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1 Wstep

Problem momentéw pochodzi od Stieltjesa (1894). Zagadnienie polega na
znalezieniu miary (lub funkcji niemalejacej) o na polprostej [0, +00) przy
zadanych momentach m,, dla dowolnego n = 0,1,2,.... Momentami miary
nazywamy catki

My, = /OOO z"do(x).

Pierwsze trzy momenty majg naturalng interpretacje fizyczng.

o0

/ do(x) catkowita masa miary
OOO

/ xdo(z) moment statyczny
OOO

/ r?do () moment bezwtadnosci
0

Okoto 1919 Hamburger badal rozszerzony problem momentow, gdzie rozwa-
zal miary o no$niku na catej prostej rzeczywistej.

Dwa podstawowe zagadnienia problemu momentéw, Stieltjesa lub Ham-
burgera, to istnienie i jednoznacznos¢ miary. Chcemy wiedzie¢, czy dla da-
nego ciagu liczb {m, }°°, istnieje miara o na poéiprostej nieujemnej lub na
catej prostej, ktérej momentami bytyby liczby m,,. W przypadku, gdy taka
miara istnieje, chcemy stwierdzi¢, czy jest ona jedyna czy tez takich miar jest
wiecej. Problem jednoznacznosci jest zwiazany ze zbieznosciag utamkow tan-
cuchowych, a takze z istotng samosprzezonoscia pewnych operatorow, tzw.
macierzy Jacobi’ego. Stieltjes zajmowal sie problemem momentéw w zwigz-
ku z badaniem wtasnosci utamkéw tancuchowych. Od niego pochodza dwa
podstawowe narzedzia stosowane powszechnie w analizie: catka Stieltjesa -
tzn. catka wzgledem funkcji o wahaniu ograniczonym, oraz wzoér Stieltjesa
na odwrécenie - pozwalajacy wyznaczy¢ miare przy pomocy transformaty

F(z) = [(z — 2)"tdo(x).
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2 Ciagi dodatnio okreslone, wielomiany orto-
gonalne i macierze Jacobi’ego

Definicja 2.1. Cigg liczb {m,,}>2, nazywamy dodatnio okreslonym, jesli

N

> MiyjziZ >0
17.7:0

dla dowolnej liczby naturalne; N i dla dowolnego ciggu liczb zespolonych
20,21, - - - 2N, takiego, ze |z1* + |2o|* 4+ ...+ |2n]? > 0.

Innymi stowy, ciag {m,}>2, jest dodatnio okreslony, jesli dla dowolnej
liczby N macierz {m;;}._, jest dodatnio okreslona. Niech

i,j=0
mo My e My

N (2.1)
My Mpy1r o0 Moy

Twierdzenie 2.2. Cigg {m,}>2, jest dodatnio okreslony wtedy i tylko wtedy,
gdy A, > 0 dla kazdej liczbyn=0,1,2,....

Dowéd. Por. podrecznik algebry liniowej. O

W szczegblnosci cigg dodatnio okreslony spetnia Ay = mgy > 0. Bez straty
ogo6lnosci bedziemy zawsze zaktadac, ze my = 1. Ponadto dodatnia okreslo-
nos¢ wymusza ms, > 0 oraz mq, 1 € R.

Definicja 2.3. Cigg {m,}>2, dodatnio okreslony bedziemy nazywaé cig-
giem momentow Hamburgera. Cigg spelniajgcy dodatkowo warunek, zZe
{mu11}5%, jest dodatnio okreslony, bedziemy nazywaé ciggiem momentow
Stieltjesa.

Przyktlad 2.4.

Niech ¢ bedzie miara na prostej, ktérej nosnik jest nieskonczonym zbio-
rem oraz calki [ z*"do(z) sa zbiezne dla kazdej liczby naturalnej n. Wtedy

momenty
oo

my, = /x"da(m)

— 00
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sa dobrze okreslone. Sprawdzmy, czy {m,,}>2, jest ciagiem momentéw Ham-
burgera.

Xn: Miy2i%] = 7 (zn: xizi:c'j,zj> do(x) = 7

i,j=0 e \dj=0

2
do(x) > 0.

n

Z zi:ci

1=0

—00

Zat6ézmy niewprost, ze ostatnia catka jest rowna zeru. Wtedy

n

Z zizt =0 dla x € suppo.

i=0
Poniewaz nosnik miary o jest nieskoriczony, to wielomian -7, z;z* jest tozsa-
mosciowo rowny zeru. Zatem zy = z; = ... = 2z, = 0. Zauwazmy, ze warunek
mo = 1 oznacza, ze o jest miara probabilistyczng.

Przyklad 2.5.

Rozwazmy miare probabilistyczna na pélprostej [0, +00), spetiajaca za-
lozenia poprzedniego przyktadu. Wiemy juz, ze ciag {m,}>2, jest dodatnio
okreslony. Z zalozenia v(x) = xdo(x) jest miara nieujemna o skonczonych
momentach. Poniewaz

/x"du(az) = /x”“da(x) = Mpt1,
0 0

to ciag {mn41}5°, jest dodatnio okreslony. Zatem {m,}>°, jest ciagiem mo-
mentéw Stieltjesa.

Za pomoca ciggu momentéw Hamburgera {m,}>°, wprowadzimy forme
hermitowska (-,-) dla wielomianéw o wspdtczynnikach zespolonych, wedtug

wzoru
N

(p7 Q) = Z aiiji+j7

i,j=0
gdzie

N . N .
p(z) =Y ax’, q(z) = bl
i=0 =0

Dzigki dodatniej okreslonosci ciagu {m,, }5°, forma (p, ¢) okresla iloczyn ska-
larny na przestrzeni liniowej P wszystkich wielomianéw. Zauwazmy, ze mno-
zenie przez x jest operatorem symetrycznym na P. Wynika to ze wzoru

N

(zp,q) = (p,xq) = > aibjmitj1. (2.2)
4,7=0
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Z (2.2)) natychmiast otrzymujemy

(hp,q) = (p,hq), p,q,h €P. (2.3)
Przyklad 2.6.
Niech m,, = / z"do(x). Wtedy
(.0) = [ p(@)a(@) do(a).

Naszym celem bedzie teraz skonstruowanie bazy w przestrzeni wszystkich
wielomianéw, ortonormalnej wzgledem iloczynu skalarnego (-, ). Zadanie po-
lega na znalezieniu ciggu wielomianéw p,, takich, ze

pu(®) = kpa" +k, 12" ..+ ko, gdzie k, >0

( ) = 1 dlan=m
PrsPm) = 0 dlan#m.

Mozemy otrzymaé ciag {p,}>>, poprzez zastosowanie metody Grama-

Schmidta do ciggu jednomianéw 1, z,2%,..., 2", ... . Mozna tez okresli¢ wie-
lomiany p,, jawnym wzorem.

Wzér (2.4)). Niech py =1 oraz

mo mi my,
1 my Mg - Mpy
() = ———— | L , 24
Mp—1 My - Mop—1
1 :'U ... l’n
dla n > 0. Wtedy wielomiany p, sq¢ ortonormalne wzgledem (-, ).
Dowéd. Zauwazmy, ze
pn(T) = kpz™ + ...+ ko,
gdzie
JAVEE n—
ky, = L = L>o0. (2.5)
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Zatem p,, jest wielomianem stopnia n. Mamy

mo ml .. mn
1 my mg o My
k
(pna x ) = = 0.
V An—lAn
Mp—1 My e Mop—1
my Mgy1 - Motk

Zatem (p,,2*) =0 dla k <n — 1. Stad (p,, pm) = 0 dla m < n. Dalej

n A, VA,
(pna x ) = = .
\/AnflAn \/Anfl

Korzystajac z (2.5 otrzymujemy

V Anfl V An
nyPUn) — naknxn+ :kn n;mn =
(p p ) (p ) (p ) \/A_n \/m

= 1.

Uwaga 2.7.
Ze wzoru [2.4] wynika, ze wielomiany p,, sa funkcjami rzeczywistymi.
Kazdy wielomian jest kombinacja liniowa wielomianow pg, p1, - - - Pn, - - -
poniewaz

lin{l,z,...,2"} = lin{po, p1,-.-,Pn}

W szczegblnosci
TPn = Oppt1Pn+1 T QnnPn + Ap—1nPn—1 + - .. + AnoPo-
Dzieki ortogonalnosci wielomianéw p,, i symetrii otrzymujemy
anje = (TPn,0k) = (Pn,xpe) =0, dlak <n—2,
oraz

Apnt+1 = (xpnypn-i-l) = (pnaxpn—&-l) = )\n>
= (mpn7pn—1> = (pn—laxpn> = An—1>
Apn = (xpnnpn) = 671

CLn,n—l

6
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Reasumujac otrzymujemy wzor rekurencyjny postaci

ITPn = )\nanrl + 6npn + )\nflpnfh n>1
Tpo = Aop1 + Bopo- (2.7)

Poréwnujac wspotezynniki przy 2" uzyskujemy

V Kn—lAn—‘rl

Ay = —— >0,
A,
VA
A = > 0.
0 A,
Wzoér rekurencyjny pozwala obliczy¢ kolejno wielomiany py, po, . . . , gdy znane
sg liczby A, i (3, przy warunku poczatkowym py = 1. Najpierw obliczamy
1
= —(x — 0p).
b1 )\0( o)

Nastepnie korzystamy z

1
Pn+1 = T(mpn - ﬁnpn - >\n—1pn—1)~

Wzory (2.6) 1 (2.7) mozna zapisa¢ w postaci macierzowej. Wprowadzmy ozna-
czenia

Bo Ao 0 0 O

X 1 A 00
Po(x) 0
pi(z) 0 A B2 A O
P(z) = pa(z) | J=10 o o By - . (2.8)
: 0 0 0
Wtedy wzory (2.6) i (2.7) mozna krétko zapisaé
JP(z) =xP(x). (2.9)

Macierz J nazywamy macierza Jacobi’ego. Z jej postaci mozna odczytaé sy-
metrie. Na przekatnej macierzy znajduja sie liczby rzeczywiste, natomiast
liczby bezposrednio pod i nad przekatng sg dodatnie.
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Podany wyzej ciag rozumowan pokazuje, ze ciag dodatnio okreslony {m, }>°,
wyznacza macierz Jacobi’ego J, ktorej wspotczynniki pozwalajg obliczy¢ re-
kurencyjnie wielomiany ortonormalne. Sprébujemy rozwiazaé zagadnienie
odwrotne i odpowiedzie¢ na pytanie, czy kazda macierz Jacobi’ego jest zwia-
zana w wyzej opisany sposob z ciaggiem dodatnio okreslonym.

Rozwazmy macierz postaci jak we wzorze , gdzie \,, > Ooraz 3, € R.
Okreslamy wielomiany pg, p1, p2, . . . rekurencyjnie korzystajac ze wzorow (|2.6|)

i , przyjmujac pp = 1. W przestrzeni P wprowadzamy iloczyn skalarny
ktadac

_J 1 dlan=m
(P, Pm) = 0 dlan#m.

i rozszerzamy liniowo na cala przestrzen. W ten sposéb uktad {p,}>, sta-
nowi baze ortonormalna. Rozwazmy operator mnozenia przez zmienng r w
przestrzeni P. Wzory i oznaczaja, ze macierzg tego operatora w
bazie {p,}>° , jest macierz Jacobi’ego zadana w (2.8)). Z symetrii tej macierzy
wynika zatem tozsamos¢

(xpmpm) = (pna xpm)

Wzor ten mozna tez sprawdzi¢ bezposrednim rachunkiem. Poprzez rozsze-
rzenie liniowe dostajemy

(zp,q) = (p,2q), p,q€P. (2.10)

Okreslmy ciag m,, wzorem
m, = (z",1).

Wtedy z (2.10) wnioskujemy, ze
miy; = (2", 1) = (2, 27).

Sprawdzamy dodatnia okreslono$¢ ciagu {m,}>2 .

N N N N
o omzz = > (ah )z = | Y mrt, Y zad | > 0. (2.11)
i,j=0 i.j=0 i=0 =0

Pozostaje pokazac¢, ze ostatnia nieréwnosé jest ostra przy zalozeniu, ze nie
wszystkie wspotezynniki z; zeruja sie. Zatozmy, ze |z9|*+|2z1|>+. . . +]2n]*> > 0
i zapiszmy wielomian YN | z;2* w bazie {p,}°2,. Otrzymamy

N ' N
Z ziw' = Z &iDis
i=0 i=0
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dla pewnych wspotezynnikow &; takich, ze |&o]? + ... + [Ex]? > 0. Poniewaz
wielomiany p,, sa ortogonalne, to

N N ' N
(Z zx', szxj) =>1&> > 0.
i=0 =0 =0

Reasumujac, wychodzac od macierzy Jacobi’ego J skonstruowalismy ciag
Hamburgera {m,, }32 . Zauwazmy, ze ze wzoru (2.11)) wynika, ze iloczyn ska-
larny okreslony przez nas w P i iloczyn skalarny wyznaczony przez cigg
{m,}>°, sa identyczne. Zatem gdybysmy dla ciagu {m,, }5°, powtérzyli kon-
strukcje wielomianéw ortonormalnych, otrzymaliby$my ciag {p,}>°, i ma-
cierz Jacobi’ego J.

3 Kilka uzytecznych wzoréow

Dla zadanego ciagu Hamburgera {m,}>2, wprowadzamy iloczyn skalarny

(+,+) w przestrzeni wielomianéw IP i konstruujemy macierz Jacobi’ego o wsp6t-

czynnikach A\, i 3, tak jak to byto opisane w poprzednim rozdziale.
Rozwazmy réwnanie roznicowe

ran = )\nan—H + ﬁnan + )\n—lan—la n = ]-7 (31)

przy ustalonej wartosci x. Przy zadanych wartosciach poczatkowych ag i aq
rownanie ([3.1)) ma jednoznaczne rozwigzanie, bo A, > 0. Na przyktad, gdy

ap = Po = 17
z — o
a; =p(z) = :
1 pl( ) )\0
to a, = pu(x). Z kolei dla
ap = qo = 07
1
a1 = xr) = —
otrzymujemy rozwiazanie a, = ¢,(z). Wyrazenie ¢,(z) jest wielomianem

stopnia n — 1 zmiennej x dla n > 1. Wielomiany ¢, (x) nosza nazwe wielo-
mianéw drugiego rodzaju, lub wielomianéw stowarzyszonych. Wprowadzmy
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oznaczenie

Wtedy

(JQ(x))n = zgn(x), n>1,
(JQ(x))o = Xoq1 () + Bogo(x) = zgo(x) + 1.

Powyzsze wzory mozemy zapisa¢ tacznie jako
JQ(z) = zQ(z) + dy, gdziedo=| ¢ |- (3.2)

Wzér (3.3).

r—Y

onla) = (pn(:v)—pn(y)71> | (3.3)

gdzie (-, -), oznacza iloczyn skalarny wzgledem zmiennej y.

:<19<~”U>—W1> |

r—y

Dowdd. Niech

Widaé, ze ag = 0 = qo(x). Dalej uwzgledniajac, ze p1(z) = (x — 5o)/ Ao

otrzymujemy
— 1
ay = (pl(if) pl(?/), 1) = — = q(2).
x—y y
Nastepnie dla n > 1 obliczamy xay,.
ra, = <Ipn(x) — pn(y)’ 1) _ (.ﬁlﬁpn(l') — ypn(y) _pn(y% 1)
=y y =y y

_ (mpn(x) /20

r—y

) 1) = )\nan—l—l + 6nan + )\n—lan—l-
Y
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Poniewaz ciag a, spelia réwnanie (3.1]) i spelnia te same warunki poczat-
kowe co ciag ¢, (), to a, = ¢,(x). ]

Zapiszmy réwnanie (3.1)) w nastepujacej postaci.

0 1 _
( an > = ( >\n71 l’-ﬂn) (an 1) ’ n > 1
An+1 - A n (079

Jesli inny ciag {b,}22, speia (3.1)), to

Gp, bn 0 1 ap—1 bn—l
= > 1.
ot ) = (e ) () e

Obliczmy wyznaczniki obu stron ostatniej réwnosci. Wtedy

anbn+1 - an+1bn = %(Gn—lbn - anbn—l)'
Zatem \
anan - angn = )\—O(aobl — alb()). (34)
Uwaga 3.1.
Wyrazenie
Qn by,

W(an,b,) = (3.5)

Ap41 — Ap bn+1 - bn
nazywamy, poprzez analogie z rownaniami rézniczkowymi drugiego rzedu,
dyskretnym wronskianem rozwiazan {a, }>° 1 {b,}>,. Zatem

A
W (an, by) = )\—OW(ao,bo).

Stosujgc wzor do ciagéw a,, = p,(z) oraz b, = ¢,(z) otrzymujemy
Wzér (3.6).
o)1 (8) — P (D (0) = 1 (36)
Rozwazmy rozwiazania {a,}22, i {b,}>°, rownania odpowiadajace
liczbom x i y, odpowiednio. Dla n > m > 0 mamy

n n n

(x — ) Z ayb, = Z(mak)bk — Z ar(ybg)
k=m+1 m+1 k=m+1
= Y (MprrbetBrarbrtA—1ap-1br)— Y (Ararbeir+Brarbe+Ni—1arbp—1)
k=m+1 k=m+1

= )\nan+1bn + Amambm—&—l - )\nanbn—l—l - )\mam-i-lbm-
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Wyprowadziliémy zatem wzor
(x—y) > apby =AW (am, bn) — AW (an, by). (3.7)
k=m+1
Zastosujemy (3.7)) dla a,, = pn(x), b, = p,(y) oraz m = 0. Najpierw zauwa-
zamy, 7ze
Aolpo(@)p1(y) — pr(@)po(y)] =y — 2 = —(x — y)po()po(y)-

Otrzymujemy wzér Christoffela-Darboux.

Wzér Christoffela-Darboux.

Zi:pk(x)pk(y) = Anp”“(x)pn(y; izy?n(x)pnﬂ(y), T #y. (3.8)

Podobnie stosujac wzér (3.7) dla pary a, = p,(z), b, = ¢.(y), lub a, =
qn(x), by = ¢, (y) otrzymamy trzy kolejne wzory.

(z—y) Zi:pk(x)qk(y) = 1+ AN[Pni1(2)qn(y) — pu(@)@nia(y)],  (3.9)

E=) X a@n) = 1+ Ml (Opals) — 4o (0)),(3.10)
=D Xw@DnE) = M@l —a@aab) @1

Wzér (3.10) mozna otrzymacé z (3.9) przez zamiane x z y.
Przejscie do granicy przy y — x we wzorze Christoffela-Darboux daje

Wzoér (3.12).
S 1) = Mlpa a0~ A @@ 1)

Funkcja K, (z,y) = Y r_opr()pr(y) jest jadrem reprodukujacym wielo-
miany stopnia niewigkszego od n, tzn.

(p(y), Kn(z,9))y = p(x),  peP, degp <n.
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Rownosé ta dla p(z) = pr(z), k < n, wynika z ortogonalnosci. Dalej wy-
starczy skorzysta¢ z faktu, ze kazdy wielomian stopnia co najwyzej n jest
kombinacja liniowa wielomianéw pg, p1, . . ., p,. Jadro K, (x,y) mozna przed-
stawi¢ w postaci wyznacznika.

0 1 T "

1 1 mg my My,
Kn(%y)_—x Yy mp Mg Mpp1
Yy oMy Mg Mo

Wyprowadzimy jeszcze jeden wzor, ktory bedzie przydatny w dalszej czesci.
W (3.1) podstawmy m =0, x = z, y = Z oraz

(= WPn(2) + Gu(2),

bnzﬁa

gdzie z 1 w sa ustalonymi liczbami zespolonymi.

n I (an 1bn) III] (albo)
b, = |ag|? + Ayt on)_y ZRA0100)
];)’U)pk( z) + qr(2) kz%ak k= |aol” + T o T

Mamy |ag|? = |w|?. Ponadto

Im (a1bo) _ Im {\ow[wp;(2) + ¢1(2)]} _ Im {|w|*(z — By) + w}
Imz Imz Imz
|w|*Im 2z — Im w , Imuw
= = |w|

Ao

Im z Imz’

Ostatecznie otrzymujemy

Wzér (3.13).

Imw
Z lwpr(2) + qr(z )|2 —

Im 2

Wpn1(2) + qn+1(2)' (3.13)

)\n 2
= —— |wpn(2) + ¢u(2)[* Im wpn(z) + qn(2)

Imz
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4 Zera wielomianéw ortogonalnych

Lemat 4.1. Kazdy wielomian p(z) nieujemny na R ma postaé p(x) = A?*(z)+
B2(x), dla pewnych wielomianéw A(x) i B(x) o wspélczynnikach rzeczywi-
stych.

