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Nonnegative Linearization for Polynomials Orthogonal
with Respect to Discrete Measures

Wojciech Motkowski and Ryszard Szwarc

Abstract. We give conditions for the coefficients in three term recurrence relations
implying nonnegative linearization for polynomials orthogonal with respect to measures
supported on convergent sequences of points. The previous methods were unable to
cover this case.

1. Introduction

If P,(X) is a sequence of orthogonal polynomials, thenlithearization coefficientare
defined by

(1) PaOOPm() = D g(n, m, k) P(x).
k

By the orthogonality relation each coefficiggih, m, k) can be computed as the integral

of the triple produck, Py, P with respect to the orthogonality measure. For many polyno-
mials, like ultraspherical polynomials and thgianalogues, the coefficienggn, m, k)

can be calculated explicitly. However, there are many orthogonal systems, including
nonsymmetric Jacobi polynomials, for which explicit formulas are not available.

The problem of determining if a given orthogonal polynomial system adnaits
negative product linearizatiofi.e., if all g(n, m, k) are nonnegative) is one of the most
important in the theory of orthogonal polynomials. The main reason is that the property
has many important consequences. Nonnegativity of linearization coefficients gives rise
to a convolution structure associated with the polynomials

There are general criteria, stated in terms of the recurrence relation (2), that the
polynomialsP, always satisfy (see [1], [4], [5], [6]). For example, the following criterion
have been shown in [5] and [6].

Let the polynomials?, satisfy the recurrence relation

(2 XPh(X) = anPny1(X) + BnPa(X) + yn—1Pa_1(X),
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wherean, yn > 0 andPy = 1 andP_; = 0. If the sequences$y,}, {an + vn_1},

and {Bn} are all nondecreasing anrg, > y,_1 for everyn, then the polynomialé$,

admit nonnegative product linearization. This criterion is strong enough to include many
classical polynomial systems; however, it cannot cover the case when the orthogonality
measure is supported on a sequence of points accumulating at somke jpothit case,

it can be shown that

anyn — 0, Bn — b.

One can easily check that no sequenggandy, can satisfy all the mentioned assump-
tions simultaneously.

An example of such a system, not covered by the results of this paper, are the so-called
little g-Legendre polynomials, & g < 1, orthogonal with respectta = Y2, qkaqk,
for which nonnegative linearization was proved by Koornwinder [3].

The aim of this paper is to give new criteria that can handle the case of coefficients
satisfyingan,yn — 0. In doing this, we will apply two different methods. Following
[4] we will use a combinatorial interpretation of linearization coefficiegts, m, k)
as a weighted sum over special paths connecting pénts) and(k, n) in the plane
lattice. Next, following [5], we will use the method of maximum principle for a discrete
boundary problem associated with the recurrence relation. This method will also be used
to cover the case of measures which are symmetric about the origin and supported on a
set{+a,} with a,  a. This is done in Section 5.

The main result of this paper is the following:

Theorem 1. Let the polynomials Psatisfy(2). Assume thas, is increasing and that
for every n the sequence

Um¥Ym

(Bn = Bm)(Bn — Bm+1)’

is a chain sequencé&hen the polynomials Radmit nonnegative product linearization

m=0,1,2...,n—2,

In particular, if 8, is increasing andnyn < (Bni2 — Bns1)? for everyn then, in view

of Corollary 1, P, admits nonnegative product linearization.

2. Preliminary Results

The mainresults of this paper can be stated in terms of chain sequences or positive definite
matrices. Recall that a sequen{og, us, ..., Uy) is called achain sequenciéthere exist
numbers(do, 01, ..., Gnt1), 0 < g < 1, satisfyingui = (1 — gj)gi;1forO<i <n A
complex matrix(a j )ﬂjzl is said to bepositive definitéf the inequality) " & jzz > 0

holds for every collectionay, . . ., z, of complex numbers. For the sake of completeness
we prove the following equivalence which can be derived from the Wall monograph [8].

