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RYSZARD SZWARC

Abstract. The convergence of the algorithm for solving convex
feasibility problem is studied by the method of sequential averaged
and relaxed projections. Some results of H. H. Bauschke and J. M.
Borwein are generalized by introducing new methods. Examples
illustrating these generalizations are given.

1. Introduction and preliminaries

Many problems in applied mathematics deal with finding a point in
the intersection of a family of convex sets in Euclidean or Hilbert space.
The solution can be achieved in algorithmic way as a limit of compo-
sition of projection onto these convex sets. Due to its importance the
problem has been studied heavily for many years. We refer to [1] where
the reader can find an extensive account of theorems and literature re-
lated to the problem, as well as a general approach which captures the
earlier methods and results. Other related results can be found in [2],
[3], [4], [5], [6] and [7]. In the present work we will generalize, in case of
finite dimension, one of the main theorems of [1], concerning the con-
vergence of the algorithm. Firstly we will improve the estimate for the
average of relaxed projections, secondly we will admit repetitive con-
trol, and lastly we will make use of perturbation theorem, which allows
to ignore projections with small weight coefficients. The first general-
ization is valid also for infinite dimensional inner product spaces. All
these were possible by applying new techniques and new proofs as well.

For a closed convex set C ⊂ Rd let PC denote the projection onto C.
For x ∈ Rd the symbol d(x,C) will denote the distance from x to C.
Assume we are dealing with a fixed finite family of closed convex sets
C1, C2, . . . , CN . For a sequence of relaxation parameters α1, . . . , αN
such that 0 ≤ αi ≤ 2 and numbers λ1, . . . , λN such that 0 ≤ λi ≤ 1,

2000 Mathematics Subject Classification. Primary 49M45.
Key words and phrases. convex set, weighted projections, relaxation.

1



2 RYSZARD SZWARC∑N
i=1 λi = 1 we will consider the weighted averages

N∑
j=1

λj{(1− αj)I + αjPCj
} = I −

N∑
j=1

λjαj(I − PCj
).

It is well known that every operator PCj
is firmly nonexpansive (see

[1, Facts 1.5]), thus these weighted averages are nonexpansive as well.
Since the expressions depend only on the products λiαi we will intro-
duce the set

B =

{
β = (β1, . . . , βN)

∣∣∣∣∣ βi ≥ 0,
N∑
i=1

βi ≤ 2

}
and define for β ∈ B

(1) Qβ = I −
N∑
j=1

βj(I − PCj
).

Remark. Observe that for any β ∈ B there exist relaxation param-
eters α1, . . . , αN and average parameters λ1, . . . , λN such that βi =
λiαi. Indeed, if

∑N
k=1 βk > 0 we may set αi =

∑N
k=1 βk and λi =

βi

(∑N
k=1 βk

)−1
. On the other hand if βi = 0 for any i we take αi = 0

and λi = 1/N for any i. Therefore every operator Qβ is nonexpansive.
Remark. All the results in this work remain valid if we replace PCi

with a firmly nonexpansive mappings Ti such that Ti(c) = c for c ∈ Ci
(see [1, p. 370]).

2. Auxiliary results

Proposition 1. For any x ∈ Rd and any c ∈ C1 ∩ C2 ∩ . . . ∩ CN we
have

‖Qβ(x)− c‖2 ≤ ‖x− c‖2 −
N∑
j=1

(2− βj
κj

)βj‖x− PCj
(x)‖2,

where κ1, κ2, . . . , κN are any nonnegative numbers such that
∑N

j=1 κj = 1.

Remark. We set βj/κj = 0 whenever βj = 0. If βj > 0 and κj = 0 we
set βj/κj = +∞.

Proof. With no loss of generality we may assume that c = 0. Then by
the convexity of each set Cj and the fact that PCj

is firmly nonexpansive
we get

〈PCj
(x), PCj

(x)〉 ≤ 〈x, PCj
(x)〉,
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which implies

〈PCj
(x), x− PCj

(x)〉 ≥ 0.