Dowdéd. 7 zalozenia wynika, ze wielomian p(x) ma postaé

p(x) =c f[l(a; —r)(x—7;), gdzie ¢ > 0.
Niech .
= \/EH T = 7).
Wtedy p(z) = A%(z) + B?(x) dla A(z) = Reh(z) i B(z) = Imh(z). O

Lemat 4.2. Kazdy wielomian p(zx) nieujemny na [0, +00) ma postaé p(z) =
A%(z)+ B*(z)+2zC?*(x)+xD?*(z) dla pewnych wielomianéw A(x), B(x), C(x)
i D(x) o wspétczynnikach rzeczywistych.

Dowdd. Jesli wielomian p(x) nie ma ujemnych pierwiastkéw o krotnosci
nieparzystej, to p(x) jest nieujemny na calej prostej, wiec ma zadana postaé
z poprzedniego lematu.

Niech —ry, —ry, ..., —r, oznaczaja ujemne pierwiastki o krotnosci niepa-
rzystej. Wtedy p(z) ma postaé

) ﬁl(aﬂ—rj)7 (4.1)

gdzie g(x) jest nieujemny na calej prostej. Z poprzedniego lematu ¢(z) ma
postaé

q(x) = A*(z) + B*(x), (4.2)

dla pewnych rzeczywistych wielomianéw A(z) i B(x). Dla > 0 mamy
[Tte+ ) = e+ 107 W - i)
j: : :

Zauwazmy, ze dla pewnych wielomianéw rzeczywistych C(x) i D(x) mamy

- C(z) +iy/zD(x) dla parzystych n
) = [[(Va+iym) = (#) +1v/&D(x) - dla parzysty
ke VaD(z)+iC(z) dla nieparzystych n.
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Zatem
n

[[(z+ 7)) = C*(x) + zD*(x). (4.3)

j=1
Korzystajac z (4.1]), (4.2]) i (4.3) otrzymujemy teze lematu. O

Whniosek 4.3. Niech r(z) bedzie niezerowym wielomianem nieujemnym na
prostej. Wtedy (r,1) >0

Dowdd. 7 Lematu |4.1| wielomian r(z) ma posta¢ r(z) = A?*(x) + B*(x).
Zatem korzystajac z i z faktu, ze A(x) i B(x) sa rzeczywiste otrzymu-
jemy

(r,1) = (A>+ B* 1) = (A, A) + (B, B) > 0.

]
Whiosek 4.4. Zalézmy, ze {m,}>2, jest ciggiem momentow Stieltjesa. Niech

r(z) bedzie niezerowym wielomianem nieujemnym na pétprostej [0, +o0). Wte
dy (r,1) > 0.

Dowdd. Niech (-, -); oznacza iloczyn skalarny zwiazany z ciagiem momen-
tow {m, 11152, Mamy
(xp, q) = (. ¢)1-

Z Lematu [4.2| wielomian r(x) ma postaé
r(z) = A*(z) + B*(z) + 2C%*(x) + zD*(x).
Wtedy korzystajac z (2.3) otrzymujemy

(r,1) = (A, A) + (B, B) + (zC,C) + (zD, D)
= (AvA)+(BvB)+(Cvc)1+(D7D)1 > 0.

O
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Wielomiany postaci

pn<w>7—) = pn(x) - Tpn—l(x)a gdZie TeR

bedziemy nazywali wielomianami quasiortogonalnymi. Wielomian p,(x,7)
jest ortogonalny do wielomianéw stopnia nizszego niz n — 1.

Twierdzenie 4.5.
(1) Wielomian p,(x,T) posiada n réznych rzeczywistych pierwiastkdow.

(i1) Zalozmy, ze {m,}2, jest ciggiem momentdéw Stieltjesa. Wtedy wszyst-
kie pierwiastki wielomianu p,(x) sq¢ dodatnie.

(111) Pierwiastki wielomiandw pp(x) i pyy1(x) leZg na przemian, tzn. po-
miedzy dwoma pierwiastkami wielomianu p,i1(z) lezy dokladnie jeden
pierwiastek wielomianu p,(z).

(iv) Wielomian q,(x) posiada n — 1 réinych rzeczywistych pierwiastkow,
ktore lezg na przemian z pierwiastkami wielomianu py(x).

Dowdd. (i) Zatézmy, ze wielomian p,(x,7) zmienia znak w punktach
ry < Ty < ... < Zy,. Liczba m nie moze przekroczy¢ n. Wtedy wielo-
mian

r(z) = po(z, 7)(x — 21)(x — 22) ... (T — Ty
ma staty znak. Poniewaz wspotczynnik przy najwyzszej potedze wielomianu
r(z) jest dodatni, to r(z) przyjmuje wartosci nieujemne. Z Wniosku[4.3|mamy

(pn(x,7),(x —21) ... (T — ) = (r(2),1) > 0.

Poniewaz wielomian p,(x,7) jest ortogonalny do wielomianéw stopnia niz-
szego niz n — 1, to m > n — 1. To oznacza, ze p,(x,T) posiada przynajmniej
n — 1 pierwiastkow rzeczywistych. Z wlasnosci degp,(z,7) = n wynika, ze
takich pierwiastkow jest n.

(ii) Dowdd tej czesci jest podobny do dowodu (i), przy czym wybieramy
tylko dodatnie liczby 1 < 29 < ... < &y, 1 korzystamy z Wniosku [4.4]

(iii) Rozwazmy dwa kolejne pierwiastki x; i o wielomianu p,.;. Wtedy
liczby pl, ., (x1) oraz p}, . (x2) maja przeciwne znaki. Ze wzoru wynika,
ze

AP (23 Dy () an ;) >0, i=12.
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Zatem liczby p, (1) 1 pn(x2) maja przeciwne znaki. W zwiazku z tym wielo-
mian p, ma pierwiastek w przedziale (xy, z3).

(iv) Rozwazmy znowu dwa kolejne pierwiastki x; i x5 wielomianu py, 1.
Z (iii) wynika, ze wielomian p, ma dokltadnie jeden pierwiastek w przedziale
(21, x2). Zatem pp(x1)pn(x2) < 0. Ze wzoru wynika, ze

1 :
pn<x2>Qn+l<x'L> = )\7 > 0, 1= 1, 2.

Stad ¢na1(71)@ni1(x2) < 01 w konsekwencji wielomian ¢,,; musi mieé¢ pier-
wiastek w przedziale (z1,x2). O

5 Konstrukcja rozwigzania problemu momen-
tow i mechaniczna kwadratura Gaussa

Dla ustalonej liczby rzeczywistej 7 rozwazamy wielomiany

Pu(x, 7)(2) = pn(x) — Tpp(2),

Gn (2, 7)(2) = qn(2) = Tqn-1 ().
Niech z; < x93 < ... < x, oznaczaja kolejne pierwiastki wielomianu p,(z, 7).
Liczby x; zaleza réwniez od n i 7, tzn. x; = xﬁ") (7). Dowolny wielomian r(x)
stopnia co najwyzej 2n — 2 mozemy przedstawi¢ w postaci

r(z) = r(x)pa(x, 7) + roz),

dla pewnych wielomianéw rq, 7y takich, ze degr; < n —21idegr, < n— 1.
Ze wzoru interpolacyjnego Lagrange’a otrzymujemy

n n

ro(z) = ra(z;) Pu(,7) > r(x) Pa(®,7)

i=1 p;L(xiﬂ T) (.I‘ - $2) N i=1 p%(l‘zﬁ T) (37 - l’,)

Z ortogonalnosci p,(x,7) i r1(z) wynika

n

<nw=mﬂwéjrm>(%@”@)

i=1 p/n(xh T) r—x;

Ze wzoru (3.3) mamy

(o) ) _ (el =mben) ) )

r — T r — T;

Reasumujac otrzymaliSmy
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Wzér (kwadratura Gaussa). Dla dowolnego wielomianu r(z) stopnia co
najwyzej 2n — 2 zachodzi wzor

(r 1) = émr(@). (5.1)

Uwaga 5.1.
Dla 7 = 0 mamy p,(z,7) = pp(z) i ¢u(z,7) = go(x). W tym przypadku
wzér (5.1]) jest spetniony dla degr < 2n — 1.

Wprowadzamy oznaczenie

i = (7) = 38? 3 (5:2)

We wzorze (j5.1)) podstawmy r(x) = 1. Wtedy
p1+ o+ oA, = 1. (5.3)

Pomnézmy licznik i mianownik we wzorze ([5.2)). Wtedy z wtasnosci p,(x;) —
TPn—1(x;) = 0 mozna wyprowadzi¢ wzor
_ Pr—1(T3)Gn(75) — Pu(T) @1 ()
Pr—1(@i)py, (%) — pn(@i)ph—1(2:)
Nastepnie korzystajac z (3.6 i (3.12) otrzymujemy

1
i = ——— > 0. (5.4)

n—1
Z Pi(fﬂi)
k=0

i

Uwaga 5.2.
Wzoér (5.4) nie oznacza, ze p; nie zalezy od parametru 7, poniewaz zalez-
noéé od 7 jest ukryta w z; = 23" (7).

Podstawienie we wzorze (|5.1]) wielomianu

o= [

p;z(l‘la T) (I — I

daje jeszcze jedno przedstawienie liczb ;.

= (p%( Pn(2,7) Pn(2,7) )) -0 (5.5)

zi, 7)(x — x;) (i, T) (2 — 24
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Uwaga 5.3.

Na podstawie (5.3) i (5.4) kwadratura Gaussa oznacza, ze wielkosé (r, 1)
jest catka wielomianu r(x) wzgledem miary probabilistycznej skupionej w
punktach z,...,x,. Korzystajac z dodatniosci mas p; mozna udowodnié¢
tez, ze zera wielomianéw p,(x,7) i ¢,(z, T) sa polozone naprzemiennie.

Niech o0, = 0,(7) oznacza miare

oy = Z,uﬁxi. (5.6)
i=1
Ze wzoru (5.1]) wynika, ze
my = (z*,1) = /xkdan(a:), k=0,1,2,....20—2.  (5.7)

To oznacza, ze o, jest niepelnym rozwigzaniem problemu momentéw, bo
tylko pierwsze 2n — 2 momenty sg rowne odpowiednim liczbom ciggu m,,.

Twierdzenie 5.4 (Hamburger). Liczby {m,}2, s¢ ciggiem momentéw mia-
ry 0 nos$niku nieskonczonym na prostej wtedy i tylko wtedy, gdy cigg {m,}5,
jest dodatnio okreslony.

Dowéd. Koniecznosé warunku zostata udowodniona w Przyktadzie [2.4]
Dla dowodu dostatecznosci rozwazmy ciag miar o, przy ustalonej wartosci
7, na przyktad 7 = 0. Dystrybuanty miar o,

Fo(r) = 7d0n(y)7

sg funkcjami niemalejacymi na prostej, przyjmujacymi wartosci w przedziale
[0, 1]. Na podstawie Pierwszego Twierdzenia Helly’ego o wyborze ciag F,(x)
posiada podciag F,, (x), zbiezny w kazdym punkcie do pewnej funkcji nie-
malejacej F'(x). Pokazemy, ze F(x) wyznacza miare rozwiazujaca problem
momentéw. W dowodzie skorzystamy réwniez z Drugiego Twierdzenia Hel-
ly’ego stanowiacego, ze dla funkcji ciaglej f(x) zachodzi

b b

[ f@) @) — [ @) dF ().
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Niech n; > [ + 2. Na podstawie (5.7)) dostajemy

00 A
my = /xl dF,, (x) = /xl dF,, (x) + / a' dF,, (z).
—00 —A |z|>A

dla liczby A takiej, ze —A i A sg punktami ciggtosci dla wszystkich dystry-
buant F, i dla F. Oszacujemy druga caltke korzystajac znowu z (5.7)).

. . |:E|l . 22
/ A dF, () = A / P (@) < A / s P, ()
|z|>A |z|>A |z|>A
< A2 / 222 4R, (1) = A 2may .
Zatem
A A
/xl dF(xz) —my| = lim /xl dF,,(x) —my| < A2 mg . (5.8)
A A

Dla [ = 2r ostatnia nieréwno$¢ oznacza, ze catka / 2% dF(x) jest zbiezna.

—00

Wtedy z nieréwnosci

/2 1/2
/W LR (x (/ 2| dF(z) ) (/ |22 dEF( ))

otrzymujemy zbieznosé catki / ¥ =1 dF(x). Przechodzimy z A do nieskoi-
czonosci w ((5.8)) i otrzymujemy
my = /ml dF(x).

—00

]

Twierdzenie 5.5 (Stieltjes). Liczby {m,}2, sa ciggiem momentow miary
0 no$niku nieskoriczonym na pélprostej [0, +o00) wtedy i tylko wtedy, gdy ciggi
{mn}oy oraz {m, 1}, sa dodatnio okreslone.
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Dowdd. Konieczno$¢é warunkéw zostata wykazana w Przyktadzie 2.5 Roz-
wazamy ciag o, miar przy wartosci 7 = 0. Z Twierdzenia [£.5(ii) wynika, ze
miary o, sa skupione na poétprostej (0, +00). To oznacza, ze ich dystrybuanty
F,, zeruja sie dla x < 0. Z dowodu poprzedniego twierdzenia wiemy, ze roz-
wigzanie problemu momentéw mozna uzyskaé przez wziecie granicy podciggu
ciggu F),. Ale kazda dystrybuanta bedaca granicg podciggu zbieznego ciggu
F,, réwniez zeruje sie dla x < 0. Zatem rozwigzanie problemu momentow jest
miara skupiona na [0, 4+00). O

6 Narzedzia do badania jednoznacznoSsci
Dla wartosci parametru 7 € R* = RU{oo} i z € C wprowadzamy oznaczenie

_ 4n(2) — Tqn-1(2) _ _Qn(Z’ 7)

pn(2) = TPn-1(2) pulz,7)
Dla z ¢ R liczba w,(z,7) jest dobrze okreslona na podstawie Twierdzenia
4.5(1). Zauwazamy, ze

(6.1)

wp(z,7) =

wy(2z,00) = w,_1(z,0).

Twierdzenie 6.1 (Hellinger). Ustalmy liczbe z € C o wlasnosci Imz > 0
(lubIm z < 0). Zbior wartosci w = wy(z,7), dla T € R*, tworzy okrgg 0K,,(2)
polozony w polplaszczyznie Imw > 0 (lub Imw < 0). Srodek s i promieri r
okregu 0K, (2) wyraZone sq wzorami

s = — qn(z)pn—l(z) - qn_l(z)pn(z)

pn(Z)pn—l (Z) - pn—l(z)pn<z)
1

n—1 :
2[tm 2| ) [pi(2)[?
=0

Rownanie okregu ma postaé

n-l Imw

> lwpi(z) + ai(2)]” = : (6.3)

= Im 2

Dowaéd. Podstawiamy

a=qn1(2), b=qu.(2), c=pn_1(2), d=pn(z)
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i korzystamy ze wzoru
ar —b aa—bé_'_bc—adéT—E
ct—d cd—cd cd—eder—d
Stad od razy odczytujemy wzér na s. Ponadto ze wzordéw ([3.6]) i (3.8) zasto-

sowanych dla x = z, y = Z oraz n := n — 1 wynika, ze

_|be—ad] _ | pn-1(2)gn(2) = pu(2)gna(2) | _ 1
cd —cd

pn_l(Z)pn(Z) _pn—l(z)pn<z) 2|Imz| nil |pl(z) 2

Ze wzoru (6.1)) obliczamy 7
Wy (2, T)Pn(2) + qn(2)
wn(sz)pn—l( )+Qn 1( )

Wy,

i korzystamy ze wzoru (3.13)) dla w = w,(z,7). Uwzgledniajac, ze 7 jest
liczbg rzeczywista otrzymujemy (/6.3). O

T =

Uwaga 6.2.
Z Twierdzenia wynika, ze wnetrze kota K, (z) opisane jest nier6wno-
Scig
Imw

lepz +ai(2)” < (6.4)
Stad natychmiast Wnioskujemy, ze K, (2) C K,,—1(z). Ponadto okregi 0K, (z)
i 0K, _1(z) stykaja sie w jednym punkcie, bo jak wczeéniej zauwazylismy
wy(2,00) = wp_1(z,0).

Imz’

Dla ustalonej liczby z, Im z # 0, rozwazamy zstepujacy ciag kot { K, (2)}52,.
Zbior Koo(z) = N2y Kn(z) jest kotem lub zbiorem jednopuktowym. Jesli
w € Ko(z), to w spelnia (6.4]) dla kazdej liczby n. Zatem

Imw

lepn )+ au(2)]? < :

< +00. (6.5)
mz

Z Twierdzenia Hellingera promien K. (z) wynosi
1

2[tm 2| ) pa(2)[?
n=0

przy czym K. (z) jest kotem, gdy szereg w mianowniku jest zbiezny.
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Twierdzenie 6.3.

(i) Dla z ¢ R istnieje przynajmniej jedno niezerowe rozwigzanie {y,}>,
rownania roZnicowegqo

)\nyn+1 + ﬁnyn + An—lyn—l = ZYn, n>l1

takie, ze szereq 3200 yn|? jest zbieiny.

(i1) Kazde rozwigzanie tego réwnania jest sumowalne z kwadratem wtedy i
tylko wtedy, gdy K. (z) jest kolem.

Dowdd. (i). Niech w € K (z) oraz y, = wp,(2) + ¢.(2). Wtedy z
ciag {yn}5°, jest sumowalny z kwadratem.

(ii). Jesli kazde rozwiazanie jest sumowalne z kwadratem, to réwniez
S0 o Ipn(2)|? < 4o00. Zatem promieni zbioru K (z) jest dodatni, czyli Ko ()
jest kotem. Aby udowodni¢ implikacje przeciwna, zalézmy, ze K (z) jest ko-
tem. Zatem °0°  [pn(2)]* < 4o00. Z dowodu (i) wynika, ze 3% |wp,(z) +
¢ (2)]* < 400 dla pewnej liczby w. Stad réwniez szereg 320 |, (2)|* jest su-
mowalny. Kazde rozwiazanie rownania jest kombinacja liniowa ciagow {p,,(2)}5°,
i{gn(2)}52,, zatem kazde rozwigzanie jest sumowalne z kwadratem. O

Uwaga 6.4.

Rozwazmy miare probabilistyczng o na prostej, o wszystkich momentach
skoficzonych. Obliczymy wspotezynniki Fouriera funkcji (z — z)~! wzgledem
uktadu ortonormalnego wielomianéw {p,(z)}5°,. Dla z ¢ R niech

os [

Wtedy ze wzoru (3.3) wynika, ze

in—z /p" T —2z )da( ) +wpn(2) = wpn(2) + gn(2).

Z nieréwnosci Bessela otrzymujemy

do(z)
2
<

L /< L 1) da(m):IImw. (6.6)

2Im z r—z xT—7Z
— 0
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Wprowadzamy cztery wielomiany

M= (e a) D alo() (6.7
Bu(sv20) =1+ (2= ) T i), (©3)
Culrzo) = 1+ (2= 20) 3 pilaa)ai(2) (6.9)
D, (z,z) = (z — 20) 2 pi(20)pi(2). (6.10)
Ze wzoréw , , i otrzymujemy
An(2,20) = An-1ldn-1(20)4n(2) = ¢n(20)gn-1(2)], (6.11)
Bn(z,20) = An-1[gn—1(20)Pn(2) — qn(20)Pn—1(2)], (6.12)
CH(Z’ ZO) - An—l[pn—l(ZO)Qn(z) - pn(ZO)Qn—l(Z)]7 (6'13)
Di(z,20) = An-1[pn-1(20)pn(2) — pu(20)Pn-1(2)]- (6.14)

Wzory te mozna tacznie zapisa¢ w postaci

(@& )

o (CIn—l(ZO) —qn(zo)> ( W(2)  pal2) ) (6.15)

Pn-1(20) —Pn(20) ) \@n-1(2) pn-1(2)
Obliczamy wyznacznik obu stron i korzystamy z (3.6)). Wtedy
A (2, 20) D2, 20) — Bn(z, 20)Cn(2, 20) = 1. (6.16)
Ponadto otrzymujemy
0.(2)  pa(?)
qn—l(z) pn—l(z)
— ( _pn(zo> Qn('zO) > <An(z7Z0)
(

—Pn-1(20)  @n-1(20)
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Zestawienie wzoréw ((6.15)) oraz (6.17]) daje

(o) Bt

(G ) (B ) o

Twierdzenie 6.5 (Hellinger-Nevanlinna). Jesli K. (z) jest kotem dla jednej
wartodci z ¢ R, to réwniez dla kaZdej wartosci z ¢ R. W tym przypadku sze-

reg Z [P (2)|? jest zbieiny jednostajnie na zwartych podzbiorach plaszczyzny
n=0

zespoloney.
Przed dowodem twierdzenia wyprowadzimy kilka pomocniczych faktow.