Lemmal. Let(ug,us,...,U;_») be asequence of positive numbdrisen the follow-
ing conditions are equivalent

(i) (ug,us,...,Uu_») is achain sequence
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(i) The numbers (r, s), whereO <r < s < t, defined by
fr,r)y =1,
f(r,r+1 1,
f(r,s+1) = f(r,s)— f(r,s— Dus_1,

are all nonnegative
(i) The matrix A= (a j)i ;_;, where

ai = 1,
dii+1 = d+1i = /Ui-1,
8j =20 for i —j|> 1,

is positive definite

Proof. Assume that = (1 —g)gi+1, where0<g <landi=0,1,...,t -2
By induction onk > 0, we get

k
FOT+20 =D 001 G2 1(1=Gri2j+) (L= Gr2j42) - - (L= Grya0),
j=0

k
FOr+2k+1) = 001 Ori2j-1(1 = Gryzj )L — Grizj42) - (L= Gry2).
j=0

For complex numberz, ..., z; we recall the formula 16.10 from [8] to obtain
t t t—1

&,jz7 = Z |zi1* + Z\/Ui—l(zi Ziy1+Z412)
i i=1

i,j=1 i=1
t-1

= golza|® + Z 1Zv/1— g1+ Z11/G 2+ (1 — g-1)]z? > 0.
i—1

This shows that (i) implies (i) and (iii).

Now assume that all the numbefgr, s) are nonnegative. Note thdt(r,s) = 0
can occur only fos = t. Otherwise we can fix and take the smallest possilddor
which f(r,s) = 0. Thenr +1 <s <tandf(r,s—1) > 0. Next f(r,s+ 1) =
—f(r,s— 1)us_1 < 0, which is a contradiction.

Putgy = 0 andg; = ug. Now assumes < t and that we have defined &
01,02, ...,0s-1 < landthatf (0,k) = (1—01)--- (1—gk_1) holdsfork =1,2,...,s.
Then

fO,s+1) = (1-09)--(1-0-1)—(1—0g1)---(1—-0gs2)Us 1

=1-01) - 1-09s—2)(1—0gs—1—Us1) >0,

(> Ocanoccuris+1 =t). Sous_1 = (1—0s-1)gs forauniqueys satisfying0< gs < 1
fs+1l<torO<gs=<1lifs+1=t.Hence(ug uy,...,U_») isachain sequence.
This shows that (i) implies (i).
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Finally, if A is positive definite, then one can easily check that
0<det@ )}, = f(r-1s). [ ]
Assume that we are given two infinite sequen¢és Bi, ...), (Co, C1, ...) of real

numbers, the first one strictly increasing and the second positive. We will associate with
them a collection of numbefs(r, s,t), 0 <r < s <, defined by the rule:

Fa,r.t)=1, O<r<t,
Fr,r+1t) =6 — 5, 0<r <t,
Fr,s+1t)=F(,s,0)(Bi — Bs) — F(r,s—1,t)cs_1, 0<r <s«<t,

and a sequence of matricést) = (a(t); ; it,j=1 by putting

aii = Bt — Bi-1,
a)iitr=al)iy1i = /G-1,
at),; =0 for i —j|>1

Proposition 1 provides five equivalent forms of the hypothesis of Theorem 1.

Proposition 1. The following conditions are equivalent

(i) Foreveryt> 2the sequence
Cs
(B — Bs)(Br — Bst1)’
is a chain sequence
(i) The numbers F, s, t) are all nonnegative
(iii) The matrices &) are all positive definite
(iv) The determinantdetA(t) are all nonnegative
(v) The finite continued fractions

Ce—1l G2 Col
[Biy1 — Bi—1  |Bt+1— B2 |Bt+1 — Bo

s=0,1,...,t -2,

ﬂt-‘rl - lgt -

are all nonnegative

Before proving the proposition let us consider the following auxiliary continued frac-
tions:

Cs-1l Cs—2| Crl
B(r,s,t) = Bry1 — Bs — - —
T B — Ber i ez B — fr
0 <r < s <t. They satisfy the following recurrence:
B(s,s,t) = Bir1— Bs. O<s<t,
Cs—1