Hence

(2) ‖Qβx‖2 =

∥∥∥∥∥x−
N∑
j=1

βj(x− PCj
(x))

∥∥∥∥∥
2

= ‖x‖2 +

∥∥∥∥∥
N∑
j=1

βj(x− PCj
(x))

∥∥∥∥∥
2

− 2
N∑
j=1

βj〈x, x− PCj
(x)〉

= ‖x‖2 +

∥∥∥∥∥
N∑
j=1

βj(x− PCj
(x))

∥∥∥∥∥
2

− 2
N∑
j=1

βj ‖x− PCj
(x)‖2

− 2
N∑
j=1

βj 〈PCj
(x), x− PCj

(x)〉

≤ ‖x‖2 +

∥∥∥∥∥
N∑
j=1

βj(x− PCj
(x))

∥∥∥∥∥
2

− 2
N∑
j=1

βj ‖x− PCj
(x)‖2.

Let κ1, κ2, . . . , κN satisfy the assumptions. Then by the convexity of
the function x 7→ ‖x‖2 we obtain

(3)

∥∥∥∥∥
N∑
j=1

βj(x− PCj
(x))

∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
j=1

κjκ
−1
j βj(x− PCj

(x))

∥∥∥∥∥
2

≤
N∑
j=1

β2
j

κj
‖x− PCj

(x)‖2.

Combining (1) and (2) concludes the proof. �

Remark. Setting

κj =
βj∑N
k=1 βj

implies

(4) ‖Qβ(x)− c‖2 ≤ ‖x− c‖2 −
(

2−
∑N

k=1 βk

) N∑
j=1

βj‖x− PCj
(x)‖2

the inequality obtained in [1, Lemma 3.2(ii)].
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Theorem 1. Given a family of convex sets C1, . . . , CN with nonempty
intersection C. Let β ∈ B and I ⊂ {1, 2, . . . , N}. Then for any x ∈ Rd

and any c ∈ C we have

‖Qβ(x)− c‖2 ≤ ‖x− c‖2 −min
i∈I

νi max
i∈I

d2(x,Ci),

where

νi =
2βi

(
2−

∑N
k=1 βk

)
βi + 2−

∑N
k=1 βk

.

In particular the inequality holds when I is the set of active indices,
i.e.

(5) I = {i | 1 ≤ i ≤ N, βi > 0}

Proof. Fix i ∈ I and set

κj =

{
1
2
βj j 6= i,

1− 1
2

∑
j 6=i βj j = i.

On substituting theses values into the inequality of Proposition 1 we
obtain

‖Qβ(x)− c‖2 ≤ ‖x− c‖2 − νi d2(x,Ci) ≤ ‖x− c‖2 −min
k∈I

νk d
2(x,Ci).

Now maximizing with respect to i ∈ I gives the conclusion. �

3. Main result

Theorem 2. Fix a family of convex sets C1, . . . , CN with nonempty
intersection C. Given a sequence β(n) ∈ B. Let I(n) denote the set
of active indices for β(n). Assume that every index i ∈ {1, 2, . . . , N}
occurs in I(n) for infinitely many n. Let nk be positive integers such
that nk−1 < nk and

{1, 2, . . . , N} ⊂ I(nk−1) ∪ I(nk−1+1) ∪ . . . ∪ I(nk−1),

i.e. every index occurs at least once for n such that nk−1 ≤ n < nk.
For

ν
(n)
i =

2β
(n)
i

(
2−

∑N
k=1 β

(n)
k

)
β
(n)
i + 2−

∑N
k=1 β

(n)
k

.

let
ν(k) = min{ν(n)i |nk−1 < n ≤ nk, i ∈ I(n)}.

Assume that

(6)
∞∑
k=1

ν(k) = +∞.
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Then for any x(0) ∈ Rd the sequence x(n) defined as

x(n) = Qβ(n)(x(n−1)), n ≥ 1

is convergent to a point in C.

Remark. This result generalizes [1, Thm 3.20(ii)] (see also [1, Cor.
3.25]) in two essential aspects. First of all it allows repetitve control
while [1, Thm 3.20] could afford only intermittent control, i.e. when

the sequence nk is of the form nk = kp. Secondly the coefficients ν
(n)
i

are smaller than µ
(n)
i , introduces in [1] as

µ
(n)
i = 2β

(n)
i

(
2−

N∑
k=1

β
(n)
k

)
.

