A ⊂ B, to B∗ ⊂ A∗, gdzie A i B są operatorami
liniowymi o gęstych dziedzinach.

53. Operator liniowy A jest domykalny, jeśli posiada on rozszerzenie o wy-
kresie domkniętym. Pokazać, że jeśli A jest domykalny, to domknięcie
zbioru ΓA jest wykresem rozszerzenia operatora A, nazywanego do-
mknięciem A i oznaczanego symbolem A.

54. Pokazać, że operator A∗, gdzie A jest domykalnym operatorem o gęstej
dziedzinie, ma również gęstą dziedzinę.

55. Pokazać, że jeśli A ma gęstą dziedzinę i jest domykalny, to A∗∗ = A.
Wskazówka: ΓA∗∗ = J(ΓA∗)⊥.

56. Niech M i N będą domkniętymi podprzestrzeniami przestrzeni Hil-
berta H. Pokazać, że jeśli M nie posiada wektora ortogonalnego do
przestrzeni N, to dimM ¬ dimN.
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57. Dla domkniętego symetrycznego operatora liniowego A i liczby z /∈ R
niech V będzie izometrią z domkniętej podprzestrzeni D(V ) przestrzeni
Nz w przestrzeń Nz. Pokazać, że operator AV o dziedzinie

D(AV ) = {x+ u− V u : x ∈ D(A), u ∈ D(V )}

określony wzorem

AV (x+ u− V u) = Ax+ zu− zV u,

jest symetrycznym rozszerzeniem operatora A. Pokazać, że każde sy-
metryczne rozszerzenie operatora A może być otrzymane w ten sposób.
Wskazówka: Skorzystać ze wzorów łączących A i transformatę Cayley
Uz.

58. Operator liniowy A określony jest na dziedzinie

D(A) = span{en − e2n}∞n=0 ⊂ `2(N0)

wzorem
A(en − e2n) = i(en + e2n), n ­ 0.

Pokazać, że dziedzina jest gęsta w `2 oraz, że A jest operatorem syme-
trycznym. Udowodnić, że indeksy defektu dimNi oraz dimN−i opera-
tora A nie są sobie równe.

Rozwiązanie zadania 16

Lemat 1. Niech p(z) =
n∑

k=−n
akz

k oraz Im p(eix) = 0 dla x ∈ R. Dla liczby

0 < |z0| 6= 1 z warunku p(z0) = 0 wynika, że p(z−1
0 ) = 0. Ponadto p(z) =

−z0z
−1(z − z0)(z − z−1

0 )p̃(z), gdzie p̃(z) =
n−1∑

k=−(n−1)

bkz
k oraz Im p̃(eix) = 0.

Dowód. Mamy

ak =
1

2π

π∫
−π

p(eix)e−ikx dx.

W konsekwencji

ak =
1

2π

π∫
−π

p(eix)eikx dx = a−k.
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Możemy założyć, że an 6= 0. Stąd również a−n 6= 0. Wtedy

p(z) =
n∑

k=−n
ak z

k =
n∑

k=−n
a−k z

k =
n∑

k=−n
ak z

−k = p(z−1).

To natychmiast daje pierwszą część tezy lematu. Wielomian q(z) = znp(z)
dzieli się zatem przez (z − z0)(z − z−1

0 ). Stąd q(z) ma przedstawienie

q(z) = −z0(z − z0)(z − z−1
0 )q̃(z),

gdzie q̃(z) jest wielomianem stopnia 2n− 2. Wtedy

p(z) = −z0z
−1(z − z0)(z − z−1

0 )p̃(z),

gdzie p̃(z) = z−(n−1)q̃(z). Dalej dla z = eix mamy

−z0z
−1(z − z0)(z − z−1

0 ) = (z − z0)(z − z0) > 0.

Zatem Im p̃(eix) = 0.

Lemat 2. Niech p(z) =
n∑

k=−n
akz

k oraz p(e−ix) = p(eix) dla x ∈ R. Dla

liczby z0 6= 0 z warunku p(z0) = 0 wynika, że p(z−1
0 ) = 0. Ponadto p(z) =

z−1(z − z0)(z − z−1
0 )p̃(z), gdzie p̃(z) =

n−1∑
k=−(n−1)

bkz
k oraz p̃(e−ix) = p̃(eix).

Dowód. Mamy

a−k =
1

2π

π∫
−π

p(eix)eikx dx =
1

2π

π∫
−π

p(eix)e−ikx dx = ak.

Wtedy

p(z−1) =
n∑

k=−n
akz

−k =
n∑

k=−n
a−kz

k =
n∑

k=−n
akz

k = p(z).