B(r,s,t) = —Bs— —— 0<
(.80 = fa=bs— 5o

Note that the continued fraction which appears in Proposition 1(v) is eqB&0td, t)
and that the consecutive denominatorsBif, s, t) are B(r,r,t), B(r,r + 1,t), ...,
B(r,s—1,1).
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Lemma 2. Suppose that 8, k, k) are well defined and nonnegative for allk s.
Then Bj, k, ) are well defined fof < j < k < I, k < s, and nonnegative if k< s.
Moreovey

() B(r,s,t) + priz— P < B(r,s,t+DforO<r <s<t;
(i) Br—1,st) <B(r,s,t)forl<r <s<t.

In particular, if B(0,s,s) > 0, then Br,s,t) are positive forall0 <r < s < t,
(r,t) #(0,9).

Proof. Fors = 0 the statement is obvious. Suppose it holds for seme0 and that
B(0, k, k) > 0 fork < s. Then, by inductionB(r, s + 1, t) are all well defined and

Cs
B(r,s+ 1 t) + Brsz — Bre1 = Ptz — Bst1 — B(r,s.t)
Cs
_ _—_ = B I’, S 13t 1
< :3t+2 ﬁSJrl B(r, S,t + 1) ( + + )

ifr<s+1l<tand
B(s+1s+Lt)+fir2—fit1 = Bia— Bst1=B(s+Ls+1Lt+1),

if s+ 1 < t. This proves (i) fors + 1.
Now we turn to proving (ii). We have

Cs
B(s,s+1Lt) = i1 —Bst1— ——— < Pry1 —Psy1 =B+ 1,5+ 1,1)
:3t+1 - ﬁs
and
Br —Ls+Lt) = fs—fort — —5
) ) - t+1 s+1 B(I’ _ 1’ S, t)
Cs
— ———— =B(,s+1,1),
< Bt41— Bs1 B(r.s 1) (r,s+1,1)
if r < s+ 1 <t. This completes the proof of the lemma. [ ]

Proof of Proposition 1. Putf(r,r,t) =1andforO<r <s<t:
F(,s,t)

(Bt — BBt — Bry) - (Bt — Bs—1)

Thenwe havef (r,r +1,t) =1forO<r <t, and

f(r,st)=

Cs—1

f(r, 1,t) = f(r,s,t)— f(r,s—1,t ,
R 7y T vy

forO<r <s<t.
Next observe that the positive definitenessAgf) is equivalent to that oB(t) =
(b(V)i.j); j—1, where

bt = 1,
C-1
b(t)ii+1=bM)itri = \/(ﬁt DG B)
b(t)i’j =0 for |i — ]| > 1.
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Inview of Lemma 1, this proves that conditions (i), (ii), and (iii) are equivalent. Moreover,
they imply (iv) because dei(t) = F (0, t, t).
Assume that

CS =
(Bt+1 — Bs)(Bt+1 — Bsr1)

(1 — 9s)0s+1, s=0,1,...,t—1,

wherego =0,0< 01, 02,...,0-1 < 1,0< g <1 Then by induction ors, we get

Ce_1l Go % g pod- g,

Pt B T B T~ Bos [Bres = Fo

Therefore the continued fractionin (v) is well defined and equi@ito, — 8;) (1—g;) > O.
Assume now that (v) holds. By Lemma 2, the quanBty, s, t) is well defined and
nonnegative for every & r < s < t. One can check that

F(,s t)=B(,r,t—1)B(r,r+1t—-1)---B(r,s—1,t—1),

hence allF (r, s, t) are nonnegative.