For example let N = 2 and

β
(n)
1 =

1

n
, β

(n)
2 = 2− 2

n
.

The algorithm is then 1-intermittent, hence we can take nk = k and
Ik = {1, 2}. Thus

∞∑
k=1

min{µ(k)
1 , µ

(k)
2 } < +∞,

∞∑
k=1

min{ν(k)1 , ν
(k)
2 } = +∞.

Therefore Theorem 3.20 of [1] does not apply while our Theorem 2
does.

Proof. With no loss of generality we may assume that 0 ∈ C. For
u(0) ∈ Rd and n ≥ 1 let u(n) = Qβ(n)(u(n−1)). By Theorem 1 we get

(7) ‖u(n)‖2 ≤ ‖u(n−1)‖2 − min
i∈I(n)

ν
(n)
i max

i∈I(n)
d2(u(n−1), Ci)

Iterating (7) leads to

(8) ‖u(n)‖2 ≤ ‖u(0)‖2 −
n∑

m=1

min
i∈I(m)

ν
(m)
i max

i∈I(m)
d2(u(m−1), Ci)

≤ ‖u(0)‖2 − min
0<m≤n

i∈I(m)

ν
(m)
i max

1≤m≤n

i∈I(m)

d2(u(m−1), Ci)

In order to complete the proof of Theorem 2 we will make use of the
following lemma.

Lemma 1. Given a family of convex sets C1, . . . , CN with nonempty
intersection C and a sequence β(n) ∈ B. Let I(n) denote the set of active
indices for β(n). Assume that every index i ∈ {1, 2, . . . , N} occurs in
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I(n) for at least one n. Then for any positive number R there exists a
nondecreasing and positive function ηR : (0,+∞)→ (0,+∞) such that

max
n≥1

i∈I(n)

d2(u(n−1), Ci) ≥ ηR(d(u(0), C))

for any u(0) with ‖u(0)‖ ≤ R and u(0) /∈ C. The function ηR is indepen-
dent of the choice of the sequence β(n).

Proof. Fix r > 0 and consider the set

Br,R = {u(0) ∈ Rd : ‖u(0)‖ ≤ R, d(u(0), C) ≥ r}.

The proof will be completed if we show that for any u(0) ∈ Br,R there
exists a positive number ηR(r) such that

max
n≥1

i∈I(n)

d2(u(n−1), Ci) ≥ ηR(r).

Suppose, by contradiction, that for any m ∈ N there exist vectors

u
(0)
(m) ∈ BR, and a sequence β

(n)
(m) ∈ B, satisfying the assumptions of

Lemma 1, such that

(9) max
n≥1

i∈I(n)
(m)

d2(u
(n−1)
(m) , Ci) ≤

1

m

where

u
(n)
(m) = Q

β
(n)
(m)

(u
(n−1)
(m) ), n ≥ 1.

By compactness of Br,R we may assume that x
(m)
0

m→ y and y ∈ Br,R.

Consider the sets I
(1)
(m). Some indices of {1, 2, . . . , N} occur for infinitely

many m. Let A1 denote those indices. Clearly we may assume, even-
tually by restricting to large values of m, that only indices of A1 may

occur in I
(1)
(m), and each index does so infinitely many m. Therefore,

fixing n = 1 and taking the limit in (9) when m→∞ yield y ∈ Ci for
any i ∈ A1. If A1 = {1, 2, . . . , N}, then y ∈ C, which is a contradiction
with y ∈ Br,R. Otherwise we have A1 ( {1, 2, . . . , N}. Since for any

fixed m every index of {1, 2, . . . , N} occurs in I
(n)
(m) at least for one n,

there exists the least number lm such that I
(lm)
(m) \A1 6= ∅. Observe that

Qβ(y) = y for any β ∈ B such that the set of active indices I of β is
contained in A1. Therefore

(10) y = Q
β
(lm−1)
(m)

Q
β
(lm−2)
(m)

. . . Q
β
(2)
(m)

Q
β
(1)
(m)

(y).
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Define

(11) ũ
(1)
(m) := u

(lm−1)
(m) = Q

β
(lm−1)
(m)

Q
β
(lm−2)
(m)

. . . Q
β
(2)
(m)

Q
β
(1)
(m)

(u
(0)
(m)).