Lemat 6.6.
Anii(z,20) Bpyi(z,20)\ o
( ( ) = l]+( 0)

Cn+1(27 ZO) Dn+1 Z, ZO)

" (-pn(ZO)qn(ZO) ¢ (%0) )] <An(2a2’0) Bn(2720)>_ (6.19)

—pi(20) Pn(20)qn(20) Cn(z,20) Dulz,20)
Dowdd. Ze wzoréw (3.1) 1 (6.17) dla n :=n + 1 mamy

(%H(Z) pn—i—l(z)) _ <—pn+1(2’0) Qn+1(2’0)> (An+1(z,z0) Bn+1(27750)>
qn(2) pn(2) —Pn(20) n(20) Cni1(z,20) Dnta(z, 20)

:<ﬁ —X:)(—pn@o) qn<20>>
1 0 —Pn-1(20)  Gn-1(20)
><<A”“(Z’ZO) B”+1(Z’Z°)>. (6.20)

Cn+1(2, 20) Dn+1(27 Zo)

Podobnie otrzymujemy
Qn-i-l(z) pn-i—l('z) _ % _/\Ki;l QH(
( @n(z)  pal2) ) a < 1 0 ) (in
_ Z;fn _/\7)1\7;1 _pn(zo) Qn(zo) > <An(2720) Bn(’zazo))
_< 0 )(—pnl(zo) dn1(z0)) \Colz.20) Du(z.2)) - 62V

Zestawiajac (6.20)) i (6.21]) otrzymujemy teze lematu. ]
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Lemat 6.7. Zaldimy, ze macierze T,, € Mayo(C) spelniajg Y || T, < +oc.
n=1
Niech

Sp(2)=[I+(z—=20)T) ... [+ (2 = 20)To][I + (2 — 20)T1].

Wtedy istnieje granica Soo(z) = nh—{go Sn(2) i przedstawia funkcje calkowitq
spetniajgcg
1S (2)]| < e exp(elz]), (6.22)

dla kazdego € > 0.

Dowaéd. Zauwazmy, ze

|14 By) .. (1 + B < [T+ 1B exp(ZHBH)
=1

Podobnie otrzymujemy

[(I+B,)...(I+B)—1| < ﬁ(l +1Bill) =1 < exp (f:l ||Bl-||> -

=1

Zatem

[Snik(2) = Su(2)]| <

exp (z| > ||T||) - 1] esp (11X 170).

i=n-+1
Z ostatniej nieréwnosci wynika zbieznosé ciagu S, (z). Ponadto

1500 ( H L+ 2T < TTA + 2T exp (ZI > ||T||>
i=1 i=1

1=n+1

Stad otrzymujemy (6.22]). ]
Dowéd Twierdzenia Hellingera-Nevanlinny. Zatézmy, ze K..(z) jest ko-
tem dla pewnej wartosci zp € C. Z Lematéw [6.6] oraz z Twierdzenia

Hellingera ciagg macierzy
An(z,20) Bul(z,20)
Cn(2720> Dn<2720)
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jest zbiezny jednostajnie na zwartych podzbiorach w C. W szczegdlnosci, przy
ustalonej wartosci wyrazy macierzy sg ciaggami jednostajnie ograniczonymi
na zwartych podzbiorach w C. Ze wzoru (6.17) mamy

Pn(2) = —Pn(20) Bn(2, 20) + qn(20) Dn(2, 20).

Zatem ciag {p,(z)}2, jest sumowalny z kwadratem jednostajnie na zwartych

podzbiorach w C. O
Dla zp = 0 bedziemy stosowaé oznaczenie

A, (2) = A,(2,0), B,(z) = By(2,0) (6.23)

Ch(2) = Ch(2,0), Dyu(2) = Dy(z,0). (6.24)

Korzystajac z (6.17) przeksztalcamy wzér na w,(z, 7).

w (Z 7_) _ _qn(z) - an*1< )
S pn( )_Tpn 1(Z)
_ [42(0) = 7¢n-1(0)]Cn(2) — [Pn(0) — 7Pu-1(0)]An(2)
[22(0) = T¢n—-1(0)] Dn(2) — [pn(0) —Tpn—(l(g))]Bn(Z() |
A, ()t —C(z
B,(2)t — D, (2)’ (6:25)
gdzie

pn(o) B Tpn—l(o)

Qn(o) - TQn—l(O) .

Wartosc t jest dobrze okreslona, poniewaz wyznacznik wspotezynnikow jest
niezerowy ze wzoru (3.6)), w zwigzku z czym licznik i mianownik nie moga
zerowal sie jednoczesnie. W szczegélnosei, jesli ¢,(0) — 7¢,-1(0) = 0, to
t = oo.

Stad przy ustalonej wartosci z ¢ R liczby
A ()t — Ch(2)

B —Duz) T EF (6:26)

t=—

opisuja okrag 0K, (2).

Rozwazmy przypadek kota. Wtedy ciagi A,(z), Bn(2), Cn(2) 1 Dyn(2) sa
zbiezne do funkcji catkowitych A(z), B(z), C(z) i D(z). Ze wzoru
wnioskujemy, ze liczby

A= 0() :
Bl teR (6.27)
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opisuja okrag 0K (z).
Tabele

(e 23)

nazywamy macierza Nevanlinny. Ze wzoru (6.16)) otrzymujemy
A(2)D(z) — B(2)C(z) = 1. (6.28)

Z Lematow wynika, ze elementy macierzy Nevanlinny sg funkcjami
catkowitymi o wzroscie podwyktadniczym.

Twierdzenie 6.8. W przypadku kota mamy

Z Ipn(2)|? < ccexpelz|,

dla kazdego € > 0.

Dowdd. Na podstawie (6.27)) liczby A(z)/B(z) oraz C(z)/D(z) leza na
okregu 0K (z). Ich odlegtosé nie przekracza promienia tego okregu, czyli

1
2[tm 2| Y [pu(2))?
n=0

Po przeksztatceniu dostajemy
1
3 (o) < g BEDE)

Wiemy, ze B(z) i D(z) sa funkcjami catkowitymi spetiajacymi (6.22)), stad
dla liczby z = x + iy takiej, ze |y| > 1 mamy

Z Ipn(z + iy)|? < cexpelz]. (6.29)
n=0

Poniewaz pierwiastki wielomiandéw p,, sa liczbami rzeczywistymi, lewa strona
nieréwnosci rosnie wraz ze wzrostem |y|. Zatem dla |y| < 1 otrzymujemy

Z|pn x +iy)? len r+1)|° <ceexpe(|z] +1) < cefexpelz]. O
n=0
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Gdy K (z) jest punktem dla Imz # 0, czyli K(2) = {w(z)}, to w =
w(z) jest jedyna liczba taka, ze

> wpn(2) + gu(2)° < +o0.
n=0

W ten sposéb w(z) okresla funkcje dla Im z # 0.

Twierdzenie 6.9 (o analitycznosci). W przypadku punktu funkcja w(z) jest
analityczna w kazdej z polptaszczyzn Imz > 0 ¢ Im 2z < 0. Ponadto
I
muw(z) (6.30)

Im 2

Dowdd. Wtasnosé wynika z (6.5]). Wiemy, ze liczby w,(z,0) = —¢,(2)/pa(2)
leza na okregu 0K, (z). Zatem w,(z,0) — w(z), gdy n — oo. Funkcje
z — wy(2,0) sa analityczne dla Im z # 0. W celu udowodnienia analitycz-
nosci funkeji granicznej z — w(z), wystarczy pokazaé, ze funkcje wy(z,0)
tworza rodzine normalna, tzn. sa wspoélnie ograniczone na kazdym zwartym
podzbiorze zbioru Im z # 0. Ten ostatni fakt wynika z nastepnego lematu,

ktorego elementarny dowod pozostawiamy czytelnikowi. O]
Lemat 6.10. Dia liczb ©1 < 17 < T2 < Yo < ... < Tpq < Yno1 < Tp
zachodzi nieréownosé
(z—y1)(z—y2) .. (2 — Yn-1) 1
< .
(z—x1)(z—22) ... (2 —xp_1)(2 — ) |Im z|

Uwaga 6.11.

Twierdzenie o analitycznosci mozna tez udowodni¢ korzystajac z Twier-
dzenia[5.4] Niech o bedzie rozwiazaniem problemu momentéw. Wtedy z Uwa-
gi 6.4 mamy

o0

w(z) = / M

x—2z
—0o0

Prawa strona przedstawia funkcje analityczng dla Im z # 0.
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7 Jednoznacznos$¢ problemu momentéw Ham-
burgera i gesto$¢ wielomianéw

Twierdzenie 7.1. Dla Im z # 0 zbior wartosSci

w(z) = 70 da(x)j

r—z

—00

gdzie o jest miarg bedgcg rozwigzaniem problemu momentéw dla ciggu {m,}>,
pokrywa sie ze zbiorem K (z).

Dowaéd. Niech o bedzie rozwigzaniem problemu momentéw oraz w =
[(x — 2)7Ydo (). Z nieréwnosci otrzymujemy w € K (2).

Odwrotnie, zalézmy, ze w € K. (z). Wtedy w mozna zapisaé¢ w postaci
w = 0wy + (1 —0)w,, gdzie 0 < 0§ < 1 oraz wy, wy € 0K o(2). Jesli znajdziemy
dwa rozwigzania problemu momentéw o; i o9 odpowiadajace liczbom w; i
wy, to miara oy + (1 —0)oy bedzie rozwiazaniem problemu momentéw odpo-
wiadajacym liczbie w. Zatem wystarczy rozpatrzy¢ przypadek w € 0K (2).
Poniewaz K. (z) jest przekrojem két K, (z), to istnieja liczby w, € 0K, (2)
takie, ze w, — w, gdy n — oo.

Lemat 7.2. Miara 0,, = 0,(7) okreslona w (5.6) spelnia

0 d .
Wy (z,7) = / ’ (x)’ Im z # 0.
Jor—z

Dowdd lematu. Zastosujmy wzor interpolacyjny Lagrange’a do wielomia-
nu q,(z,7) wzgledem zer wielomianu p,(z, 7). Wtedy

o0

wn(z,7) = — (5 T) -y Gn (i, 7) :_/

pn(z, i=1 p/n Ty, T) (Z - xz)

do,(x)

x—2z

]

Liczby w, naleza do 0K, (z), zatem sa postaci w,, = w,(z, 7,,) dla pewnych
wartosci 7, € R*. Z lematu dostajemy

/dan
N x—z'
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gdzie o, = 0,(7,). Z ciagu miar probabilistycznych o,, wybieramy podciag oy,
stabo zbiezny do pewnej miary o. Z rozdziatu 5 wiemy, ze o jest rozwigzaniem
problemu momentow. Mamy

e}

_ / doy,(x) _ / do,(x) / doy,(x)
e r—z T—2z r—2z
—0o0 [—A,A] |z|>A
Dalej
do,, (x) 1 x
/ x—z A / ‘x— ‘danl(x)
z|> || >
1 x 1 || C(z)
Aiﬁﬁx—z/ oni(@) A( +|Imz\> A
Zatem
[ | ot
xr—z i—00 r—z
—A,A] [—A,4]
| [ dom)|  CG)
1—00 xr—z A
|z|>A
Teze otrzymujemy przez przejscie do granicy, gdy A — +oo. O]

Whniosek 7.3. W przypadku kota problem momentow jest niezdeterminowa-
ny, tzn. rozwigzanie nie jest jednoznaczne.

Twierdzenie 7.4. W przypadku punktu problem momentéw jest zdetermi-
nowany, tzn. rozwigzanie jest jednoznaczne.

Dowdd. Zatézmy, ze o1 1 09 sg rozwigzaniami problemu momentow. Liczby
wy(z) 1 wy(z) okreslone wzorami

[e.e] [e.e]

()= [P0 = [ 2D

Tr—z r— =z

naleza do K (z) dla kazdej liczby z ¢ R. Zatem w;(z) = wy(z). Teza twier-

dzenia wynika ze wzoru Stieltjesa na odwrécenie, ktéry dowodzimy poni-
z7ej. O
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Twierdzenie 7.5 (wzér Stieltjesa na odwrébcenie). Niech o bedzie miarg
probabilistyczng na prostej. Okreslamy transformate R(z) wzorem

o)

Wtedy
1 f , 1 1
iﬁg/hnmpmgﬁ:am¢g+5ﬂmp+§ﬁﬁgy

Dowdéd. Mamy

1 1 B 2ie
r—t—ic x—t+ic (v—1t)24e2

Zatem
171 R(t + ic) dt 1f<n S o(x)dt
— [ Im 1) dt = — ———do(x
s 7r (x —t)2+¢e2 ’
t1 t1 —oo
oo ta o] _
1 € 1 t— x|t=t
= [ [ o dtdote) = [ arct d
m / t/ (x —t)2 4 €2 o(@) x ) TR t=t, o(@)
—00 t1 —00
Obliczamy granice funkcji podcatkowe;j.
1 dlat; <z <ty
1 tg — X tl — X 1
— (arctg — arctg ) —— 45 dlaz =1, ¥ =1,
™ € € e—0t
0 dlax<t1,x>t2.

Wzoér Stieltjesa otrzymujemy przez przejécie w calce do granicy, gdy
e— 0. O
Uwaga 7.6.

Wzér Stieltjesa jest spetniony dla miar znakowanych o wahaniu ograni-
czonym, jak réwniez dla miar zespolonych o wahaniu ograniczonym.
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Definicja 7.7. Miare o bedgcg rozwigzaniem problemu momentow bedziemy
nazywaé N-ekstremalng w punkcie z ¢ R, jesli liczba w = [ do(x)/(x — 2)
R

nalezy do zbioru 0K (z), tzn. zachodzi

s Imw
2 _
3 lopa(e) + a2 = T

Twierdzenie 7.8 (M. Riesz). Jesli wielomiany tworzg gestq podprzestrzen w
przestrzeni L*(R, o), to miara o jest N-ekstremalna w kazdym punkcie z ¢ R.
Jesli miara o jest N-ekstremalna w pewnym punkcie z ¢ R, to wielomiany
lezqg gesto w L*(R, o).

Dowdd. Zat6ézmy, ze wielomiany leza gesto w L*(R, o). Zatem uktad {p,}°°,
tworzy baze ortonormalng. 7 rownosci Parsevala zastosowanej do funkcji

(r — 2)7! (por. Uwaga otrzymujemy

do(r) Imw

|z — 22 Imz’

lepn )+ an(2) =

Zatem o jest N-ekstremalna dla kazdej liczby z ¢ R.
Zatozmy, ze o jest N-ekstremalna w punkcie zg, Im 2y # 0. Zatem

>~ fwpa(z0) + a0 = T /

i—0 Im 20
gdzie w = w(z) = [(xr — 20) 'do(z). Ta réwnos$é oznacza, ze funkcja
(x — 20)~! moze by¢ aproksymowana wielomianami wzgledem normy prze-

strzeni L*(R, o). Zastosowanie sprzezenia zespolonego implikuje, ze réwniez
funkcja (x—%) ! moze by¢ aproksymowana wielomianami. Kazdy wielomian
mozna zapisa¢ w postaci A + (z — zp)p(z). Wtedy z nieréwnosci

o0

/

—0o0

2

! A do(z)

- —p(x)

(x —20)2 x— 2z
< ! /
h (Im 20)2_

-2

L~ A — (x — z)p(x)| do(z)

T — 2o

wynika, ze funkcja (z — 29)~* moze by¢ aproksymowana wielomianami, jak
réwniez funkcja (r — Zy)~2. Dalej, przez indukcje, dowodzimy, ze funkcje
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(x —29)" " i (x — Zp) "™ mozna aproksymowaé wielomianami dla kazdej liczby
naturalnej n.
Zat6zmy niewprost, ze dla pewnej funkcji g(z) € L*(R, o) zachodzi

o0

/ g(x)x"do(z) =0, n > 0.
Zatem
7 ) [ st
—————d = [ —————d =0 > 0.
[o (I _ Zo)n-l-l U(x) s (Q? —To)n+1 O'(.Z') ) n
Rozwazmy funkcje
[ 9
= [ —=d :
©(z) s o(x)

Funkcja ¢(z) jest holomorficzna dla Im z # 0, zatem rozwija sie w zbiez-
ny szereg Taylora w otoczeniu kazdego punktu. Obliczymy wspotezynniki
Taylora funkcji ¢(z) w punktach zy i zZg. Mamy

™ (z) = nl / 7@ ;Q(:O))nﬂda(ac)zo,
M(z%) = n i gz o(x) =
o™ () !_Zo o o) =0,

Zatem ¢(z) = 0 dla z ¢ R. Z Twierdzenia Stieltjesa o odwrdceniu zastoso-
wanego do miary zespolonej g(x)do(x) otrzymujemy g(z) = 0 prawie wsze-
dzie. O

Definicja 7.9. Rozwigzane o problemu momentow bedziemy nazywaé N -
ekstremalnym, jesli spetniony jest jeden z warunkow

(a) o jest jedynym rozwigzaniem problemu momentéw, tzn. problem mo-
mentow jest zdeterminowany.

(b) o nie jest jedynym rozwigzaniem problemu momentéw, ale liczba w =
[(x—2)"Ydo(x) nalezy do OK . (z) dla pewnej (kazdej) wartosci z ¢ R.

Uwaga 7.10.
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Miare o bedziemy nazywali zdeterminowana, jesli problem momentow
zwigzany z momentami miary o jest zdeterminowany. Podobnie miare o be-
dziemy nazywali miarg N-ekstremalna, jesli o jest N-ekstremalnym rozwia-
zaniem problemu momentow zwigzanego z momentami miary o.

Poprzednie rozwazania mozemy teraz podsumowaé nastepujaco.

Twierdzenie 7.11. Niech o bedzie rozwigzaniem problemu momentow. Wie-
lomiany tworzq gestq podprzestrzen w L?(R, o) wtedy i tylko wtedy, gdy o
jest N-ekstremalna. Z kolei miara o jest N-ekstremalna, jesli funkcje x —
(x —4)~! mozna aproksymowacé wielomianami w przestrzeni L*(R, o).

Whniosek 7.12. Jesli o jest zdeterminowna, to wielomiany lezg gesto w

L*(R,0).

Lemat 7.13. Dla z € C zachodzi wzér

in 1= (o = (o) = (S o) )

pEPr_1

gdzie P, _1 oznacza przestrzen wielomianow stopnia mniejszego niz m, oraz
2
117 =)

Dowdd. Dla p € P,,_; rozwazamy wielomian P(x) = 1—(z—2)p(x). Wtedy
P(z) =1 oraz deg P < n. Wielomian P(z) mozemy zapisa¢ w postaci

= éami(ﬂ?)

Podstawiamy z = z i otrzymujemy

n 2 n n n
1= pi(2)| <Dl Yo = 1PI* D pi(2)]?
3 1=0 1=0 1=0
Stad
n —1
PP > (z |pi<z>|2) -
=0
Niech

_ (zig \pi(z)|2>_l gpz(z)pz(a:)
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Wtedy P(z) =1, deg P = n. Zatem P(z) mozna zapisa¢ w postaci
P(z) =1—(z — 2)p(z), gdzie p € P,,_;.
-1

Ponadto || P|? = (X7, [pi(2)]?)

Whniosek 7.14. Zachodzi wzor

w1~ (o=l = (3 |pn<z>rz)_1 .

pe

Twierdzenie 7.15 (M. Riesz). Miara o jest zdeterminowana wtedy i tylko
wtedy, gdy miara (1 + x*)do(z) jest N-ekstremalna.

Dowdd. Zauwazamy, ze

. s 2 — - 2
=@ ipta)dete) = [ |2 = pla)] A+ a?)doa).
Na podstawie Wniosku mamy
00 -1 0 2
(Smr) =int [ [ -pe] a ety

Lewa strona réwnosci zeruje si¢ wtedy i tylko wtedy, gdy o jest zdetermino-
wana. Z kolei z drugiej czesci Twierdzenia [7.11] prawa strona zeruje sie tylko
wtedy, gdy (1 + 2?)do(x) jest N-ekstremalna. O

8 Rozwigzania N-ekstremalne

Rozwazamy niezdeterminowany problem momentéw Hamburgera. Z Lematu
i ze wzoru ([6.25) wiemy, ze dla ustalonej liczby ¢ € R* istnieje miara oy, 4,

bedaca zredukowanym rozwigzaniem problemu momentéw taka, ze

o

An(2)t — Cu(2) _ / doy, ()
B.(2)t — D,(2)

, Im 2z # 0.

r —z
—00
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Niech miara o; bedzie punktem skupienia miar o, ;. Wtedy o jest rozwigza-
niem problemu momentéw oraz

o0

ARt - C(2) _ doy(x) .
Bl =D / . Imz#£0. (8.1)

r—Zz

—00

Miara o; jest N-ekstremalna, poniewaz liczby w = [(z — z)doy(x) leza na
okregu 0K (z) (por. (6.26])). Okazuje sie, ze nie ma juz innych rozwiazan
N-ekstremalnych.