Finally, assume that dét(t) = F(0, t, t) is nonnegative for every > 0. We will
show the nonnegativity df (r, s, t) by induction ort. Fix t and suppose thé&t(j, k, )
is nonnegative whenevgr < k < | < t. As we noticed in the proof of Lemma 1, the
numbersF(j, k, |) are strictly positive forj < k < | < t. Thus the numbers

FOk+1,k+1)
FO,k K+ 1)

B, k, k) = , O0<k<t,

are well defined and nonnegative. Therefore, by Lemma 2, the quamitiek, |) are
also well defined and positive whenevex0j <k <1,k < t, (j,1) # (0, k). Since

FO,t+1t+1) =B(0,0t)B(0,1,1t)...B(0,t —1,t)B(0,t,t) > 0,

we also haveB(0, t,t) > 0, and hencd(r, s, t) > 0 forr < s < t. The latter implies
F(,s,t+1)>0foreveryr <s<t+1. [ |

The next corollary provides three sufficient and one necessary condition for simulta-
neous nonnegativity df (r, s, t).
Corollary 1. Suppose that one of the following conditions holds
(i) Foreverys> 0:

Cs—1

Cs < (Bs+2 — Bst1) (ﬂs+2 —Bs — m

) , with c.,=0.

(i) cs < (Bsy2 — Bsy1)? for every s> 0.
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(i) The infinite sequence
Cs
(Bs+1 — Bs)(Bs+2 — Bs+1)

is a chain sequence

Then Hr, s, t) are nonnegative forald <r <s <t.
On the other handf F (r, s, t) are all nonnegativethen

(3) CS E (/35+2 - IBS+1) (ﬂSJrZ - ﬁs) ) S = 07 1’ 29 cee

Proof. (i) We will proceed by induction. Assume th&(0, k, k) are nonnegative for

k < s. Then we have to prove that so is
Cs
B(O,s+1,s+1) = — - i
O,s+ +1 = Bsi2— Bst1 BO.ss+1)

i.e., that

Cs < (Bs+2 — Bs+1)B(0, 5,5+ 1).
By assumption we have

Cs Cs-1
Borz—Porn) = P27 P 5 g,
Cs—1
S Pse b g TBOS—Ls—1)
< Bsy2— Bs— G2 =B(0,s,s+1).

BO,s—1,s+1)

This shows that (i) yields the conclusion. Next observe that if condition (ii) holds, then
so does (i).
Finally, assume

Cs = (Bst1 — Bs) (Bs+2 — Bs+1) (1 — Us)Ust1,

where 0< go < 1and 0O< g < 1fori > 1. We will prove by induction that
B(0,s,8) > (Bsi+1 — Bs)(1 — gs). This is true fors = 0, and if it holds for everk < s,
then

BO.S+15S+1) = (Berz— fesr) (1 B (Bsy1— Bs)(1 — gs)gs+1>

B(0,s,s+1)
_ (Bsy1 — Bo)(1 — gs)gs+1)
B(O’ s7 S) + ﬂ5+2 - ﬂ5+l
(Bs+1— Bs)(1 — Gs)Ust1 )
S - Ms 1 -
(P2 = Ford) ( (Bsr1— B)(L— Qo) + Psrz2 — Por1
(Bsy2 — Bs+1)(1 — Gs41)-

On the other hand, iF (r, s, t) are all nonnegative, then

Cs < (Bsy2—Bs11)B(0, 8,5+ 1) < (Bsi2 — Bsr1)(Bsi2 — Bs). u

v

(Bsy2 — Bst+1) (1

%

v

Remark. Note that if3, is increasing and bounded then (3) implies thaends to 0.
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3. Motzkin Paths Method

This part contains the first proof of Theorem 1, which uses ideas ofthdié'and Stanton
[4] and Viennot [7]. Assume tha®, andg(n, m, k) satisfy (2) and (1), respectively.

DefineL to be the linear functional oR[x] satisfyingL (Py) = 1 andL (P,) = O for
n > 1. Notethatby (2) we have(x™P,(x)) = 0and, consequentli,(Pn(x) Py(x)) = 0
if m < n. We also have

Yoyi- - ¥Ym-1

(4) L (Pm(X)Pm(x)) = :
oo - - - Om—1

Indeed,
OlmL(Pm+1 Pm+1) = L(X Pm Pm+1) = VmL(Pm Pm)-
Now multiplying both sides of (1) by and applyingL yields
L(PcPnPn) = g(n. m, K)L(P).