Since the operators Q
β
(k)
(m)

are nonexpansive we obtain

(12) d(ũ
(1)
(m), y) ≤ d(u

(0)
(m), y).

Hence ũ
(1)
(m)

m→ y.

Consider now the sets I
(lm)
(m) . Each of these sets contains elements

which do not belong to A1. Let A2 denote those indices outside A1

which occur for infinitely many values of m.. By restricting to large
values of m we may assume that only indices of A1 and A2 may occur

in I
(lm)
(m) and all indices of A2 occur for infinitely many values of m. Set

n = l(m) + 1 in (9). Then since ũ
(1)
(m) = u

(lm−1)
(m) we get

(13) max
i∈I(lm)

(m)

d2(ũ
(1)
(m), Ci) ≤

1

m
.

Therefore for any i ∈ A2 we have

d2(ũ
(1)
(m), Ci) ≤

1

m

for infinitely many m. As ũ
(1)
(m) tends to y, when m → ∞, we obtain

that y ∈ Ci for any i ∈ A2. Therefore y ∈ Ci for i ∈ A1 ∪ A2.
By repeating this argument at most N times we get that y ∈ Ci

for any i = 1, 2, . . . , N. Hence y ∈ C which contradicts the fact that
y ∈ Br,R. �

Let’s return to the proof of Theorem 2. With no loss of generality
we may assume that 0 ∈ C. Fix R > 0 and assume that ‖x(0)‖ ≤ R.
Then since every operator Qβ is nonexpansive we obtain ‖x(n)‖ ≤ R
for any n. Assume that

{1, 2, . . . , N} ⊂
nk−1⋃
j=nk−1

I(j).

Then combining Lemma 1 with u(0) = x(nk−1) and formula (8) yields

‖x(nk)‖2 ≤ ‖x(nk−1)‖2 − min
nk−1<n≤nk

i∈I(n)

ν
(n)
i max

nk−1<n≤nk

i∈I(n)

d2(x(n−1), Ci)

≤ ‖x(nk−1)‖2 − ν(k) ηR(d(x(nk−1), C)).
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This implies that the series

∞∑
k=1

ν(k) ηR(d(x(nk−1), C))

is convergent. Since the operators Qβ are nonexpansive, the sequence
d(x(n), C) is nonincreasing. Therefore, by assumptions made on the co-

efficients ν
(n)
i , we obtain that ηR(d(x(n), C))

n→ 0.Hence d(x(n), C)
n→ 0.

Since x(n) is bounded, it contains a convergent subsequence x(nm). De-
note its limit by c. Then c ∈ C. By Proposition 1 the sequence ‖x(n)−c‖
is nonincreasing. Therefore, it tends to zero, i.e. x(n)

n→ c. �

4. Perturbation

Proposition 2. Given a family of convex sets C1, . . . , CN with nonempty

intersection C and a sequence β̃(n) ∈ B. Assume that for any m ∈ N
and x ∈ Rd the sequence

Qβ̃(n)Qβ̃(n−1) . . . Qβ̃(m)(x)

is convergent to an element of C as n → ∞. Let a sequence β(n) ∈ B
satisfy

∞∑
n=1

N∑
i=1

|β(n)
i − β̃

(n)
i | <∞.

Then for any x ∈ Rd the sequence

Qβ(n)Qβ(n−1) . . . Qβ(1)(x)

is convergent to an element of C as n→∞.

Proof. By (1) we have

(14) d(Qβ(k)(y), Qβ̃(k)(y)) ≤
N∑
j=1

|β(k)
j − β̃

(k)
j | ‖PCj

y − y‖

≤
N∑
j=1

|β(k)
j − β̃

(k)
j | d(y, C).