Twierdzenie 8.1. Kazde N-ekstremalne rozwigzanie niezdeterminowanego
problemu momentow ma postac o, dla pewnej liczby t € R*.

Dowod. Zatézmy, ze o jest rozwiazaniem N-ekstremalnym. Wtedy

w(z) = / @) ¢ ok (2)

r—z

—00

Stad na podstawie (6.26) dla kazdej liczby z ¢ R istnieje liczba p(z) € R*
taka, ze

Obliczamy ¢(z) i otrzymujemy

B D(z)w(z) + C(z)
#l2) = B(z)w(z) + Az)

Utamek ma dobrze okreslona warto$¢ w R*, bo licznik i mianownik nie moga
sie zerowa¢ jednoczesnie. Niech Z oznacza zbiér zer mianownika lezacych w
gbérnej polplaszezyznie. Punkty zbioru Z sa biegunami funkcji ¢(z). Zatézmy
najpierw, ze zbiér Z nie ma punktéw skupienia w potptaszczyznie Im z > 0.
Wtedy funkcja ¢(z) jest analityczna i rzeczywista w C, \ Z. Zatem ¢(z) jest
funkcja stata na tym zbiorze. To oznacza, ze ¢(z) nie ma biegunéw w gornej
poélplaszezyznie, czyli Z = (). Funkcja ¢(z) jest wiec funkcja stata w gorne;
péiptaszezyznie. Przyjmijmy, ze ¢(z) =t dla Im z > 0 i pewnej stalej liczby
rzeczywistej t. To oznacza, ze
A(2)t — C(z)

w(z):—m, Imz > 0.
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Stosujac sprzezenie zespolone do obu stron otrzymamy

ARt —-C(2)
w(z)f—m, Imz < 0.

Ostatecznie mamy

7da(x) _ 7dat(x)’ Im = % 0.

r—z r—z
—00 —0o0

Z Twierdzenia Stieltjesa o odwré6ceniu wnioskujemy, ze o = oy.

Pozostaje zbadaé¢ przypadek, gdy zbiér Z ma punkty skupienia w gor-
nej polptaszezyznie. Wtedy B(z)w(z) + A(z) = 0 dla z z gbrnej poiplasz-
czyzny. W konsekwencji w(z) = —A(z)/B(z) dla Imz > 0, co pociaga
w(z) = —A(2)/B(z) dla Im z # 0. Otrzymujemy

/°° do(x) _ Alz) _ 7’ dow(@) 12

Jor—z B(z) T —z

Zatem 0 = 0. O

Definicja 8.2. Dla miary o na prostej rzeczywistej, funkcje

F(z) = / Z“_("’“”Z), Imz#0 (8.2)

nazywamy transformatqg Cauchy’ego miary o.

Z postaci funkeji F(z) wynika, ze jest ona analityczna dla Imz # 0.
Z poprzedniego twierdzenia wynika, miedzy innymi, ze transformata Cau-
chy’ego rozwigzania N-ekstremalnego jest ilorazem dwu funkcji catkowitych
(tzn. analitycznych w calej ptaszczyznie zespolonej). Ponadto, jesli

At —C(z) T doy(x)
w(z,t)z—m: / 2

—00

to
Imw(z,t) dat

I 0.

Imz |a7 - Z|2 0, mz 7

Zatem ani licznik A(z)t — C’(z) ani mianownik B(z)t — D(z) nie zerujg sig

dla Im z # 0. Dodatkowo wszystkie cztery funkcje A(z), B(z) C(x) i D(x)
przyjmuja wartosci rzeczywiste dla x € R.
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Uwaga 8.3. Wielomiany p,(z) i ¢, () mozemy zastapi¢ wielomianami p,, (z+
u) i gn(x + u) dla ustalonego parametru rzeczywistego u. Nowe wielomiany
odpowiadaja momentom

my(u) = i(—mk@ WM.

Zatem wtasnosci funkcji A(z), B(z), C(z) oraz B(z) przenosza si¢ na wla-
snosci funkeji A(z,u), B(z,u), C(z,u) 1 B(z,u).

Lemat 8.4. Zalozmy, ze transformata Cauchy’ego miary o jest ilorazem
dwu funkcji catkowitych G(2)/H(z), przy czym G(x) oraz H(x) przyjmujg
wartosci rzeczywiste dla x € R. Wtedy miara o jest skupiona na zbiorze
Z ={x € R: H(x) = 0}. W szczegolnosci o jest miarg dyskretng. Jesli
G(z) nie zeruje sie w punktach zbioru Z, to suppo = Z.

Dowdd. Z jest co najwyzej przeliczalnym podzbiorem w R bez punktow
skupienia. Zatem Z jest zbiorem dyskretnym. Wtedy funkcja F'(z) przedtuza
sie wzorem F'(z) = G(z)/H(z) do funkcji analitycznej w C\ Z. Funkcja F(z)
przyjmuje wartosci rzeczywiste dla z € R\ Z. Zatem dlaz € R\ Zie >0
mamy

Im F(z + ie) = Im F(x + ic) ——m F(z)=0.

Rozwazmy przedzial [a, b] roztaczny z Z. Wtedy

b
lim [ Im F(z + i) dx = 0.

e—0t
a

Ze wzoru Stieltjesa na odwrdcenie wnioskujemy, ze o([a,b]) = 0. Stad
suppo C Z.

Niech x € Z. Zalézmy, niewprost, ze o({z}) = 0. Wtedy funkcja F(z)
przedtuza si¢ do funkcji analitycznej w otoczeniu punktu z wzorem (8.2)).
Zatem granica

. G(x+ie)

lim ———=

e—0+ H(z + i)
istnieje 1 jest skoniczona. Poniewaz H(z) = 0, to G(z) = 0, co przeczy zalto-
zeniom. W zwiazku z tym otrzymujemy o({z}) > 0. O

Z Lematu [8.4 wynika, ze miara o, jest skoncentrowana na zbiorze Z; =
{r e R: B(z)t—D(x) =0} dlat € Rinazbiorze Z,, = {zr € R: B(z) =0}
dla ¢ = oo.
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Twierdzenie 8.5. Jesli o jest rozwigzaniem problemu momentéow, to dla
a € R zachodzi nieréwnosc

1
an

Jesli o jest N-ekstremalnym rozwigzaniem i o({a}) > 0, to

o({a}) = =
Z py(a

o({a}) <

Jesli szereg Z pi(a) jest zbiezny, to istnieje rozwigzanie N -ekstremalne o
n=0
problemu momentow spetniajgce

o({a}) = o

an

Dowdd. Zatézmy, ze o jest rozwigzaniem problemu momentéw. Dla e > 0
niech f. bedzie funkcja ciagla taka, ze 0 < f.(z) < 1 oraz f.(z) = 1 dla
|z —a| <ei f.(x) =0dla |z — a|] > 2e. Z nier6wnosci Bessela otrzymujemy

/ /@) do(a
Przechodzac do granicy przy € — 0% otrzymujemy
Z pa(a)a*({a}) < o({a}).

Jesli miara o jest N-ekstremalna, to z réwnosci Parsevala dostajemy

/|f€ )Pdo(a

Obliczamy granice obu stron, gdy e dazy do zera. Jesli mozna wej$¢ z granica
pod znak sumy nieskonczonej, to

an o*({a}) =o({a}).

L fs pn dO'

L f e pn dO’
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Prawidtowos¢ takiego postepowania wynika z lematu, ktorego nietrudny do-
wod pozostawiamy czytelnikowi.

Lemat 8.6. Rozwazmy baze ortonormalng {e;}°, w przestrzeni Hilberta H
oraz cigg Cauchy’ego {x,}5°, w H. Wtedy

o o0
Jim 3 e = 3 Jim (o).
1=

=0

Zalozmy, ze szereg S p?(a) jest zbiezny. Wielomiany p,_; i p, nie maja
wspélnych zer, zatem p,_1(a) # 0 dla nieskonczenie wielu n. Jesli p,_;(a) #
0, to wybieramy 7,, € R tak, aby p,(a) — 7,p,—1(a) = 0. Wtedy miara o, (7,)
(por. Uwaga okreslona przy pomocy kwadratury Gaussa spetnia

ou({a}) = ——.

2 pi(a)

Niech o bedzie punktem skupienia miar o,. Zatem o jest rozwigzaniem pro-

blemu momentéw oraz .

o({a}) = =—.
E_:Opi(a)

Z konstrukeji liczby w,(2) = [(z — 2) " do,(z) leza na okregu 0K, (z). Stad
w(z) = [(x — 2z) 'do(z) lezy na okregu 0K, (z). Zatem miara o jest N-
ekstremalna. O

Uwaga 8.7.

Jesli problem momentéw jest niezdeterminowany, to dla kazdej liczby rze-
czywistej x istnieje rozwiazanie o problemu momentéw spelniajace o({z}) >
0. Co wiecej mozna zazadac¢, aby miara o bylta N-ekstremalna.

Whiosek 8.8. Niech o bedzie N -ekstremalnym rozwigzaniem niezdetermino-
wanego problemu momentéw oraz a € supp o. Wtedy miara 6 = o —o({a})d,
jest zdeterminowana.

Dowdd. Zalézmy, ze miara & jest niezdeterminowana. Z Uwagi [8.7] istnieje
miara i o tych samych momentach co miara & taka, ze fi({a}) > 0. Wtedy
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miary ¢ = ¢ + o({a})d, oraz pu = i + o({a})d, maja te same momenty.
Ponadto

p({a}) = o({a}) + il{a}) = = +il{a}),
> pi(a)
n=0
gdzie {p,}52, oznacza uklad wielomianéw ortogonalnych wzgledem momen-
tow miary o. Otrzymujemy sprzecznosé¢ z Twierdzeniem [8.5] O]

Twierdzenie 8.9. Zaléimy, ze

o({a}) = =,

Zopi(a)

dla pewnej liczby a € R. Wtedy miara o jest N -ekstremalna.

Dowad. Jesli o jest zdeterminowana, to o jest N-ekstremalna. Zatézmy,
ze o nie jest zdeterminowana. Zatem istnieje rozwigzanie N-ekstremalne p
takie, ze u({a}) > 0. Z Twierdzenia mamy o({a}) = p({a}). Miary
o — o({a})d, oraz u — o({a})d, maja te same momenty. Z poprzedniego
wniosku te miary sa rowne. Zatem o = u, czyli o jest N-ekstremalna O]

Whniosek 8.10. Jesli miara o jest rozwigzaniem problemu momentéw i o
nie jest N-ekstremalna, to

o({a}) < =,

> pi(a)
n=0
dla a € R.

Zajmiemy sie obecnie zbadaniem N-ekstremalnych rozwigzan niezdeter-
minwanego problemu momentéw. Rozwigzania te maja posta¢ o;, gdzie t €

R* oraz
[o@)

Wiz t) = / doy(z)  A(z)t —C(2)

r—z  B()t—D(2)

Z Lematu[8.4/miara o jest skupiona na zbiorze Z; = {x € R: B(z)t—D(z) =
0}, jesli t € R lub na zbiorze Z,, = {x € R: B(x) = 0}, jesli t = oo. Stad
zbiér Z; jest przeliczalny i nie posiada punktéw skupienia, jako zbior zer
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funkcji catkowitej. Na podstawie wzoru funkcje B(z) i D(z) nie maja
wspolnych zer. Zatem dla s # t zbiory Z, i Z, sa roztaczne. Poniewaz problem
momentow jest niezdeterminowany, to zbiér Z; nie moze by¢ ograniczony
(por. Zadanie 2). Jednakze moze sie zdarzyé, ze Z; jest ograniczony z dotu
lub ograniczony z géry. Niech Z; = {xy(t) }rer, przy czym zg(t) < xp41(t). W
zaleznosci, czy zbiér Z, jest ograniczony z dotu, z gory lub jest nieograniczony
z obu stron, zbior indeksow [ jest réwny Z. , Z_ lub Z. Miara o, posiada atom
w kazdym z punktow xy(t) oraz masa py(t) miary o, w tym punkcie wynosi

1

fgﬂm@f

pe(t)

Zatem

o0

Mt =Clo) _ Fdots) _ 5~ _inl)

~ B(x)t — D(x) Joy—a g a(t) — @

Twierdzenie 8.11. Niech 0o = {x1(00) brer. W przedziale (xy(00), xg11(00))
znajduge sie doktadnie jeden punkt xy(t) ze zbioru Z;, dla kazdej liczby t € R.
Ponadto odwzorowanie t — xx(t) jest funkcjq ciggla © malejgcg na prostej,
przyjmujacqg wszystkie wartosci z przedziatu (xy(00), Tp41(00)). Jesl I =
Zi (I = Z_), to istnieje liczba ty € RU {+o0}, (o € RU {—o0}) ta-
ka, ze w przedziale (—oo,x1(00)) ((z_1(00),4+00)) znajduje si¢ doktadnie je-
den punkt zo(t) ze zbioru Z; dlat < ty (t > to). Ponadto odwzorowanie
t— xo(t) (t— x_1(t)) jest funkcjq ciggla i malejgcg na przedziale (—oo, ty)
((to, +00)) przyjmujace wszystkie wartosci z przedzialu (—oo, x1(00)) ((z_1(00), +00)).

Dowdéd. Na podstawie (6.12)), (6.14) oraz (3.12) otrzymujemy
Wzér (8.3).
n—1
B, (x)Dy(x) = Bu(x) Dy (x) = Y pj(2). (8.3)
i=0

Ze wzoru (8.3) dla z ¢ Z,, otrzymujemy

ddx (ggi;) = _B_2(I)[B/(ZE)D($) — B(I)D/(I)] = —B_2(x)n§;0pi(x) < 0.




Parametryzacja Nevanlinny rozwiazan problemu momentow 44

Funkcja D(x)/B(z) jest zatem malejaca w kazdym z przedzialow (xy(00), x41(00)).
Poniewaz punkty x(co) sa jej biegunami, to funkcja D(x)/B(x) odwzoro-
wuje kazdy z przedzialtéw (zy(00), 2x41(00)) na prosta R. Zauwazmy, ze xy(t)
jest funkcja odwrotng do D(z)/B(x).

W przypadku, gdy I = Z, (I = Z_) funkcja D(x)/B(x) jest malejaca w
przedziale (—oo, x1(00)) ((z-1(00), +00)), zatem ma granice ty w —oo (+00).
Wtedy funkcja odwrotna zo(t) (x_1(t)) spelnia teze twierdzenia. O

Uwaga 8.12.
Przechodzac do granicy we wzorze (8.3)) dostajemy

B'(x)D(x) — B(x)D(x) = i P2 (2).

Zatem jesli B(z) = 0, to B'(z) # 0. To oznacza, ze wszystkie zera funkcji
B(z) maja krotnos$¢ 1. To samo dotyczy D(z) oraz pozostatych dwu funkcji

A(2) 1 C(2).

9 Parametryzacja Nevanlinny rozwigzan
niezdeterminowanego problemu momentéw

W poprzednim rozdziale otrzymalismy opis wszystkich rozwigzan N-ekstre-
malnych niezdeterminowanego problemu momentow. Wiemy, ze rozwiaza-
nia N-ekstremalne sg miarami dyskretnymi, ze dwa rozne rozwigzania N-
ekstremalne maja roztaczne nosniki, i ze suma nosnikow wszystkich rozwia-
zan N-ekstremalnych jest rowna R. Kazda nietrywialna kombinacja liniowa
rozwigzan N-ekstremalnych jest nowym rozwigzaniem problemu momentow,
juz nie N-ekstremalnym. Jednakze wszystkich rozwiazan problemu momen-
tow jest znacznie wiecej.

Lemat 9.1. Niech M oznacza zbior wszystkich rozwigzan niezdetermino-
wanego problemu momentéw Hamburgera {m,}>> . Dla ¢ € M oznaczmy

rd
F(z) = / cr(x). Dla liczby naturalnej N niech
T —z

—0o0

RN (y) =y [F(iy) + Y (iy) " m,,| .
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Wtedy
lim Ry(y) =0 (9.1)

y—+o0
i zbieznosé jest jednostajna wzgledem o € M.

Jesli F(z) jest funkcjg holomorficzng w C, spelniajgcg Im F(z) > 0 i
warunek dla kazdej warto$ci N, to istnieje rozwigzanie o € M takie,

Ze F(z) = 7 ia_(:v;

Dowaéd. Mamy

N+1
: o P
(i) g = [ (i) et do(e) = [ A do(a).
n=0 o n=0 o r—1y

Zatem

0 AAN+1,.N+1
Rity) = | T ).
=

Otrzymujemy wtedy
F L7 N+1

BRI < [ 1" doe)

oo 1/2
< ; { / L2N+2 da(x)} = ;méﬁw p— 0.
Dla dowodu drugiej czesci lematu wykorzystamy Twierdzenie Herglotze[]
ktore stanowi, ze jesli F'(z) jest funkcja holomorficzna odwzorowujaca gérna
polptaszezyzne w siebie, to istnieja state ¢ > 0, d € R oraz miara o takie, ze
T do(z)
1+ a2

— 00

< 400 oraz

1 T
r—z 1422

F(z)=cz+d +_7O ( ) do(z). (9.2)

*Patrz zadania
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Z (9.1) dla N = 0 otrzymujemy

yF(iy) P imy. (9.3)

Z kolei wzor (9.2) daje
y L F (iy) — ic.
Y—T00

Zatem c = 0. Przechodzac do granicy przy y — 400 w rownosci

o0 2

yIm F(iy) = / x;j_ /2 do(z)

i korzystajac z (9.3]) dostajemy
my = /da(a:). (9.4)

W szczegblnosei o ma skonczona catkowita mase. Obliczamy

X ¥ xr x a xr
ReF(zy):d—i—_/ <x2+y2 - 1+x2> do() ——d~ [ s do(e).

W zwiazku z (9.3) mamy Re F'(iy) — 0, gdy y — +o00. Zatem d = / & do(x),
T

co pociaga

o= ] 212

Pozostaje pokazac, ze 0 € M. Udowodnimy indukcyjnie, ze

oo

My, = /x”da(:r). (9.5)

—0o0

Dla n = 0 r6wnosé¢ jest spelniona na podstawie (9.4). Zatézmy, ze (9.5)
zachodzi dla n = 0,1,2,...,2M — 2. Zastosujemy (9.1) dla N = 2M po
pomnozeniu przez i2*!. Otrzymamy wtedy

)2$2M71

1 .
/ (yi do(x) + 1y maop—1 + mapyy — 0.
s Tr — 1y y——+00
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Obliczamy czesci rzeczywistg i urojong, aby dostaé

: +ooy2$2M_1 o 2M—1
Moy -1 = yl—1>I—il:loo mda(@: /95 do(z),
oo 3 o teo
Moy = ygrpoo Y do(z) = /$2Mda($).

Lemat 9.2. Dila Im 2z > 0 funkcja G, okreslona wzorem

odwzorowuje Cy w int Koo (2).

Dowéd. Wiemy, ze dla z ¢ R funkcja G, odwzorowuje R* na 0K (z).
Aby zakonczy¢ dowdd pokazemy, ze G.(C_) C CU oo \ Kx(z). W tym
celu wystarczy sprawdzié¢, ze liczba G;'(00) = D(z)/B(z) lezy w dolnej
potptaszezyznie dla Im z > 0.

Ze wzordéw i (6.10) wynika, ze przy |z| — 0
B(z) = =1+ O(|2)),

D(2) = az + O(|2?), a= iopi(()).