Stąd otrzymujemy pierwszą część tezy.
Wielomian q(z) = znp(z) dzieli się zatem przez (z − z0)(z − z−1

0 ). Stąd
q(z) ma przedstawienie

q(z) = (z − z0)(z − z−1
0 )q̃(z),
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gdzie q̃(z) jest wielomianem stopnia 2n− 2. Wtedy

p(z) = z−1(z − z0)(z − z−1
0 )p̃(z),

gdzie p̃(z) = z−(n−1)q̃(z). Ponadto funkcja

b(z) = z−1(z − z0)(z − z−1
0 ) = z + z−1 − z0 − z−1

0

spełnia
b(e−ix) = b(eix).

Z tego wynika, że również p̃(e−ix) = p̃(eix).

Lemat 3. Niech p(z) =
n∑

k=−n
akz

k oraz p(eix) ­ 0 dla x ∈ R. Jeśli p(eix0) = 0,

to p(z) ma przedstawienie

p(z) = −e−ix0z−1(z − eix0)2p̃(z),

gdzie p̃(z) =
n−1∑

k=−(n−1)

bkz
k oraz p̃(eix) ­ 0.

Dowód. Jeśli p(eix0) = 0, to funkcja p(eix) osiąga minimum w punkcie x0.
Stąd

d

dx
p(eix)|x=x0 = 0.

Ale
d

dx
p(eix)|x=x0 = ieix0p′(eix0).

Stąd p′(eix0) = 0. Wielomian q(z) = znp(z) dzieli się zatem przez (z− eix0)2,
czyli q(z) = −e−ix0(z−eix0)2q̃(z), gdzie q̃(z) ma stopień 2n−2. Mamy wtedy

p(z) = −e−ix0z−1(z − eix0)2p̃(z),

gdzie p̃(z) = z−(n−1)q̃(z). Dalej dla z = eix mamy

−e−ix0z−1(z − eix0)2 = (z − eix0)(z − e−ix0) ­ 0.

Zatem p̃(eix) ­ 0.
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Z Lematów 1 i 3 wynika, że jeśli p(z) =
n∑

k=−n
akz

k, an 6= 0, oraz p(eix) ­ 0

dla x ∈ R, to p(z) ma przedstawienie w postaci

p(z) = anz
−n

s∏
j=1

(z − zj)(z − z−1
j )

r∏
k=1

(z − eixk)2,

gdzie 0 < |zj| < 1 oraz s+ r = n. Niech

g(z) =
s∏
j=1

(z − zj)
r∏

k=1

(z − eixk).

Zauważmy, że dla |z| = 1 mamy

|z − z−1
j | = |zj|−1|z − zj| = |zj|−1|z − zj|.

Stąd
p(eix) = |p(eix)| = |an||z1|−1 . . . |zs|−1|g(eix)|2.

Kładziemy h(z) = cg(z), gdzie c = |an|1/2|z1|−1/2 . . . |zs|−1/2. Wtedy

p(eix) = |h(eix)|2.

Jeśli dodatkowo funkcja p(z) spełnia, p(e−ix) = p(eix), to z Lematu 2 krot-
ności pierwiastków z0 i z−1

0 są takie same. To oznacza, że również krotności
pierwiastków z0 i z0 są takie same. Wtedy funkcja g(z) ma przedstawienie w
postaci

g(z) = (z − 1)u(z + 1)v
t∏
l=1

(z − yl)
s′∏
j=1

(z − zj)(z − zj)
r′∏
k=1

(z − eixk)(z − e−ixk),

gdzie zj są pierwiastkami nierzeczywistymi o module mniejszym niż 1, yl
są pierwiastkami rzeczywistymi o module mniejszym niż 1 oraz eixk 6= ±1.
Wielomian g(z) ma wtedy współczynniki rzeczywiste.



Bibliografia 90

Literatura

[1] N. I. Akhiezer, “The Classical Moment Problem”, Hafner Publishing
Co., New York, 1965.

[2] N. I. Akhiezer, I. M. Glazman, “Teoriya lineinykh operatorov v gilber-
tovom prostranstve”, tom 1 (po rosyjsku), Vishcha Shkola, Charków,
1977.

[3] C. Berg, G. Valent, The Nevanlinna parametrization for some indetere-
minate Stieltjes moment problems associated with birth and death pro-
cesses, Methods and Appl. Analysis 1 (1994), 169–209.

[4] T. Chihara, “An Introduction to Orthogonal Polynomials”, Mathematics
and Its Applications, Vol. 13, Gordon and Breach, New York, London,
Paris, 1978.

[5] G. Freud, “Orthogonal Polynomials”, Pergamon Press, Oxford, 1971.

[6] M. A. Naimark, “Lineinye differentsialnye operatory” (po rosyjsku), Na-
uka, Moskwa, 1969.

[7] M. Reed, B. Simon, “Methods of Modern Mathematical Physics, I. Func-
tional Analysis”, Academic Press, New York, 1972.

[8] M. Reed, B. Simon, “Methods of Modern Mathematical Physics, II.
Fourier Analysis, Self-Adjointness”, Academic Press, New York, 1975.

[9] F. Riesz, B. Sz.-Nagy, “Lecons d’Analyse Fonctionnelle”, Akadémiai
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