Denote for simplicity

Qn := Qβ(n) , Q̃n := Qβ̃(n)

and

x(m) = QmQm−1 . . . Q1(x).
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Then

d(x(n), C) = d(QnQn−1 . . . Qm+1(x
(m)), C)

≤
n∑

k=m+1

d(Q̃n . . . Q̃k+1Q̃k(x
(k−1)), Q̃n . . . Q̃k+1Qk(x

(k−1)))

+ d(Q̃nQ̃n−1 . . . Q̃m+1(x
(m)), C)

≤
n∑

k=m+1

d(Q̃k(x
(k−1)), Qk(x

(k−1))) + d(Q̃nQ̃n−1 . . . Q̃m+1(x
(m)), C)

≤
n∑

k=m+1

N∑
j=1

|β(k)
j − β̃

(k)
j | d(x̃(k−1), C) + d(QnQn−1 . . . Qm+1(x̃

(m)), C)

≤
n∑

k=m+1

N∑
j=1

|β(k)
j − β̃

(k)
j | d(x,C) + d(Q̃nQ̃n−1 . . . Q̃m+1(x

(m)), C)

Now the conclusion follows from the assumptions. Indeed, we may
assume that d(x,C) > 0 as otherwise x(n) = x ∈ C for any n. Let m
be large so that

∞∑
k=m+1

N∑
j=1

|β(k)
j − β̃

(k)
j | <

ε

2d(x,C)
.

Next let n be large so that

d(Q̃nQ̃n−1 . . . Q̃m+1(x
(m)), C) < ε/2.

Thus d(x(n), C) < ε for n large. Hence d(x(n), C)→ 0 as n→∞. This
implies that x(n) tends to a point in C (see the end of the proof of
Theorem 2). �

Corollary 1. Fix a family of convex sets C1, . . . , CN with nonempty
intersection C. Given a sequence β(n) ∈ B. Let I(n) denote the set of
active indices for β(n) and let J (n) be a sequence of subsets of I(n) such
that

∞∑
n=1

∑
i∈I(n)\J(n)

β
(n)
i < +∞.

Assume that every index i ∈ {1, 2, . . . , N} occurs in J (n) for infinitely
many n. Let nk be positive integers such that nk−1 < nk and

{1, 2, . . . , N} ⊂ J (nk−1) ∪ J (nk−1+1) ∪ . . . ∪ J (nk−1),
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i.e. every index occurs at least once for n such that nk−1 ≤ n < nk.
For

ν
(n)
i =

2β
(n)
i

(
2−

∑N
k=1 β

(n)
k

)
β
(n)
i + 2−

∑N
k=1 β

(n)
k

let

ν
(k)
J = min{ν(n)i |nk−1 < n ≤ nk, i ∈ J (n)}.

Assume that
∞∑
k=1

ν
(k)
J = +∞.

Then for any x(0) ∈ Rd the sequence x(n) defined as

x(n) = Qβ(n)(x(n−1)), n ≥ 1

is convergent to a point in C.

Proof. Define

β̃
(n)
i =

{
β
(n)
i if i ∈ J (n),

0 if i ∈ I(n) \ J (n).

Clearly we have
N∑
k=1

β̃
(n)
k ≤

N∑
k=1

β
(n)
k .

Hence ν̃
(n)
i ≥ ν

(n)
i for i ∈ J (n), which implies ν̃(k) ≥ ν

(k)
J . Therefore, the

sequence β̃(n) satisfies the assumptions of Theorem 2. Consequently
the sequence

Qβ̃(n)Qβ̃(n−1) . . . Qβ̃(m)(x)

is convergent to an element of C as n → ∞. The sequences β(n) and

β̃(n) satisfy
∞∑
n=1

N∑
i=1

|β̃(n)
i − β

(n)
i | <∞.

Thus applying Proposition 1 concludes the proof. �

Example. Consider N = 3 and

β
(2n)
1 = 1

n2 , β
(2n)
2 = 1

n
, β

(2n)
3 = 2− 2

n
,

β
(2n+1)
1 = 1

n
, β

(2n+1)
2 = 1

n2 , β
(2n+1)
3 = 2− 2

n
.

The scheme is 1-intermittent, i.e. I(n) = {1, 2, 3} for any n. Observe
that the assumptions of Theorem 2 are not satisfied. Indeed, with
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nk = k the series in (6) is convergent. Now, consider this scheme as
2-intermittent and let

J (2n) = {2, 3} J (2n+1) = {1, 3}.
Then we can apply Corollary 1 to obtain that this scheme leads to the
convergence of the algorithm.

5. Intermittent control

The assumptions of Theorem 2 depend on the behaviour of the co-

efficients β
(n)
i where i ∈ I(n), i.e. those coefficients which are positive.