Zatem
1 D(ix)
——— = —ia.
e—0 x B(ix)
W szczegdlnosci Im% < 0 dla matych dodatnich wartosci x. Z cigglo-

sci funkeji D(z)/B(z) wynika, ze Im D(z)/B(z) < 0 dla Imz > 0 albo
D(z)/B(z) jest liczba rzeczywista dla pewnej wartosci z, Imz > 0. Ostat-
nia ewentualno$¢ nie jest mozliwa, bo z rozwazan po Definicji [8.2] wynika,
ze funkcja D(z)t — B(z) nie zeruje sie w gornej polplaszezyznie dla zadnej
wartodci rzeczywistej t. 0
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Twierdzenie 9.3. Niech {m,};2, bedzie niezdeterminowanym ciggiem mo-
mentow Hamburgera. Istnieje wzajemnie jednoznaczne odwzorowanie zbioru
rozwigzan M problemu momentéow na zbior @ wszystkich funkcji holomor-
ficznych ¢ takich, ze ¢ : C, — Cy lub ¢(z) =t € R*. Odwzorowanie to jest
wyznaczone przez

_ [ do(@) _ AR)e(z) - C(2)
Folz) = / r—z  B(2)p(z)—D(2)

Dowdd. Pokazemy, ze jesli ¢ € &, to dla funkcji
A -C
pa) = _AGP) = O
B(2)p(z) — D(2)
istnieje miara o € M taka, ze F(z) = F,(2). Jesli ¢p(z) = t, to 0 = oy.
Zatozmy zatem, ze ¢ : C, — C,. Wtedy
F(z) = G.(¢(2)). (9.6)
Zatem F(z) € int K (z) dla Imz > 0. Twierdzimy, ze F(z) spekia (9.1)).
Rzeczywiscie, mozemy zapisacé
F(iy) = aFy, (iy) + (1 — @) F,, (iy),

gdzie t;,to € R* oraz a € (0,1) zaleza od y. Na podstawie Lematu
otrzymujemy

Fy
|RN(y)| < sup |Ry" (y)| —— 0.

Zatem istnieje miara o € M taka, ze F'(z2) = F,(2).

Odwrotnie, zatézmy, ze 0 € M. Jedli o jest N-ekstremalna, to o = o,
dla pewnego t € R*, w zwiazku z czym mozemy przyjaé ¢(z) = t. Jedli o
nie jest N-ekstremalna, to F, odwzorowuje C, w int K (z). Wtedy funkcja
©0(2) = G;Y(F,(z)) odwzorowuje C, w C,. Ponadto G.(¢(2)) = F,(z). O

z

10 Rozszerzenia samosprzezone operatorow
symetrycznych

Niech H bedzie przestrzenia Hilberta z iloczynem skalarnym (-, -). Bedziemy
rozwazaé operatory liniowe A odwzorowujace podprzestrzen D(A) C H, na-
zywana dziedzinag operatora A, w przestrzen H. Wykresem "4 operatora A
nazywamy zbior

Iy ={(v,Av) : ve D(A)}.
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Definicja 10.1. Operator liniowy A : D(A) — H, gdzie dziedzina D(A)
jest liniowq podprzestrzeniq w H, nazywamy symetrycznym, jesli (Az,y) =
(x, Ay) dla dowolnych wektorow x,y € D(A).

Korzystajac z tozsamodci polaryzacyjnej mozna udowodnié, ze operator
liniowy A jest symetryczny wtedy i tylko wtedy, gdy dla kazdego wektora
x € D(A) liczba (Ax, x) jest rzeczywista.

Okazuje sie, ze operator symetryczny o petnej dziedzinie jest ograniczony.

Twierdzenie 10.2 (Hellinger, Toeplitz). Jesli operator liniowy A : H — H
jest symetryczny, to A jest ograniczony.

Dowadd. Pokazemy, ze wykres operatora A jest domkniety. Niech z,, — x
oraz Ax, — y, gdy n — oo. Dla dowolnego wektora z € H mamy

(y,2) = lim (Azy, 2) = lim (2, Az) = (2, Az) = (Az, 2).

Zatem y = Ax. m

Dla dwu operatoréow liniowych A i B zawieranie A C B oznacza, ze
D(A) C D(B) oraz Ax = Bz dla wszystkich wektoréw x € D(A). Operator A
jest zawarty w B wtedy i tylko wtedy, gdy wykres I' 4 operatora A jest zawarty
w wykresie I'g operatora B. Bedziemy zajmowac si¢ wylacznie operatorami
liniowymi A o gestej dziedzinie D(A).

Definicja 10.3. Dla operatora liniowego A : H — H o gestej dziedzinie
D(A) operator sprzezony A* jest okreSlony na dziedzinie

D(A*) ={z € H : istnieje z € H taki, ze (Ay,x) = (y,2) dlay € D(A)}.
Dla x € D(A*) okreslamy A*x = z.

Uwaga 10.4.

Z Twierdzenia Riesza wektor z nalezy do D(A*) wtedy i tylko wtedy,
gdy funkcjonal D(A) > y — (Ay,x) jest ograniczony. Z gestosci dziedziny
D(A) wynika, ze operator A* jest dobrze okreslony, bo dla x € ‘H co najwyzej
jeden element z € H moze spetnia¢ (Ay, z) = (y, z) dla wszystkich wektorow
y € D(A).

Jesli A jest operatorem symetrycznym, to D(A) C D(A*) oraz A*x = Ax
dla z € D(A). Zatem A C A*. Ponadto
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Definicja 10.5. Operator symetryczny A : 'H — H nazywamy samosprze-
Zonym, jesli A = A*, tzn. D(A*) = D(A).

Naszym glownym zadaniem jest znalezienie samosprzezonych rozszerzen
operatora symetrycznego. Jesli operatory symetryczne speliaja A C B, to

ACBCB*CA”.

Zatem jesli A jest operatorem samosprzezonym, to A = B, czyli A jest
maksymalnym symetrycznym operatorem.

Dla operatora symetrycznego A o gestej dziedzinie i dla liczby zespolonej
z ¢ R symbolami R, i Rz bedziemy oznaczaé obrazy operatoréw A — zI oraz
A—7%I, odpowiednio. Dopelnienia ortogonalne tych przestrzeni, tzn. N, = R}
oraz Ny = RZ, nazywamy podprzestrzeniami defektu.

Twierdzenie 10.6. Przestrzenie N, © Nz sq podprzestrzeniami wtasnymi
operatora A* odpowiadajgcymi wartosSciom wiasnym Z i z, odpowiednio.

Dowdd. Dla ustalonego wektora v € N, i dowolnego wektora w € D(A)
mamy ((A—zl)w,v) = 0. Zatem (Aw,v) = (w,Zv). To oznacza, ze v € D(A*)
oraz A*v = Zv. Odwrotnie, jesli A*v = Zv, to powyzsze obliczenia implikujg
v EN,. ]

Dla operatoréw A i B dziedzing operatora A + B jest czes¢ wspoélna
dziedzin, czyli D(A + B) = D(A) N D(B). Z kolei dziedzina operatora AB
jest przestrzen tych wektoréw x € D(B), dla ktérych Bz € D(A). Wtedy
(AB)x = A(Bzx). Jedli operator A jest r6znowartosciowy na swojej dziedzinie
D(A), to dziedzing operatora A~! jest obraz operatora A oraz A~'(Ax) = x.

Definicja 10.7. Dia z ¢ R operator

U,=(A—-zD)(A—-z)"
nazywamy transformatq Cayley operatora symetrycznego A.
Uwaga 10.8.

Definicja operatora U, jest poprawna, bo operator A — ZI jest réznowar-
tosciowy na D(A). Istotnie dla x € D(A) oraz x # 0 mamy

Im ((A—zl)x,z) =Imz(z,z) # 0. (10.1)

Nietrudno sprawdzié, ze dziedzing operatora U, jest D(U,) = Im (A — ZI).
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Twierdzenie 10.9.
(i) Transformata Cayley jest izometrig z przestrzeni Rz na przestrzen R,.

(i1) Zbior wektorow U,v — v, gdzie v € D(U,), jest gestq podprzestrzenig w
H.

(111) Kazda izometria U spelniajgca warunek (ii) jest transformatq Cayley
pewnego symetrycznego operatora.

Dowdd. (i) Niech z € D(A). Wtedy z réwnosci
I(A = 2D)z||* = [ Az|® + |2P*|z]|* — 2(Re 2)(Az, z)

wynika, ze

(A = zD)x|| = [[(A = Z1)x]]. (10.2)
To konczy dowdd czesci (i), poniewaz
U,: (A—zl)x — (A—zl)z.
Czesé (ii) wynika natychmiast ze wzoru
(A—zl)z — (A—zl)x = 2i(Im 2)z,

jesli przyjmiemy v = (A —zI)x dla x € D(A).
(iii) Najpierw sprawdzimy, ze operator U — I jest r6znowartosciowy. Niech
Uw =w, dlaw € D(U). Wtedy

(Uv —v,w) = (Uv,w) — (v,w) = (Uv,Uw) — (v,w) =0,

dla dowolnego wektora v € D(U). Z zatozenia wynika, ze w = 0.
Okresdlmy
A= (2l -zU)I -U)" (10.3)

Wtedy dziedzina D(A) = Im (I —U) jest gesta podprzestrzenia w ‘H. Ponadto
Alw —Uw) = zw — zUw.
Dalej obliczamy

(A(w — Uw),w — Uw) = (2w — zUw,w — Uw)
= (2 +2)(w,w) — Z(Uw,w) — z(w, Uw) € R.
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Zatem A jest operatorem symetrycznym. Pokazemy, ze U = U,. Z réwnosci

A-ZI=GI-z0)I-U)"' -z -U)I-U)"t=(z-2) I -U)",
A—zl=(-z0)(I-U)"' =2 -U)I -U)" ' =(z—2)U(I -U)""!

wynika Im(A—zI)=Im(I —U) ' =D({U) oraz U(A—zI)=A—z2[. O
Nastepne twierdzenie jest natychmiastowa konsekwencja definicji trans-
formaty Cayley i wzoru (10.3]).

Twierdzenie 10.10. Niech Ay i Ay bedq operatorami symetrycznymai, kto-
rych transformaty Cayley sq¢ rowne U, i U,o. Zawieranie Ay C Ay jest
rownowazne zawieraniu transformat Cayley U, C U, 5.

Definicja 10.11. Operator A nazywamy domknietym, jesli wykres I 4 ope-
ratora A jest domknietym podzbiorem H x H.

Lemat 10.12. Kazdy operator symetryczny mozna rozszerzyé do domknie-
tego operatora symetrycznego.

Dowdéd. 7 definicji operatora sprzezonego (x,y) nalezy do I's+ wtedy i
tylko wtedy, gdy (Av,x) = (v,y) dla kazdego v € D(A). Stad wykres "4+
jest domkniety. Wtedy domkniecie V' wykresu I'y w H x H jest zawarte w
['y«. Zatem V jest wykresem operatora liniowego A. Symetria operatora A
wynika z tego, ze jesli z,, - x oraz Ax, - Az, to

(Az,z) = lim (Az,,z,) € R.

n—oo

O

Rozszerzenie skonstruowane w dowodzie lematu nazywamy domknie-
citem operatora A i oznaczamy symbolem A.

Lemat 10.13. Dla operatora symetrycznego A zachodzi réwnosé A* = A*.

Dowdd. Poniewaz A C A, to (A)* C A*. Niech (z,y) nalezy do I's-. To
oznacza, ze (z, Av) = (y,v) dla kazdego v € D(A). Dla w € D(A) istnieje
ciag v, € D(A) taki, ze v, — w oraz Av, — Aw. Zatem (z, Aw) = (y,w).

Stad = € D((A)*) oraz (A)*z =y, czyli (z,y) nalezy do I z).. O

Twierdzenie 10.14. Operator symetryczny A jest domkniety wtedy i tylko
wtedy, gdy przestrzen R, jest domknieta dla pewnej (kazdej) wartosci z ¢ R.
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Dowdd. Dla z = a + bi, gdzie b # 0, oraz v € D(A) mamy
I(A = zDol* = [I(A = al)ll* + [b*[lo]|* > [b]*||v]. (10.4)

Zalozmy, ze A jest operatorem domknietym. Niech (A — 2I)z, - y. Pod-
stawiajac v = z, — x,;, do wzoru wyciaggamy wniosek, ze ciag w,
spetnia warunek Cauchy’ego. Zatem x,, — x dla pewnego wektora x € H.
Otrzymujemy Az, — y + zz. Z domknietosci operatora A wnioskujemy, ze
Az = y + zx, czyli (A — zI)x = y. To oznacza, ze R, jest podprzestrzenia
domknieta.

Odwrotnie, zatézmy, ze podprzestrzen R, jest domknieta. Niech z,, — x
oraz Az, = y. Wtedy (A — zI)z,, - y — zx. Z domknietosci podprzestrzeni
R, wynika, ze dla pewnego wektora w € D(A) zachodzi

(A—zDw =y — zu. (10.5)

Zatem
(A—zI)(z, —w) —— 0.

n—oo

Podstawiamy v = x, — w do wzoru (10.4), aby otrzymaé z, - w. Stad
x = w. Teraz z (10.5)) dostajemy (A — zI)x =y — zx, czyli Az = y. ]

Twierdzenie 10.15. Dla domkniectego operatora symetrycznego A i dla z ¢
R przestrzenie D(A), Nz oraz N, sq liniowo niezalezne oraz

D(A") = D(A) + Nz + N..

Dowdd. Niech a +b+c=0dlaa € D(A),b € N:ic € N,. Wtedy z
Twierdzenia [10.6| otrzymujemy

0=(A"=zl)(a+b+c)=(A—zI)(a) + (z — 2)b.

Sktadniki po prawej stronie sa ortogonalne do siebie, bo (A—zI)(a) € Rz oraz
be Nz Zatem b =01 (A—2I)(a) = 0. Na podstawie ([10.1]) wnioskujemy, ze
a = 0. Wtedy ¢ = 0.

Z Twierdzenia mamy, ze D(A*) O D(A) + Nz + N,. Niech v €
D(A*). Twierdzenie implikuje domknieto$é podprzestrzeni Rz. Zatem
H = Rz + Nz. Wektor (A* — zI)v mozemy wiec roztozy¢ w postaci

(A* —zl)v=(A—ZI)a+ (2 — 2)b,
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gdzie a € D(A) oraz b € Nz. Otrzymujemy
(A" —zlv = (A" —z[)(a+ D),

czyli
(A" —=zI)(v—a—b) = 0.

To oznacza, ze v —a—b € N,. Stad v=a+ b+ ¢, gdzie c € N, n

Whniosek 10.16. Domkniety operator symetryczny jest samosprzezony wtedy
i tylko wtedy, gdy jego przestrzenie defektu sq zerowe.

Whiosek 10.17. Domkniety operator symetryczny jest samosprzezony wtedy
i tylko wtedy, gdy R, =H i Rz = H dla z ¢ R.

Definicja 10.18. Operator symetryczny nazywamy istotnie samosprze-
zonym, jesli jego domkniecie jest operatorem samosprzezonym.

Na podstawie Lematu [10.13|1 Wniosku [10.16| otrzymujemy

Whniosek 10.19. Operator symetryczny jest istotnie samosprzezony wtedy i
tylko wtedy, gdy jego przestrzenie defektu sq zerowe.

Z kolei z Lematu [10.13]i Wniosku dostajemy

Whniosek 10.20. Operator symetryczny jest istotnie samosprzezony wtedy 1
tylko wtedy, gdy przestrzenie R, oraz Rz sq geste w 'H.

Lemat 10.21. Niech A bedzie operatorem domknietym spelniajgcym
[Az|| > Az],  z € D(A).

Dla dowolnego operatora ograniczonego B spelniajgcego ||B|| < A/2 operator
A+ B jest domkniety oraz

dimker(A + B)* = dim ker A*.
Dowdd. 7 zalozenia mamy
A
1A+ Bzl > Slll, 2 € D(A).

Domknietosé operatora A4+ B wynika natychmiast z ograniczono$ci operatora
B. Ponadto, podobnie jak w dowodzie Twierdzenia [10.14) dowodzimy, ze
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przestrzenie Im A oraz Im (A + B) sa domkniete. Niech y € ker(A+ B)* oraz
llyl| = 1. Zalézmy, ze y jest ortogonalny do ker A*. To oznacza, ze y € Im A
(por. dow6d Twierdzenia[10.6)). Stad y = Az dla pewnego wektora z € D(A).
Z zalozenia otrzymujemy ||y|| > A||lz||. Ponadto

0=((A+B)y,z)=(y,Ar + Bz) = (y,9) + (y, Bx)

1
=yl = 1 Bllllllliyll > lyll* = SAllzlllyll > o,

co prowadzi do sprzecznosci. Zatem przestrzen ker(A + B)* nie posiada nie-
zerowego wektora ortogonalnego do ker A*. To oznacza, 7

dimker(A + B)* < dimker A™.

Podobnie pokazujemy nieréwnosé¢ w druga strone stosujac poprzednie rozu-
mowanie dla operatoréw A’ = A+ B oraz B' = —B. n

Whniosek 10.22. Dia operatora symetrycznego A i dowolnej liczby zespolonej
z, spetniajgcej Im z > 0 mamy

dim Nz = dim N_;, dim N, = dim N;,.

Dowdd. Mozemy zatozy¢, ze A jest domkniety. Niech Imzy = b # 0.

Wiemy, e (por. (10.4))
I(A= D)zl > pllal, =€ D(A).

Z Lematu [10.21] zastosowanego do A — zol oraz B = (zy — z)I wynika, ze
liczba dim N, jest stata dla |z — 29| < |b|/2. Zatem warto$¢ dim IV, jest stata
w kazdej z potptaszczyzn Imz > 0iImz < 0. O

Liczby dim N; oraz dim N_; nazywamy indeksami defektu operatora
symetrycznego A. Z Wniosku [10.16| domkniety operator symetryczny jest
samosprzezony wtedy i tylko wtedy, gdy jego indeksy defektu sg rowne zero.

Twierdzenie 10.23. Niech A bedzie domknietym operatorem symetrycznym
natomiast B ograniczonym operatorem samosprzezonym. Wtedy operatory A
1 A+ B majq te same indeksy defektu.

fpor. Zadanie
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Dowdd. Niech \ = 3||B||. Skorzystamy z nieréwnosci
|(A+ND)z|| > Nz, x € D(A).
Wtedy z Lematu zastosowanego do A £+ A\l otrzymujemy
dimker((A + B)* F Ail) = dimker(A F \iI).
Z Wniosku indeksy defektu operatoréw A i A+ B sg zatem réwne. [

Twierdzenie 10.24. Operator symetryczny posiada samosprzezone rozsze-
rzenie wtedy i tylko wtedy, gdy jego indeksy defektu sq rowne sobie. Kazde
samosprzezone rozszerzenie mozna utozsamic z izometrig z podprzestrzeni
N_; na podprzestrzen N;.

Dowdd. Na podstawie Lematu mozemy zatozy¢, ze operator A jest
domkniety, bo w razie konieczno$ci mozemy go zastapi¢ domknietym syme-
trycznym rozszerzeniem. Zatézmy, ze dim N; = dim N_;. Niech V; bedzie
dowolng izometrig z N_; na N;. Przez V5 oznaczymy transformate Cayley’a
operatora A odpowiadajaca liczbie i. Wiemy, ze V5 jest izometria odwzo-
rowujaca R_; na R;. Okreslmy operator U na przestrzeni H = N_; + R_;
przez

U’N,i = ‘/17 U‘R,Z' = ‘/2

Wtedy U jest operatorem unitarnym oraz Vo C U. Z Twierdzenia|10.9/odwzo-
rowanie U jest transformatg Cayley’a operatora symetrycznego A. Z Twier-
dzenia operator A jest rozszerzeniem operatora A. Poniewaz U jest
operatorem unitarnym, to Im (A — iI) = Im (A + iI) = H. Zatem indeksy
defektu operatora A sa réwne zero, czyli (A)* = A.

Odwrotnie, zalézmy, ze A C A oraz (/T)* — A. Wtedy transformata
Cayley U; operatora A jest operatorem unitarnym. 7Z Twierdzenia od-
wzorowanie U; jest rozszerzeniem transformaty Cayley V; operatora A. Zatem
Ui(R_;) = V;(R_;) = R;. Z unitarnosci operatora U; wynika, ze U(N_;) = N;.

Stad dim N_; = dim NV;. O
Definicja 10.25. Odwzorowanie C': H — H nazywamy sprzezeniem, jesli
C jest antyliniowe, C* = I, oraz C' zachowuje norme, tzn. ||Cz| = ||z|, dla
x € H.

Twierdzenie 10.26. Niech A bedzie operatorem symetrycznym. Zalézimy, ze
istnieje sprzezenie C' spetniajgce C : D(A) — D(A) oraz AC = CA. Wtedy
operator A posiada samosprzezone rozszerzenie.
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Dowdd. Z tozsamosci polaryzacyjnej i z antyliniowosci operatora C' otrzy-
mujemy
(C:U7Cy) = (ywx)v dla xuyeH'

Pokazemy, ze wymiary N; i N_; sa réwne. Najpierw udowodnimy, ze C' od-
wzorowuje N; w N_;. Niech z € N; iy € D(A). Wtedy

0= ((A"+il)x,Cy) = (x,(A—iI)Cy) = (2, C(A+il)y) = (A+il)y, Cz).