Roughly the conclusion holds if these coefficients are not too small and

the sums s(n) =
∑N

i=1 β
(n)
i do not approach the value 2 too fast. By

Corollary 1 we can allow some small coefficients β
(n)
i by using pertur-

bation technique. However in special case of intermittent control and
when the sums s(n) stay away from 2 we can entirely liberate ourselves

from assumptions on all positive coefficients β
(n)
i .

Theorem 3. Fix a family of convex sets C1, . . . , CN with nonempty
intersection C. Given a sequence β(n) ∈ B such that

s(n) =
N∑
i=1

β
(n)
i ≤ 2− ε,

for some constant ε > 0. Let I(n) denote the set of active indices for
β(n) and let J (n) be a sequence of subsets of I(n). Assume that there is
a positive integer p such that for any k we have

{1, 2, . . . , N} ⊂ J ((k−1)p) ∪ J (k−1)p+1) ∪ . . . ∪ J (kp−1).

Let

ν
(k)
J = min{β(n)

i | (k − 1)p < n ≤ kp, i ∈ J (n)}.
Assume that

∞∑
k=1

ν
(k)
J = +∞.

Then for any x(0) ∈ Rd the sequence x(n) defined as

x(n) = Qβ(n)(x(n−1)), n ≥ 1

is convergent to a point in C.

Proof. First observe that since s(n) ≤ 2− ε we have

2ε

2 + ε
β
(n)
i ≤ ν

(n)
i =

2β
(n)
i (2− s(n))

β
(n)
i + 2− s(n)

≤ 2β
(n)
i .
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Therefore we can replace the coefficients ν
(n)
i with β

(n)
i when applying

Theorem 2 and Corollary 1.
Let nk = kp. If for

ν(k) = min{β(n)
i | (k − 1)p < n ≤ kp, i ∈ I(n)}

we have

(15)
∞∑
k=1

ν(k) = +∞

we can apply Theorem 2 to get the conclusion. Thus it suffices to
consider the case when

(16)
∞∑
k=1

ν(k) < +∞.

Let

A = {k ∈ N | (∃n)(∃ i) (k− 1)p < n ≤ kp, i ∈ I(n) \J (n), ν(k) = β
(n)
i }.

For every k ∈ A choose nk and ik such that

(k − 1)p < nk ≤ kp, ik ∈ I(n) \ J (n), ν(k) = β
(nk)
ik

.

By (16) we have
∞∑
k∈A

β
(nk)
ik

< +∞.

Define the new coefficients β̃
(n)
i by nullifying the coefficients β

(n)
i for

i = ik and n = nk, i.e. let

β̃
(n)
i =

{
0 if n = nk, i = ik for some k

β
(n)
i otherwise

By construction the sums s̃(k) stay away from 2 since s̃(k) ≤ s(k). More-

over J (n) ⊂ Ĩ(n), where Ĩ(n) denote the set of active indices for β̃(n). By
Corollary 1 the convergence of the algorithm for the new coefficients
implies its convergence for the original ones. Thus we can restrict our-

selves to the coefficients β̃
(n)
i . Clearly for i ∈ J (n) we have β̃

(n)
i = β

(n)
i .

If the new coefficients satisfy (15) we are done by Theorem 2. If not,
we can perform the same transformation as before. After at most pN
iterations we will obtain a sequence to which we can apply Theorem 2
and which differs from original sequence as in Corollary 1. �
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Example Let N = 3 and

β
(3n)
1 = 1, β

(3n)
2 = 1

n
, β

(3n)
2 = 1

n2 ,

β
(3n+1)
1 = 1

n
, β

(3n+1)
2 = 1, β

(3n+1)
2 = 1

n2 ,

β
(3n+2)
1 = 1

n2 , β
(3n+2)
2 = 1

n
, β

(3n+2)
2 = 1.

We have I(n) = {1, 2, 3}. Let

J (3n) = {1}, J (3n+1) = {2}, J (3n+2) = {1}

and p = 3. We have ν
(k)
J = 1 for any k. Hence all the assumptions of

Theorem 3 are satisfied.
Acknowledgment. I am very grateful to Andrzej Cegielski for his
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