Zatem Czx € ker(A* —il) = N_;. Podobnie dowodzimy, ze C' odwzorowuje
N_; w N;. Poniewaz C' jest bijekcja, to dim N_; = dim N;. O

11 Problem momentéw Hamburgera jako sa-
mosprzezone rozszerzenie operatora syme-
trycznego

Dla ciagu momentéw Hamburgera {m,}>>, niech J bedzie odpowiadajaca
temu ciggowi macierzg Jacobi’ego. Macierz J mozemy traktowaé jako opera-
tor liniowy w przestrzeni Hilberta ¢*(N) z dziedzing

D(J) = lin{50, 61, c. 76n7 .. }
Jak wiemy, J jest operatorem symetrycznym oraz

J(Sn = )\nénJrl + /Bn(sn + >\n715n717 n>1
Joo = Aod1 + Bodo.

Przyjmujac umowe, ze A\_; = 6_; = 0 dzialanie J mozna zapisa¢ jednym
wzorem
Jén = )\nén+1 + ﬁn(sn + )\nflénflv n > 0.

Operator C' okreslony przez
c (Z an5n> S,
n=0 n=0

jest sprzezeniem na (?(N). Co wigcej JC' = CJ, zatem J posiada samosprze-
zone rozszerzenia na podstawie Twierdzenia [10.26]
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Zbadajmy przestrzenie defektu dla operatora J. W tym celu rozwigzujemy
roOwnanie

(J*—zHv=0
dla z ¢ Ridla v € D(J*). Otrzymujemy

0= ((J"—zD)v,6,) = (v,(J=ZI)d,) = (v, A\pOnt1F+5n0n+An—10n-1—Z0,).
Przy oznaczeniu v, = (v, d,) dostajemy
20 = AMUni1 + Bnn + Ao1Up_1, n 2= 0.
Stad wnioskujemy, ze v,, = vop,(2).
Wniooosek 11.1. Przestrzen defektu Nz jest niezerowa wtedy 1 tylko wtedy,
gdy Z% [P (2)]* < +o0.

Twierdzenie 11.2. Problem momentéow Hamburgera {m,}5°, jest zdeter-
minowany wtedy 1 tylko wtedy, gdy macierz Jacobi’eqo J jest istotnie samo-
sprzezona.

Symbolem {p,}2°, oznaczamy uktad wiclomianéw ortonormalnych zwia-
zany 7z ciagiem momentéw Hamburgera {m,, }>° ;. Niech H bedzie uzupelnie-
niem przestrzeni P wielomianéw wzgledem iloczynu skalarnego wyznaczonego
przez momenty. Wtedy uklad {p, }5°, stanowi baze ortonormalna przestrze-
ni Hilberta H. Niech U bedzie operatorem liniowym z przestrzeni (*(N) w
przestrzen ‘H okreslonym przez

US, = pp. (11.1)

U jest operatorem unitarnym, bo odwzorowuje baze ortonormalng przestrzeni
(*(N) na baz¢ ortonormalng przestrzeni H.

W przestrzeni H okre§lamy operator M z dziedzing D(M) = P wzorem
(Mp)(x) = zp(z). Operator M jest symetryczny, bo (Mz* 2') = (2, Ma!) =
Myyi41- Lauwazmy, ze UD(J) = D(M) oraz

UJU ' = M. (11.2)
Rzeczywiscie, rownosé ((11.2) wystarczy sprawdzi¢ na bazie przestrzeni H.

UJU 'p, =UJ6, = UNOns1 + Bubp + Ap_16n-1)
= MDnt1 + BnPn + A—1Pn—1 = xpy = Mp,.
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Rozwazania powyzsze dowodzg, ze operator J jest unitarnie réwnowaz-
ny z operatorem M. W szczegdlnosci J jest istotnie samosprzezony wtedy i
tylko wtedy, gdy M jest istotnie samosprzezony. Ponadto kazde samosprze-
zone rozszerzenie M operatora M wyznacza samosprzezone rozszerzenie J
operatora J wzorem J = U MU.

Lemat 11.3. Zachodzi wzor p,(J)dy = .
Dowéd. Ze wzoru (11.2) wynika, ze p,(J) = U™ 'p,(M)U. Zatem
()00 = U p(M)UGSy = U 'p,(M)1 = U 'p, = 6,.

Dowd6d nastepnego lematu pozostawiamy czytelnikowi.

Lemat 11.4. Niech o bedzie miarg probabilistyczng na prostej a M, opera-
torem liniowym w przestrzeni L*(R, o) okreslonym wzorem M, f(z) = x f(z)
z dziedzing

D(M,) ={f € L*(R,0) : zf € L*(R,0)}.

Wtedy M, jest operatorem samosprzezonym. Rozkiad jednoécﬂ F(z) zwigza-
ny z M, ma postaé F(x)f = X(—oom) [> dla [ € L*(R,0).

Twierdzenie 11.5. Niech J bedzie samosprzezonym rozszerzeniem opera-
tora J. Niech E(x) bedzie rozktadem jednosci zwigzanym z J. Wtedy miara
do(x) = d(E(x)do, do) jest N-ekstremalnym rozwigzaniem problemu momen-
tow {my}>2,. Kazde N-ekstremalne rozwigzanie moze byé otrzymane w ten
5posob.

Dowdd. Dla odréznienia iloczynéw skalarnych w (%(N) i w przestrzeni
wielomianéw, ten pierwszy oznaczymy przez (-, -).. Z Lematu mamy

(P ()00, Pm()d0) ez = (P, Pm)-

Zatem
(Jk(;(), Jl(S())@ = (l’k, Il) = M- (113)
Mamy &, € D(J") C D(J"). Zatem
/ 22" do(z) = / 22 d(E(2)00, 80)i2 < +00.

tPodstawowe fakty dotyczace twierdzenia spektralnego sa umieszczone w Dodatku.
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Ponadto z (|11.3) wynika, ze

= (I, 80)2 = (J"00,00)es = [ & A(E (@)oo, 80)2 = [ " dor(a)

Pokazemy, ze wielomiany tworza gesta podprzestrzen w L*(R,0). Niech f €
C.(R). Wtedy operator f(.J) jest ograniczony oraz

Zatem

[ 15@) do(@) = (F(D)F(T)o, d0)e

=If(J 5o||z2—Z| D)80, 00 )e2|* = Zlanl2

Ostatnia rownos¢ oznacza, ze funkcja f moze by¢ przyblizona wielomianami
w normie przestrzeni L*(R, o). Zatem o jest N-ekstremalnym rozwiazaniem
problemu momentéw {m,, }2 .

Pokazemy, ze kazdemu N-ekstremalnemu rozwigzaniu odpowiada samo-
sprzezone rozszerzenie operatora J. Niech o bedzie N-ekstremalnym rozwia-
zaniem problemu momentow. Wtedy przestrzen ‘H okreslona po Twierdzeniu
11.2] mozna utozsami¢ z przestrzenia L?(R, o), bo wielomiany leza gesto w
L*(R, o). Zatem U okreslony w jest operatorem unitarnym z ¢*(N) na
L*(R, o). Ze wzoru operator J jest unitarnie réwnowazny z operato-
rem M. 7 kolei z Lematu operator M posiada samosprzezone rozsze-
rzenie M,, bo dziedzina operatora M, zawiera wielomiany. Wtedy operator
J posiada samosprzezone rozszerzenie J = U~ M,U. Rozklad jednoéci E (x)
zwiazany z operatorem J otrzymujemy z rozktadu jednosci F(x) zwiazanego
z operatorem M, za pomoca wzoru E(z) = U~'F(x)U. Znowu korzystamy z

Lematu aby otrzymac
(E(l’)(;(), 50)52 = (U_IF(ZL‘)U(S(), (50)@2

= (F@1L1) = [ X(oem(v)doly) = o((—00,2))
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O

12 Wektory analityczne i wektory jednoznacz-
nosci
Definicja 12.1. Dla operatora symetryczneqgo A zbior

Ao

nazywamy przestrzeniq wektoréw gtadkich operatora A. Wektor v € C*(A)
nazywamy analitycznym, jesl dla pewnej liczby t > 0 mamy

Z ||A" I

Przyklad 12.2. p
Rozwazmy operator A = zd— w przestrzeni L*(R,dx) z dziedzina C’(R).
x

Funkcje C°(R) sa wektorami gtadkimi. Niech f(z) bedzie funkcja catkowita
spetiajacg oszacowanie | f(2)| < ce®? dla pewnych statych ¢, a i wszystkich

liczb z € C, oraz [ |f(z)|*dr < 4o00. Z twierdzenia Paley-Wienera funkcja

f(2) ma postaé

a

flz) = / g(y)e ™= dy,

—a

dla pewnej funkcji g € L*(R, dx). Wtedy
A" f(x) = / y"g(y)e " dy.

Ze wzoru Plancherela otrzymujemy zatem
/LM Pm~aw/ﬁﬂg>ﬁw

<2ma® [lg)Pdy=a* [ |7(@)P do.
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Dostajemy oszacowanie || A" f|l2 < a™ || f||2, z ktérego wynika, ze f jest wek-
torem analitycznym.

Jesli operator A jest samosprzezony, to wektory analityczne tego opera-
tora tworza gesta podprzestrzen w D(A). Rzeczywiscie, mamy

D(A) = {v eH: / 22 d(E(x),v,v) < +oo} .

Dla k € N niech Hy, = (Ey — E_;)H. Zatem

0 dla x < —k,
E(k)— E(—k) dlaz > k.

Dla wektora v € H; mamy wtedy

/ 22 d(E(x)v,v) = / 2 d(E(x)(B(k) — BE(—k))v,v)
—— / 22 d(E(x)v, v) < k2]
[—Fk.K]

Stad v € D(A™) dla dowolnej liczby n oraz

(A", A™0) = (A2, 0) = / 22 d(E(x)v,v) < k2o,

—0o0

Otrzymujemy
1AMl = Kl
" < E o t" < +o0.

n=0

n!

00
>
n=0

Wektory z H;. sa wiec analityczne. Poniewaz

H=J Hs

k=1

to wektory analityczne lezg gesto w 'H.
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Definicja 12.3. Niech v € C*(A) oraz

D, = {p(A)v : peP},
H, = D,.

Wektor v nazywamy wektorem jednoznacznosci, jesli operator A ograni-
czony do dziedziny D, jest istotnie samosprzezony jako operator w H.,.

Definicja 12.4. Podzbior V. C C*(A) nazywamy totalnym, jesli zbior
{p(A)v : veV, peP} jest liniowo gesty w H.

Twierdzenie 12.5 (Nussbaum). Zaldzmy, Ze dla operatora symetrycznego
dziedzina D(A) zawiera totalny podzbior wektoréw jednoznacznosci. Wiedy A
jest operatorem istotnie samosprzezonym.

Dowod. Z Wniosku wystarczy pokazac, ze przestrzenie R; oraz R_;
sg geste w ‘H. Ustalmy wektor v € H oraz liczbe ¢ > 0. Z zalozenia moz-
na znalezé wektory jednoznacznosci vy, v, ..., v, € C*(A) oraz wielomiany
P, P, ... P, spetniajace

v = [PL(A)or + Po(AJvs + ..+ Pa( Al | < .

Poniewaz v; sa wektorami jednoznacznosci, to istnieja wektory wuy, us, ..., u,
takie, ze u; € D,, C C*(A) oraz

P Ay = (A= il < .

Wtedy uy +ug + ... +u, € C°(A) i
lo — (A —il)(ug +us +...u,)|| <e.
[

Twierdzenie 12.6. Zaloimy, ze dla operatora symetrycznego A oraz dla

wektora v € C™(A) spelniony jest warunek Y ||A™v|| "™ = +oo. Wtedy v
n=1
jest wektorem jednoznacznosci.
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Dowdd. Mozemy zatozy¢, ze ||v]| = 1. Rozwazmy ciag wektoréw { A"v}>2 .
Jedli wektory tego ciggu sg liniowo zalezne, to przestrzen liniowa okreslona
w Definicji ma skoniczony wymiar. Wtedy A jest operatorem ograniczo-
nym na H,. W szczegdlnosci A jest tam samosprzezony. Zatézmy zatem, ze
wektory ciggu {A"v}5°, sa liniowo niezalezne. Wtedy ciag m,, = (A™v,v)

jest ciggiem momentéw Hamburgera. Z zalozenia mamy Z m;nl /em) = 4.

n=1
Zatem z kryterium Carlemana (patrz zadanie macierz Jacobi’ego J zwia-

zana z tym ciggiem jest istotnie samosprzezona. Niech H,, oznacza uzupel-
nienie przestrzeni P wzgledem iloczynu skalarnego wyznaczonego przez cigg
{mn}>2,. Wtedy operator M mnozenia przez = z dziedzina P jest istotnie sa-
mosprzezony. Rozwazmy odwzorowanie liniowe U : D, — P okreslone przez
U(A™) = z". Poniewaz U zachowuje iloczyn skalarny, to mozna rozszerzy¢
U do operatora unitarnego z H, na H,,. Operator U wiaze operatory Al|p, i
M poprzez A|lp, = U *MU. Zatem A|p, jest réwniez istotnie samosprzezo-
ny. 0

Whniosek 12.7. KazZdy wektor analityczny operatora symetrycznego jest wek-
torem jednoznacznosci.

A"
n!

Dowdd. Zatdézmy, ze Z t" < +o0 dla pewnej liczby ¢t > 0. Wtedy

n=1
n n

A"l 47l
nn n!

t
dla n > N. Zatem ||A"|| /" > = dla n > N. Z Twierdzenia [12.6) wynika,
n

ze v jest wektorem jednoznacznosci. O]

Whniosek 12.8 (Twierdzenia Nelsona). Zafézmy, Ze dziedzina operatora sy-
metrycznego A zawiera totalny podzbior wektorow analitycznych. Wtedy A
jest operatorem istotnie samosprzezonym.

13 Problem momentéw Stieltjesa i rozszerze-
nia operatoré6w nieujemnych

Definicja 13.1. Operator A nazywamy nieujemnym, jesli (Ax,z) > 0, dla
kazdego wektora x € D(A).
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W szczegdlnoscei operator nieujemny jest symetryczny.

Twierdzenie 13.2. Indeksy defektu operatora nieujemnego sq¢ sobie rowne.
Operator A jest istotnie samosprzezony wtedy i tylko wtedy, gdy przestrzen
N = ker(A* + I) jest trywialna.

Dowdd. Domkniecie operatora A jest znowu operatorem nieujemnym. Za-
tem bez straty ogolnosci mozemy zatozy¢, ze A jest operatorem domknietym.
Mamy

I(A+ Dol = [|[Av]|* + 2(Av, v) + [[o]* > o]

Podobnie jak w dowodzie Twierdzenia (10.14] wnioskujemy, ze przestrzen
R_1 =Im(A+I) jest domknieta. Z Lematu [10.21| zastosowanego do A + [
oraz do B = —(z + 1)1 otrzymujemy réwnosé

dimker(A* — 21) = dimker(A* + I)

dla [z + 1] < 1/2. O

Z dowodu Twierdzenia [13.2] otrzymujemy nastepujacy wniosek.

Whniosek 13.3. Symetryczny domkniety operator nieujemny jest samosprze-
Zony wiedy i tylko wtedy, gdy Im (A+ 1) = H.

Dla operatora A mozemy okresli¢ forme kwadratowa ¢(x,y) wzorem
q(z,y) = (,Ay),  x € D(A).

Jesli operator A jest symetryczny, to q(y,z) = q(z,y). Z kolei, jesli A jest
nieujemny, to ¢(z,z) > 0 dla z € D(A).

Ogolnie forma kwadratowa ¢(z, y) okreslona na podprzestrzeni D(q) C 'H
nazywamy odwzorowanie ¢ : D(q) x D(q) — H, ktore jest liniowe ze wzgledu
na pierwszg zmienng i antyliniowe ze wzgledu na druga zmienng.

Forme kwadratowg nazywamy nieujemng, jesli ¢(z,x) > 0 dla x €
D(q). Nieujemna forme kwadratowa nazywamy domknietq, jesli z faktu
x, € D(q), xy, — x oraz q(z, — T, Ty — Tp) — 0, przy n,m — oo wynika, ze
x € D(q) oraz q(x, — x,x, —x) — 0. Réwnowaznie, nieujemna forma ¢(x,y)
jest domknieta wtedy i tylko wtedy, gdy przestrzein H, = D(q) jest zupeina

wzgledem normy
[zllg = \/llzl* + q(z, z).

Przyktad 13.4.
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Niech A bedzie operatorem domknietym o gestej dziedzinie D(A). Wtedy
forma kwadratowa

q(z,y) = (Az, Ay),  D(q) = D(A)

jest domknieta. Rzeczywiscie, jesli z,, — x oraz q(z, — Ty, T — ) — 0, tO
Az, jest ciagiem Cauchy’ego w H. Niech Az, — y. Z domknietosci operatora
A otrzymujemy x € D(A) oraz Azx =vy.

Lemat 13.5. Niech B bedzie roznowartoSciowym operatorem samosprzezo-
nym. Wtedy operator B™' jest samosprzezony.

Dowdd. Poniewaz B jest roznowarto$ciowy, to przestrzen Im B jest gesta
w ‘H. 7 samosprzezonosci wynika, ze wykres operatora B jest domkniety, za-
tem wykres operatora B! jest réwniez domkniety. Niech C' = B~!. Mamy
D(C) = Im B oraz (CBz, Bx) = (z, Bx) € R. Zatem C jest operatorem sy-
metrycznym o gestej dziedzinie. Dla zakonczenia dowodu wystarczy pokazac,
ze przestrzenie defektu operatora C' sa zerowe. Niech C*x = +ix. Wtedy

(z,y) = (z,CBy) = (C*x, By) = +i(z, By), y € D(B).

Zatem (z,(I FiB)y) = 0 dla y € D(B). Ale z samosprzezonosci operatora
B mamy Im (I FiB) = H, czyli x = 0. O

Twierdzenie 13.6. Dla kazdej domkniectej nieujemnej formy kwadratowey
q(z,y) istnieje operator samosprzezony A taki, Ze dziedzina D(A) jest gesta
w D(q) oraz q(x,y) = (x, Ay) dla z,y € D(A).

Dowdd. Z zatozenia H, = D(q) jest przestrzeniag Hilberta z iloczynem
skalarnym

(z,9)q = (z,y) + q(z, y).
Kazdy wektor y € ‘H wyznacza ograniczony funkcjonal liniowy na przestrzeni

H, wzorem
Hq 9 T (ZL’, y)a

bo

|G o) < Myl < lylllizllg,
gdzie ||z||, = (z,x)y/2. Z Twierdzenia Riesza istnicje jedyny wektor By € H,
taki, ze

(v,y) = (z,By)y,  x€H. (13.1)
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Przyporzadkowanie y — By jest odwzorowaniem liniowym okreslonym na ‘H
oraz Im B C H, C 'H. Co wigcej B jest ograniczonym réznowartosciowym
operatorem samosprzezonym na H. Istotnie z ((13.1]) otrzymujemy

(By, By) < (By, By), = (By,y) < || By||||yl|-

Réznowartosciowosé¢ wynika ze wzoru (y,y) = (y, By),. Ponadto obraz ope-
ratora B jest gesty w H,. Rzeczywiscie, zalézmy, ze wektor x € H, jest
ortogonalny do obrazu operatora B. Wtedy

(z,y) = (z,By)y =0, yeH.

Zatem x = 0.
Z Lematu operator B! jest samosprzezony. Ze wzoru ((13.1)) wnio-
skujemy, ze dla x,z € Im B

q(z,2) = (x, B7'2) — (x,2) = (2, (B~ = I)z2).
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Uwaga 13.7.
Z dowodu wynika, ze dziedzing operatora A jest zbior

D(A) = {Z EH: ElyEHvxeD(fI) (IL’,Z) + Q(x>z) = (x,y)}

Jedli z € D(A) oraz (z,z) + q(x, z) = (z,y) dla pewnego y € H i wszystkich
x € D(q), to Az=y — z.

Whniosek 13.8. Niech A bedzie operatorem domknietym o gestej dziedzinie.
Wtedy ztozenie A*A jest operatorem samosprzezonym.

Dowdéd. Na podstawie Przyktadu forma q(z,y) = (Az, Ay) okreslo-
na na D(q) = D(A) jest domknieta. Z Twierdzenia istnieje operator
samosprzezony S taki, ze dziedzina D(S) jest gestym podzbiorem w D(A)
oraz,

(Az, Ay) = (2,5y),  x,y € D(5).
Z gestosci dziedziny D(S) w D(A) i z domknietosci operatora A wynika, ze

(Azx, Ay) = (x, Sy), x € D(A), y € D(9).

Zatem Ay € D(A*) oraz A*Ay = Sy. Stad S C A*A. Ale operator A*A jest
symetryczny, bo jesli z,y € D(A*A), to

(A*Az,y) = (Ax, Ay) = (z, A* Ay).

Stad S = A*A. O

Moéwimy, ze forma kwadratowa ¢(z,y) okreslona na H, C H jest domy-
kalna, jesli istnieje domknigta forma kwadratowa q(z,y) okreslona na H; D
H, taka, ze ¢(z,y) = q(z,y) dla z,y € H,. Mozna pokazaé, ze forma kwa-
dratowa jest domykalna wtedy i tylko wtedy, gdy z warunku ||z, — x|, — 0
i||zn|| — 0 wynika, ze ||x,|, — 0.

Twierdzenie 13.9 (Rozszerzenie Friedrichsa). Niech A bedzie nieujemnym
operatorem symetrycznym. Wtedy forma kwadratowa jest q(x,y) = (x, Ay)
okreslona na D(q) = D(A) jest domykalna. Domkniecie ¢ formy q odpowiada
SAMOSPTZEZONEMU TOZSZETZENIU A operatora A. Operator A jest nieujemny
oraz

inf{(x, Az) : = € D(A), ||z|| = 1} = inf{(x, Az) : = € D(A), ||z|| = 1}
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Dowdd. Dlax,y € H, = D(A) okreslamy iloczyn skalarny i norme wzorem

(e.9)s = (@.9) +ale,y), el = (2,2))

Niech H; oznacza uzupelnienie przestrzeni H, wzgledem normy | - [|;. Roz-
szerzenie normy na te przestrzef oznaczymy przez || - [|5. Pokazemy, ze Hy
jest podprzestrzenia w H. W tym celu rozwazmy wtozenie ¢ : H, — H
dane wzorem i(x) = x. Poniewaz |z| < |z|,, dla x € H,, to i rozsze-
rza sie do ograniczonego odwzorowania ¢ z Hy; w H. Wystarczy wykazac, ze
7 jest odwzorowaniem réznowartosciowym. Zatézmy wiec, ze Z(a:) = 0 dla
r € H;. Wtedy istnieje ciag elementéw x,, € H, taki, ze ||z, |, — [|z[|; oraz
|x,]| — 0. Zatem

W przestrzeni ‘H; okreslamy forme g(z,y) wzorem
q(z,y) = lim q(zn, yn),

jesli z,, y,, € Hy oraz ||z, —x|; — 01|y, —yll; — 0. Forma ¢ jest domknieta,
bo przestrzenn Hy jest zupetna wzgledem normy || - ||5. Z Twierdzenia m
istnieje nieujemny samosprzezony operator A taki, ze dziedzina D(;l) jest
gesta podprzestrzenia w H; oraz q(z,y) = (=, Ay) dla z € D(A). Z Uwagi
-wymka ze dziedzina operatora A zawiera dziedzine operatora A oraz,
ze Av = Az dla x € D(A).

Niech m = inf{(z, Az) : = € D(A), ||z|| = 1}. Z konstrukcji formy ¢
mamy m = inf{g(z,r) : € H, [|z|| = 1}. To pociaga

< inf{(z, Az) : = € D(A), ||z| = 1}.

Nieréwnos$¢ w przeciwng strone wynika z tego, ze A jest rozszerzeniem ope-
ratora A. n

Uwaga 13.10.

Z konstrukeji przestrzeni D(q) = H; wynika, ze dla z € D(A A) Hy
istnieja elementy z,, € D(A) takie, ze ||:1:n — x|z — 0. Zatem |[|z,| — Hx||
oraz

(2, Azy) = q(zn, T) — Gz, ) = (z, Ax).
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Uwaga 13.11.

Twierdzenie stanowi, ze forma kwadratowa zwigzana z operatorem nie-
ujemnym jest domykalna. Okazuje sie, ze nie kazda nieujemna forma kwadra-
towa ma domkniete rozszerzenie. Rozwazmy forme okre$long na przestrzeni

C.(R) € L*(R,e™*") wzorem

a(f.g9) = f(0)g(0).
Niech f,, € C.(R) spetnia f,,(0) = 1 oraz supp f,, C [-1/n,1/n]. Wtedy {f,}

jest ciagiem Cauchy’ego wzgledem normy || - ||, Ponadto || f,||z2 — 0 ale

Uwaga 13.12.

Dla nieujemnego nieograniczonego operatora samosprzezonego A dziedzi-
na domkniecia ¢ formy kwadratowej q(x,y) = (z, Ay) jest wieksza niz D(A).
7 twierdzenia spektralnego istnieje nieujemny samosprzezony operator v/ A
oraz A = \/ZQ. Zatem (z,Ay) = (VAx,v/Ay). Stad przestrzetr D(§) jest
réwna D(\/Z)

Lemat 13.13. Niech A bedzie nieujemnym domknigtym operatorem syme-
trycznym. Niech A oznacza samosprzezone nieujemne rozszerzenie operatora

A. Wtedy przestrzenie D(A) i N = ker(A* + I) sq liniowo niezaleine oraz

D(A*) = D(A) + N.

Dowdéd. Zawieranie D(A*) D D(A) + N jest oczywiste, bo A C A*.
Zatézmy, ze x € D(A*). Z Wniosku istnieje y € D(A) spehiajacy
(A* + Dz = (A+ I)y. Zatem (A* +I)(z — y) = 0. To oznacza, ze = y + n,
gdzie n € N.

Pozostaje pokazaé¢ liniowa niezaleznosé. Zatézmy, ze a + n = 0, gdzie
a € D(A) oraz n € N. Wtedy (I + A)a = (I + A*)(a 4+ n) = 0. Ale operator
I+A jest roznowartosciowy. Zatem a = 0, co pociaga n = 0. [

Uwaga 13.14.
Przy oznaczeniach Lematu [13.13] mozna pokazaé, ze

D(A) = D(A) + (I + A)"'(N),

przy czym sktadniki w sumie sa liniowo niezalezne. Rzeczywiscie, poniewaz
A jest nieujemnym operatorem samosprzezonym, to (I + A)H = H. Zatem

D(A) = (I+A)" Y H) =T+ A) Y Im (I + A+ N) = D(A) + (I + A)~YN).
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Whniosek 13.15. Niech A bedzie nieujemnym niesamosprzezonym operato-
rem symetrycznym . Zalozmy, zZe

inf{(z, Az) : € D(A), ||z|| =1} =a > 0.

Wtedy nieujemne samosprzezone rozszerzenie operatora A nie jest jedno-
zZnaczne.

Dowéd. Niech
inf{(z, Az) : x € D(A), ||z|| =1} =a > 0.

Bez straty ogdélnosci mozemy przyjac, ze a = 1 oraz, ze A jest operato-
rem domknietym. Wtedy operator C = A — I jest nieujemny, domkniety
i symetryczny. Niech Cr oznacza rozszerzenie Friedrichsa operatora C' oraz
Ap = Cfr — 1. Z Lematu [I3.13] mamy

D(A*) = D(C*) =N+ D(Cr) = N + D(AF),

gdzie N = ker(C* + I) = ker A*. Przestrzen N jest nietrywialna, bo z
zalozenia A nie jest samosprzezony. Okreslmy operator Ay na dziedzinie
D(Ak) = D(A) + N wzorem Ag(a+n) = Aa. Wtedy Ak jest nieujemnym,
symetrycznym rozszerzeniem operatora A. Zauwazmy, ze operator Ag nie
jest zawarty w Ap, bo N U D(Apr) = {0}. Zatem nieujemne samosprzezone
rozszerzenie operatora Ay jest rézne od Ap. O

Uwaga 13.16.

Jesli indeksy defektu operatora A sa skonczone, to operator Ay skonstru-
owany w dowodzie twierdzenia jest samosprzezony. Mozemy zaltozyé, ze A
jest operatorem domknietym. Zbadajmy obraz operatora Al + Ax dla A > 0.
Jedli a € D(A) oraz n € N = ker A*, to

(M + Ag)(a+n) = (N + A)a+ In.

Zatem Im (A + Ag) = Im (A + A) + N. Poniewaz N jest podprzestrzenia
skoniczonego wymiaru i Im (A/+A) jest domknieta, to przestrzen Im (A +Af)
jest tez domknieta. Niech v bedzie wektorem ortogonalnym do Im (A + Ak).
Wtedy v € ker(Al 4+ A*) oraz v jest ortogonalny do ker A*. Z dowodu Lematu
zastosowanego do A < «/2 wynika, ze v = 0. Stad Im (A + Ag) = H,
dla 0 < A < /2. Z Wniosku wynika, ze Ag jest samosprzezony.
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Twierdzenie 13.17. Niech {m,};>, bedzie ciggiem momentéw Stieltjesa
niezdeterminowanym jako cigg momentow Hamburgera. Istnieje jedyne roz-
wigzanie problemu momentow Stieltjesa wtedy i tylko wtedy, gdy

inf{(zp,p) : p € P, |Ipll =1} = 0.

Rownowaznie, macierz Jacobi’ego J ma jednoznaczne nieujemne samosprze-
Zone rozszerzenie.

Dowdéd. Rozwazmy odwzorowanie liniowe U z D(.J) w P okre$lone wzorem
Ué,, = pn. Operator U jest izometrig oraz UJU 'p = xp, dla p € P. Zatem

inf{(Jv,v) : v € D), llolle =1} = {(ep.p) : p€ P, [p] =1} (13.2)

Zatézmy, ze
inf{(zp,p) : p € P, |Ipll = 1} > 0.

Wtedy z Wniosku [13.15| macierz J ma rézne nieujemne samosprzezone roz-
szerzenia. Kazdemu rozszerzeniu odpowiada inna miara N-ekstremalna o.
Rozszerzenie operatora J jest wtedy unitarnie réwnowazne operatorowi M,
na przestrzeni L*(R, o). Z nieujemnogci operatora M, wynika, ze no$nik mia-
ry o jest zawarty w [0, 400). Zatem problem momentéw Stieltjesa nie jest
jednoznaczny.

Odwrotnie, zal6zmy, ze

inf{(zp,p) : p € P, [Ipll =1} = 0. (13.3)

Wiadomo, ze (xp,p) > 0 dla p € P. Stad wynika, ze (Jv,v) > 0dlav € D(J).
Rozszerzenie Friedrichsa Jp odpowiada mierze N-ekstremalnej o. Nosnik
miary o musi by¢ zawarty w [0,400), bo Jr jest operatorem nieujemnym.
Co wiecej operator M, w przestrzeni L?(R, o) jest rozszerzeniem Friedrichsa
operatora M mnozenia przez x okreslonego na wielomianach P. Na podsta-
wie liczba 0 jest atomem miary o. Niech ¢({0}) = a > 0. Oznaczmy
przez x1 najmniejszy dodatni atom miary o. Symbolem f oznaczymy funkcja
przyjmujaca wartos¢ 1 w przedziale zawierajacym wewnatrz liczbe 0 i zeru-
jaca sie w przedziale [x1/2, +00). Wtedy ||f\|%2(g) = a. Zauwazmy, ze zf = 0
w przestrzeni L?(R, o). Forma kwadratowa operatora M, jest domknieciem
formy operatora M (por. dowéd Twierdzenia . Zatem na podstawie
Uwagi istnieje ciag w, € P taki, ze |lw, — flz2(0), [[wnllZ2(,) = a oraz
(2wn, wyp) — (2 f, f)r2(0) = 0. Stad wynika, ze w,(0) — f(0) = 1.
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Pokazemy, ze problem momentéw Stieltjesa ma jednoznaczne rozwigza-
nie. Zalézmy, ze o jest rozwigzaniem. Wtedy w,, jest ciggiem Cauchy’ego w
L*(R, o). Niech w, — g w L*(R, o). Zatem ||g||7, = a. Ponadto

[ aui@)dolw) —o,

n—00
[0,+00)

i w konsekwencji

/ xg*(r) do(x) = 0.

[0,400)

Stad wynika, ze g(z) = 0 dla z > 0, czyli ¢ ma atom w punkcie z = 0.
Poniewaz w,(0) — 1, to g(0) = 1. Z warunku ||g||%2(g) = a otrzymujemy
0({0}) = a = 0({0}). Z Twierdzenia 8.9 dostajemy o = o.

Z jednoznacznosci rozwigzania problemu momentéw Stieltjesa wynika na-
tychmiast jednoznaczno$¢ nieujemnego samosprzezonego rozszerzenia macie-
rzy J. [

Dodatek

Podamy tu podstawowe fakty dotyczace twierdzenia spektralnego dla opera-
tora samosprzezonego.

Niech A bedzie operatorem samosprzezonym. Wtedy istnieje niemalejaca
rodzina E(x), x € R, rzutéw ortogonalnych taka, ze dla v € H mamy

lim E(z)v = 0,

liIJ‘rn E(z)v = v, (13.4)
gl_rgﬂE y)v = E(z)v

Dzieki monotonicznosci, dla dowolnego wektora v € H funkcja liczbowa
x +— (E(x)v,v) jest lewostronnie ciagla i niemalejaca. Przyrosty tej funk-
cji wyznaczaja miare borelowska oznaczana przez d((F(z)v,v)). Ze wzordéw
catkowita masa tej miary wynosi ||v]|?.

Kazdy rzut E(z) jest przemienny z A w nastepujacym sensie

E(z)D(A) C D(A) i E(x)A=AE(z).
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Dziedzina operatora A oraz dziatanie operatora sa opisane réwnosciami

D(A) = {v eH: 7m2 d(E(z)v,v) < —|—oo} ) (13.5)
(Av,v) = / zd(E(x)v,v), v e D(A). (13.6)

Rodzine rzutéw E(z), x € R nazywamy rozkiadem jednosci zwiazanym z
operatorem samosprzezonym A.
Dla dowolnej zespolonej, lokalnie ograniczonej funkcji borelowskiej g(z),

okreslamy operator g(A) podobnie jak w (13.5) i ((13.6]).

D(g(A)) = {v €eH: / lg(2)|? d(E(z)v,v) < —l—oo}, (13.7)

(g(A)v,v) = /g(fﬂ)d(E(l“)v,v), v e D(g(A)). (13.8)

—0o0

Dziedziny D(g(A)) sa geste dla dowolnej funkcji g. Ponadto zachodza wzory

(9(A)" = g(4)
f(A)g(A) = (F9)(A).

W szczegblnosci potegi A™ sg operatorami samosprzezonymi oraz

D(A") = {v EH : 70x2" d(E(z)v,v) < +oo} (13.9)
(A", v) = /a:”d(E(x)v,v), v e D(g(A)). (13.10)

Jedli funkcja g jest jednostajnie ograniczona, to D(g(A)) = H oraz g(A) jest
operatorem ograniczonym. Istotnie dla v € ‘H mamy

o0

[ lg@ P d(E)o,v) < llghe [ dE@)w,v) = llgllellv]? < +oc.

—0o0
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Zatem

lg(A)l* = (9(A)v, g(A)v) =

To oznacza, ze ||g(A)| < ||9]co-

I0)

(G(A)g(A)v,v) = (lgI*(A)v, v)

= [ lo(@)P d(E)v.v) < lglle ol
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Zadania

1. Obliczy¢ momenty miar

du(x) = z%dx, z € |0,1], a > —1,
du(x) = z% “dx, x>0, a>—1,
1 1
du(zr) = 5 do_1(z) + 3 doy(x),
du(z) = e “da.

2. Miara probabilistyczna p na prostej ma nosnik ograniczony. Pokazac, ze
problem momentéw {m,,} = [a"du(x) jest jednoznaczny. Wskazéwka:
Udowodni¢, ze jesli supp p C [—a, al, to ma, < a®". Wykazaé tez, ze
jesli b € supp u, to limmy/*" > 1]

3. Miara probabilistyczna p na prostej spelnia |m,| < CR"n!, dla pew-
nych statych C' > 01 R > 0. Pokazaé, ze problem momentéw {m,,} =
[ a™du(z) jest jednoznaczny. Wskazéwka: Udowodnié, ze e*® € LY(R, p)
dla |o| < R, Zauwazy¢, ze funkcja F),(z) = [ e™*du(z) jest analitycz-
na dla [Im z| < R~. Udowodnié¢, ze wspotczynniki Taylora w punkcie
z = 0 dla funkcji F(2) sa réwne i"m,/n!. Zatem F,(z) = F,(z), dla
Tm z| < R7!, jesli o jest innym rozwigzaniem problemu momentéw.
Wykazaé¢, ze wtedy pu = o.

4. Pokazaé, ze funkcje postaci p(x)e™*, gdzie p(z) jest wielomianem, lezg
gesto w przestrzeni Cy(R, ). Wskazéwka: Pokazaé, ze

-3
n

jednostajnie dla z > 0. Niech V' oznacza domkniecie przestrzeni funkcji
postaci p(z)e~® w normie sup . Pokazaé indukcyjnie, ze V' zawiera funk-
cje postaci p(x)e ", gdzie p(x) jest wielomianem i n > 2. Nastepnie
skorzystaé¢ z Twierdzenia Stone’a-Weierstrassa.

e /2 — 0, gdy n— o0

5. Pokazaé, ze wielomiany leza gesto w przestrzeni Hilberta L?(u), gdzie

(a) du(z) =z *dr, =>0, a>—1.

2

(b) dp(x) = e du,
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6. Pokazac, ze dla dowolnej statej rzeczywistej ¢ mamy

/a:”[l + csin(27 log x)}e_log%dx = \/Ee(n+1)2/4‘
0

Wywnioskowaé, ze odpowiedni problem momentéw Stieltjesa jest nie-
jednoznaczny.

7. Wyprowadzi¢ wzoér

T W 1 1 1

/x" sin(z” sin a)e_”’“bcow = ZF <n—;— ) Sinmb)a

0
dla 0 < a < 7/2,b>01in =0,1,2,.... Rozwazy¢ przypadek
a = mb. Wskaza¢ odpowiedni niejednoznaczny problem momentéw.

Wskazéwka: W calce -

__ b ia
/x”exe dz
0

b

dokonaé¢ zamiany zmiennych z = 2%, otrzymujac wielokrotnoéé¢ caltki

/ Z(n+1)/b—16—zdz

po tuku arg z = a. Zauwazy¢, ze ostatnia caltka jest rowna I'((n+1)/b).

8. Pokazaé, ze jesli du(x) < cdus(x) dla = € R, to gestosé wielomianéw
w L?(us) pociaga gestosé wielomiandéw w L2(u;).

9. Pokazaé, ze jesli duy(z) < cdus(x) dla x € R, oraz miara s jest zwia-
zana z jednoznacznym problemem momentow, to rowniez miara i jest
zwigzana z jednoznacznym problemem momentow.

10. Dla niejednoznacznego ciggu momentéw Stieltjesa {m.,, } okreslamy mao,, =
My 1 Mopy1 = 0. Pokazaé, ze {m,} jest niejednoznacznym ciggiem mo-
mentow Hamburgera.

11. Korzystajac z zadan 31 9, wykazac, ze jesli miara probabilistyczna p na
polprostej [0, +00) spetnia |m,| < CR™(2n)!, dla pewnych statych C' >
01 R > 0, to problem momentéw {m,, } = [a"du(x) jest jednoznaczny.
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12.

13.

14.

15.

Miara u na R, catkuje e?™. Pokazaé, ze
o
- an
s, AT
n=1

gdzie m, = [a"du(x), wtedy i tylko wtedy, gdy p jest skupiona na
0

liczbach 0, 1, 2, .. ..

Pokazaé, ze jesli n pierwszych momentéw funkeji f(x) ciaglej o warto-

Sciach rzeczywistych w przedziale a < x < b znika

b

/f o = [ wf(@)de = —/“ — 0,

to f(x) zmienia znak w tym przedziale n razy.

Wyrazi¢ momenty miary du(z) = (1 — 2?)%dz, -1 <z < 1, a > —1,
przy pomocy funkcji I'(z).

Wielomiany p,, speliaja pg = 1, p; = 2x oraz

1 1

SPn+1 + =Pn—1-

Pokazaé, ze momenty zwigzane ze wzorem rekurencyjnym wynosza

1 2n 0
Moy = ————— Mons1 = 0.
T an(n+ 1)\ n 2ntl

Wskazoéwka: Wprowadzi¢ operator przesuniecia na wielomianach P wzo-
rem Spg =01 Sp, = pn_1, dlan > 1. Wtedy

1
TPn = 5(8 + S*)pn

Zatem

iy = (2",1) = 2171 ((S + 51, 1).

Pokazac, ze wielko$¢ ((S + S*)?1, 1) jest réwna liczbie wszystkich drog
dhugosci 2n przechodzacych przez punkty kratowe ptaszczyzny tacza-
cych punkty (0,0) i (n,n), lezacych pod gtéwna przekatna (patrz W.
Feller, Wstep do rachunku prawdopodobienstwa, tom 1).
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16.

17.

18.

19.

Pokazaé, ze jesli wielomian trygonometryczny (tzn. kombinacja liniowa
funkcji cosnz i sinnz dla n € N) jest nieujemny, to jest on postaci
|h(e®)|? dla pewnego wielomianu h(z). Pokazaé, ze jesli wielomian try-
gonometryczny jest funkcja parzysta, to mozna zazadaé, aby h(z) mial
wspotezynniki rzeczywiste.

[e.o]
n=—oo

Pokazaé, ze liczby {m,}
przedziale [0, 27), tzn.

sg wspotczynnikami Fouriera miary p na

21

m, = /emxdu@),

0

wtedy i tylko wtedy, gdy {m,,} jest dodatnio okreslony w nastepujacym
sensie

n
Z mi,jzifj = O,
i,j=0
dla dowolnego ciagu {z;}2,, w ktérym tylko skonczenie wiele wyrazéw
nie zeruje sie.
Udowodni¢, ze kazdy wielomian przyjmujacy nieujemne wartosci dla
0 < x < 1 ma postaé

A(z)? + (1 — 2)B(z)?,

dla pewnych wielomianéw A(z) i B(z). Wskazéwka: Zastosowaé druga
czes¢ zadania |16}

Dla ciagu {m, }5%,, mo = 1, okreslamy
_ _ k1, _ Ak k
Agmy, = My,  Amy, = my, — My, A m, = A"my, — Ay, .

Pokazaé, ze {m,}>, jest ciagiem momentéw miary probabilistycz-
nej okreslonej na przedziale [0,1] wtedy i tylko wtedy, gdy AFm,, >
0 dla kazdego k i n (Twierdzenie Hausdorffa). Wskazéwka: Obliczy¢
Agz™. Pokazaé, ze A*(1 — z)" % = 2%(1 — z)"*. Wywnioskowaé, ze
Sro (Z) AFm,, 1, = my = 1. Dla funkcji f(z) € C[0,1] okreslamy wie-
lomiany Bernsteina B, (f) = > 1, f(k:/n)(’,;”) 2 (1 — )" *. Pokazaé, ze
B, (2') = 2! + p,(x), gdzie p,;(z) jest wielomianem stopnia nie wigk-
szego niz | oraz wspotczynniki tego wielomianu daza do zera. Okreslmy
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20.

21.

22.

23.

24.

25.

26.

27.

" (n
miare probabilistyczna o, wzorem o, = Z (k) Akmn_k5k/n. Jesli o
k=0
1
jest punktem skupienia miar o,, to m; = / 2! do.
0

Pokazaé, ze dla ciagu momentéw Stieltjesa wielomian p,(z) — 7p,_1(x)
ma n—1 pierwiastkéw dodatnich. Czy mogg istnie¢ pierwiastki ujemne 7
Dla jakich wartosci 7 7

Wyprowadzi¢ wzor Christoffela-Darboux uzywajac relacji ortogonalno-
Sci. Wskazdéwka: Obliczy¢ iloczyn skalarny wzgledem zmiennej y obu
stron wzoru z wielomianem py(y).

Przeanalizowaé rozwigzalnos¢ problemu momentéow w przypadku cia-
gu momentéw, ktory jest nieujemnie okreslony ale nie jest dodatnio
okreslony, tzn. spelnia Zmiﬂziz’j > 0.

Przeanalizowa¢ wzor rekurencyjny w przypadku nieujemnie okreslone-
go ciggu momentow.

Dla ciagu {m,}>°, okreslamy

Maon = Mg,

m2n+1 = 0.

Pokazaé, ze ciag {m,} jest dodatnio okreslony wtedy i tylko wtedy,
gdy ciagi {m,} i {m,+1} sa dodatnio okreslone, tzn. {m,} jest ciagiem
momentéw Hamburgera wtedy i tylko wtedy, gdy {m,} jest ciagiem
momentoéw Stieltjesa.

Pokazaé, ze wielomiany p, i p, ortonormalne wzgledem {m,} i {m,}
odpowiednio, spetniajg

]3271(\/5) = pn(ﬁ)'

W oparciu o poprzednie zadanie poda¢ inny dowdd twierdzenia, ze
dla ciagu {m,} momentéw Stieltjesa wielomian p, posiada n réznych
dodatnich pierwiastkow.

Pokazaé, ze jesli {m,} jest ciggiem dodatnio okreslonym oraz msy, 1 =
0dlan €N, to p,(—z) = (=1)"p,(x). Pokazaé, ze wzoér rekurencyjny
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28.

29.

30.

31.

ma wtedy postac

:Epn(l‘) = AaPns1 + /\n—lpn—l(x) n=0,1,...,

p_1 = 0, po = 1. Udowodnié, ze jesli wielomiany p, zadane sg tym
wzorem, gdzie A\, > 0, to ciag momentéw zwigzanych z wielomianami
Pn spelia mo,.1 = 0.

Udowodni¢, ze wielomiany p,, spetniajace wzor
.Yfpn(I) = )‘nanrl + 6npn(x) + Anflpnfl(x> n = 07 17 SR

p—1 = 0, po = 1, mozna okresli¢ wzorem p,(z) = det(zI — J,,), gdzie
J, oznacza obcieta macierz Jacobi’ego, tzn.

By g O -+ 0 0
X B A e 0 0
g, = 0 A S . ‘
oo T Az O
0 0o - >\n—3 ﬂn—Q )\n—2
0 0 -+ 0 Mo Bu

Pokazac, ze jesli wyrazy macierzy Jacobi’ego sg ograniczone oraz
sup |B,| + 2sup A, < R,

to formy kwadratowe

n

Z(R Mt + mz’+j+1)13z‘xj

i’j
sg dodatnio okreslone. Pokazaé, ze wynikanie odwrotne tez jest praw-
dziwe.

Zalézmy, ze ciagg momentéw Hamburgera m,, spetnia mo, < R*". Po-
kazaé, ze p,(x) > 0 dla z > R, oraz (—1)"p,(z) > 0 dla z < R.

Ciag liczb {a,}>° | nazywamy ciagiem tancuchowym, jesli istnieje ciag
{9}&° spemiajacy 0 < g, < 1 oraz a,, = go(1 —gn-1), dlan=1,2,....
Pokazaé, ze (—1)"p,(0) > 0 dla kazdego n € N wtedy i tylko wtedy,
gdy By > 0 oraz A2 /(83,0,41) jest ciagiem taficuchowym.
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32.

33.

34.

35.

36.

Pokazaé, ze jesli (—1)"p,(0) > 0 dla kazdego n € N, to (—1)"¢,(0) > 0
dla kazdego n € N.

Udowodnic¢, ze dla liczb 21 < y1 < T2 < yo < ... < Tpq < Y1 < Ty
zachodzi nieréwnosé

=y)z—t). (2= Y) 1
(z—z1)(z—22) ... (2 — 2p1)(z — ) S [Tm 2|

(Kryterium Carlemana) Pokazaé, ze problem momentéw jest zdetermi-
nowany, jesli szereg - A1 jest rozbiezny. Wskazéwka: p,Gni1—Pni1Gn =
AL

Udowodnié, ze jesli
- |5n+1| _

n=0 /\n/\n—l-l

+00,

to problem momentéw jest zdeterminowany. Wskazéwka: Obliczy¢ p,, (2)@n12(x)—
Pn+2 (m)Qn (Q?) .

(Kryterium Carlemana) Pokazaé, ze problem momentéw {m,, }5°, jest
zdeterminowany, jesli

o)
>~ my, " = o0,

n=1

Wskazéwka: Dla xp, = \upnt1 + BnPn + An_1Pn_1, mamy

AL A1) =2+ ...

Zatem
)\0)\1 e )‘n71<pn7pn) = (xn,pn) < A/ Mo, .
Stad
S ma Pt < S Mo - Ang) TV
n=1 n=1

Pokaza¢, ze jeSli szereg jest rozbiezny, to réwniez szereg - A-! jest
rozbiezny. W tym celu skorzysta¢ z nieréwnosci Carlemana

o0

o
(aras .. .an)l/" <e Z .
n=1 n=1
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37.

38.

39.

40.

41.

42.

43.

44.

(Kryterium Hamburgera) Pokazaé, ze problem momentéw {m,, }° , jest
zdeterminowany wtedy i tylko wtedy, gdy przynajmniej jeden z szere-
gow S p2(0) Tub 3 ¢2(0) jest rozbiezny. Wskazéwka: Skorzystaé z do-
wodu Twierdzenia Hellingera—Nevanlinny.

Pokazaé, ze jesli (—1)"p,(0) > 0 dla n € N, to {m,}>2, jest ciagiem
momentow Stieltjesa.

Dla ciggu liczb dodatnich A, znalezé cigg liczb rzeczywistych (3, tak,
ze odpowiadajacy tym ciggom problem momentéw jest zdeterminowa-
ny. Czy mozna wybra¢ cigg (3, tak, ze no$nik miary jest zawarty w
pétprostej [0, +00) 7

Dla ciagu liczb rzeczywistych (3, znalezé ciag liczb dodatnich A, tak,
ze odpowiadajacy tym ciggom problem momentéw jest niezdetermino-
wany.

Czy problem momentéw odpowiadajacy ciggom Mg, = Ao, = n? oraz
B = 0 jest zdeterminowany ? Czy problem momentéw odpowiadajacy
ciggom Aoy, = Aopi1 = n? oraz (3, = 0 jest zdeterminowany ?

Przy zatozeniach zadania 3 pokazac¢, ze dla liczb Im 2z < 0 zachodzi

wzOr
oo x

_-/e—iszu(y) dy = / C;M_(JCZ)

0 —00

Udowodni¢, ze jesli F,, = F,, to u = o, korzystajac z Twierdzenia
Stieltjesa o odwrdceniu.

Czy ciag m,, speliajacy cevV™ < my, < CeY™ dla pewnych statych c
i C, moze byé dodatnio okreslony ? Czy ciag m,, speliajacy e?V" <
Mo, < DeV™ dla pewnych dodatnich statych d i D, moze byé¢ dodatnio
okreslony

Niech G(z) bedzie funkcja analityczna w kole jednostkowym {z € C :
|z| < 1}. Pokaza¢, ze dla 0 < R < 1 oraz dla |z| < 1 zachodzi wzo6r

. 1 [et+z .
G(Rz) =ilm G(0) + 27?_/ pr— Re G(Re") dt.

Wskazéwka: Pokazaé, korzystajac z catki Poissona dla funkcji harmo-
nicznych, ze czedci rzeczywiste obu stron wzoru sa rowne. Nastepnie
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zauwazy¢, ze obie strony wzoru przedstawiaja funkcje analityczne dla
|z| < 1, zatem obie strony moga r6zni¢ sie o stala.

45. Niech G(z) bedzie funkcja analityczng przeksztatcajaca koto jednost-
kowe w poéiplaszezyzne Re z > 0. Pokazaé, ze z rodziny miar dog(t) =
Re G(Re™) dt okreslonych na przedziale [—7, 7] mozna wybraé¢ podciag
zbiezny dog, (t) taki, ze R, — 17. W tym celu obliczy¢ catkowitg mase
miary dog(t).

46. Korzystajac z zadan [44]i 45 pokazaé, ze funkcja analityczna przeksztal-
cajaca koto jednostkowe w gérng potptaszezyzne ma postaé

™

G(z):iv+217r/

—T

et + 2

et — z

do (t)

dla pewnej miary o, gdzie v = Im G(0).

47. Niech F(w) bedzie funkcja analityczna przeksztalcajaca gérna pol-
plaszczyzne w siebie. Pokazaé, ze funkcja

G(z) = —iF (il - Z)

1+=2

odwzorowuje otwarte koto jednostkowe potptaszczyzne Rez > 0. Ko-
rzystajac z poprzedniego zadania pokazaé, ze istnieje skoniczona miara
dr(z) na prostej taka, ze

14+ 2w
Tr—w

Flw)=cw+d+ / dr(z),

gdzie ¢ > 0 oraz d € R. Wskazéwka: W calce z zadania [46] podstawi¢
u = tg(t/2).

48. Przy oznaczeniach z poprzedniego zadania pokazad, ze przyjmujac do(x) =
(1+ 2?) d7(z) otrzymujemy

x
w 1422

F(w):cw+d+7 (x_l ) do(x).
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49.

50.

51.

52.

93.

o4.

99.

56.

Niech A bedzie macierza samosprzezong wymiaru n X n z wartoscia-
mi wlasnymi Aq, ..., A, uporzadkowanymi tak, ze |A;| > ... > |\,
Udowodni¢ wzér ”minimax”

. (Az, z)
A = min max-————.
dimV=k-12lV (z,7)
Wskazéwka: Niech zq,...,x, bedg odpowiednimi wektorami wtasnymi
i Vi = span{zy,...,z}. Pokazaé, ze dla dowolnej podprzestrzeni V'

wymiaru k — 1 istnieje wektor x € V;, taki, ze z # 0 oraz x 1. V. Wtedy
(Az,x)/(z,x) > A

Zastosowaé poprzednie zadanie i zadanie 25 do podania innego dowodu
o wzajemnym potozeniu zer dla wielomianow p,, i pp11.

Niech A bedzie operatorem liniowym o gestej dziedzinie w przestrzeni
Hilberta H. Wykres ['4 okreslamy jako

Ty={{x,Az) | x € D(A)}.
Niech J(z,y) = (—y,x) dla x,y € H. Pokazal, ze
Ty = J(T4)4,

gdzie symbol L oznacza dopelnienie ortogonalne w przestrzeni H x H.
W szczegblnodei A* jest operatorem domknietym.

Pokazaé, ze jesli A C B, to B* C A*, gdzie A i B sa operatorami
liniowymi o gestych dziedzinach.

Operator liniowy A jest domykalny, jesli posiada on rozszerzenie o wy-
kresie domknietym. Pokaza¢, ze jesli A jest domykalny, to domkniecie
zbioru I'y jest wykresem rozszerzenia operatora A, nazywanego do-
mknieciem A i oznaczanego symbolem A.

Pokazaé, ze operator A*, gdzie A jest domykalnym operatorem o gestej
dziedzinie, ma réwniez gesta dziedzing.

Pokazaé, ze jesli A ma gesta dziedzine i jest domykalny, to A*™* = A.
Wskazéwka: ['ger = J(I 4+ )t

Niech M i N beda domknietymi podprzestrzeniami przestrzeni Hil-
berta H. Pokaza¢, ze jesli M nie posiada wektora ortogonalnego do
przestrzeni N, to dim M < dim N.
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57. Dla domknietego symetrycznego operatora liniowego A i liczby z ¢ R
niech V bedzie izometria z domknietej podprzestrzeni D(V') przestrzeni
Nz w przestrzen N,. Pokazaé, ze operator Ay o dziedzinie

DAy)={z+u—Vu : 2 € D(A), ue D(V)}
okreslony wzorem
Av(z +u—Vu) = Az + zu — zZVu,

jest symetrycznym rozszerzeniem operatora A. Pokazaé, ze kazde sy-
metryczne rozszerzenie operatora A moze by¢ otrzymane w ten sposob.
Wskazéwka: Skorzystaé¢ ze wzorow taczacych A i transformate Cayley
U.,.

58. Operator liniowy A okre$lony jest na dziedzinie
D(A) = span{e,, — €9, }>2, C £*(Np)

wzorem
Ale, — ea,) = i(en + €an), n > 0.

Pokazaé, ze dziedzina jest gesta w ¢2 oraz, ze A jest operatorem syme-
trycznym. Udowodni¢, ze indeksy defektu dim N; oraz dim N_; opera-
tora A nie sg sobie réwne.

Rozwigzanie zadania

Lemat 1. Niech p(z) = > axz" oraz Imp(e™) = 0 dla « € R. Dia liczby

k=—n
0 < |z0] # 1 2z warunku p(z0) = 0 wynika, ze p(Z5') = 0. Ponadto p(z) =
n—1
—Zo2 Mz — 20)(2 — 2o )P(2), gdzie p(z) = > bpz" oraz Imp(e®) = 0.
k=—(n—1)

Dowadd. Mamy
R
ar = — /p(e”)e_m dzx.
27r_7r

W konsekwencji
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Mozemy zalozy¢, ze a, # 0. Stad rowniez a_, # 0. Wtedy
p(z)= > @z = > a1 F=> azF=pEz").

k=—n =—n k=—n
To natychmiast daje pierwsza cze$¢ tezy lematu. Wielomian ¢(z) = 2"p(2)
dzieli sie zatem przez (z — 20)(z — Zp ). Stad ¢(z) ma przedstawienie

q(2) = ~Zo(z — 20)(2 — 7, (=),
gdzie ¢(z) jest wielomianem stopnia 2n — 2. Wtedy
p(2) = —Zoz (2 — 20) (2 — 2 )p(2),
gdzie p(z) = 2~ Vg(z). Dalej dla z = € mamy
—Zoz Mz —20)(2 = Z3") = (2 — 20)(Z — Zo) > 0.

Zatem Im p(e'®) = 0. O

Lemat 2. Niech p(z) = > axz” oraz p(e™™) = p(e™®) dla x € R. Dla

k=—n

liczby zy # 0 2z warunku p(z) = 0 wynika, ze p(zy') = 0. Ponadto p(z) =

n—1

e — )z — s B), gdsie B) = Y by oraz Be) = p(e)
k=—(n—1)

Dowaéd. Mamy

1 7 17
a_g /p(e””)e’kw dx = by /p(e”)e_m dr = ag.
T

T o

Wtedy
p(z’l) = Z apz = Z a2k = Z agz” = p(2).
k=—n k=—n k=—n

Stad otrzymujemy pierwsza czesé tezy.
Wielomian ¢(z) = 2"p(z) dzieli si¢ zatem przez (z — 20)(z — 25 '). Stad
¢(z) ma przedstawienie

q(2) = (2 = 20)(2 — 2 )d(=),
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gdzie ¢(z) jest wielomianem stopnia 2n — 2. Wtedy
p(z) = 271z = 20)(2 — 2 )p(2),
gdzie p(z) = 2~ V(). Ponadto funkcja
b(z) = 27N (s — )z — 55 1) = 24 27— 2 — 5

spetia 4 '
b(e™™) = b(e").

Z tego wynika, ze réwniez p(e~™®) = p(e™®). O

Lemat 3. Niechp(z) = > apz* orazp(e®) > 0 dlax € R. Jeslip(e™) = 0,
k=—n
to p(z) ma przedstawienie

p(z) = =727 (2 — €7)*p(2),

n—1

gdzie p(z) = > bpz" oraz p(e®) > 0.
k=—(n—1)

Dowéd. Jesli p(e®®) = 0, to funkcja p(e'*) osigga minimum w punkcie z.
Stad
d

%p(em)‘m:ro =0.

Ale
d

dzx
Stad p/(e™) = 0. Wielomian ¢(z) = 2"p(z) dzieli si¢ zatem przez (z — €")?,

_ pt®o

czyli q(z) = —e7™0(z —€™)2¢(z), gdzie ¢(z) ma stopien 2n — 2. Mamy wtedy

- _ixQ

P(€)amao = i€™0P' (™).

p(z) — _e—izoz—l(z o eixo)Zﬁ(Z)’
gdzie p(z) = 27" V§(2). Dalej dla z = ' mamy
—e 0y (2 — ) = (2 — ) (Z — e70) > 0.

Zatem p(e™®) > 0. O
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Z Lematéw 11 3 wynika, ze jesli p(z Z arz®, a, # 0, oraz p(e™®) > 0
k=—-n
dla z € R, to p(z) ma przedstawienie w postaci

p(z) = apz™" H(z —z)( *’1 1:[ ')

gdzie 0 < |z;] < 1 oraz s +r = n. Niech

z) = f[l(z —z) [ (= ')

k=1
Zauwazmy, ze dla |z| = 1 mamy

2 =2 =gl e — 2l =1z 7z = 2l

Stad ‘ . A
p(e™) = |p(e™)] = lan|lz2| 7" |2 Mg (™).

Ktadziemy h(z) = cg(2), gdzie ¢ = |a,|"?|z1| 7% ... |25~/ Wtedy
p(e’®) = [h(e™)]*.

Jedli dodatkowo funkcja p(z) spelnia, p(e™*) = p(e'), to z Lematu 2 krot-
noéci pierwiastkow zy i z; ' sa takie same. To oznacza, ze réwniez krotnosci
pierwiastkéw zg 1 Zg sa takie same. Wtedy funkcja g(z) ma przedstawienie w
postaci

s/

t
g(Z) (Z—]_ Z+1 H Z—yl H Z_Z] H Z_elil?k C_ixk)7

gdzie z; sy pierwiastkami nierzeczywistymi o module mniejszym niz 1, y,
sy pierwiastkami rzeczywistymi o module mniejszym niz 1 oraz e+ # £1.
Wielomian g(z) ma wtedy wspotczynniki rzeczywiste.
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