Thus, we can examine the nonnegativitl Py P, P,) instead ofg(n, m, k). We have

L(XH<PmPn) = “kL(Pk+1PmPn)+/3KL(PkPmPn)+Vk—1L(Pk—1PmPn),
L(XH<PmPn) = anL(PkPmPn-H)+,3n|—(PkPmPn)+Vn—1L(PkPmPn—1)-

This implies the recurrence relation

5) akL (Pey1PmPn) = onL(PcPmPrs1) + vn—1L(PcPmPa1)
+ (Bn — B L (PcPmPn) — ¥k—1L (Pk—1PmPr).

In order to evaluaté (P<PP,) we need to introduce two sets of so-called Motzkin
paths. Define the following classes of directed edges (steps):

U={07D>G+1]j+1):i,j =0}

Ha = {(G, ), (+d, j) i, j >0},
whered > 1. For a pathf = (S, S;,.... S), with (§-1,S) € A € {U,D, Hy,
Ho, ...}, we define itgypeby t(f) = (A4, ..., Ap). Note that the paitS, t(f)) deter-
minesf.

Now fix k, m, n > 0 and denote b (k, m, n) the family of paths

f=&S,....%)
with § = (0, m), § = (K, n) and satisfyingS_1, §) € &/ UD U H; U H». Note that

by the definition of the classés, D, andHy, f lies at or above th&-axis. For such a
path we define itsveightto be

w®) = w(S, Hw(S, ) w(S-1. ),
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where for an edge = (S, S") with S = (i, j) we set

Yi if e e U,
I N ifee D,
WO =g g ifeen,
—i Vi if ec Hz.
Put
(6) w(k, m, n) = Z w(f).
feM (k,m,n)
Formulas (4) and (5) yield
YoY1i: - ¥Ym-1

(7 L(PcPmPn) = w(k, m, n).

doly -+ - m—1Q001 -« - k-1

By definition, the clas# (k, m, n) contains paths in which the only horizontal steps
allowed are of length 1 or.Zollecting all the consecutive horizontal steps together, into
single long horizontal steps in each pativbtk, m, n), gives rise to a new class of paths
denoted byM (k, m, n). Precisely, this is the class of paths= (To, T1, ..., Tgq) such
that

To = (0, m),
Tq == (k, n),

[e.¢]
(T-. T) € UUDU| JHa,
d=1

and with no two consecutive horizontal steps allowed, i.€T;if;, T)) € Hq, then either
i =qor (T, Tiy) ¢ Ugey Ha. 5

There is a natural mapping from M (k, m, n) onto M (k, m, n) given as follows.
If f € M(k,m,n) andt(f) = (Ay, ..., Ap), thent(A(f)) is defined by replacing in
t(f) every maximal block(Ay, Aut1, ..., Ay) of type (He,, Hess - --» He,), Where

€{1,2},byH,, e = ey +eur1+ -+ &

We can endovM (k, m, n) with the weight

() = Z w(f).
feM (k,m,n)
Al=g
In this way we get (see (6)):

(8) w(k, m,n) = ~Z > wh) = ~Z ().

geM (k,m,n) "m0 geM (k,m,n)

Moreover,
w(TOa Tlv ) Tq) = w(T()? Tl)w(Tlv T2) e w(qulv Tq)s

whereii(e) = w(e) if e e U UD. Fore = ((, 1), (s,t)) denoteh(r, s, t) = W(e).
Observe that

hr.s.t) =) wiepw(e) - w(ey),
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where the sum is taken over all patfe, e;, ..., €,) from (r,t) to (s, t) with & €
H1 U H>. Now by decomposing this sum in®® + £ @ according to whether the last
stepe, belongs tdH; or H», we get, fors —r > 2:

st = Y Pwen - wep + Y Twien - wiep)
= h.s— L0 — Bs-1) — h(r. s — 2. Ders 275 2,

with the initial valuesﬁ(r, rty=1 andﬁ(r, r+1,t)=p—6.

Assume thak < m < n. Then we havelo, Ty, ..., Tq € {(i,~j) :0<i < j}for
every(To, Ty, ..., Tq) € M(k, m, n). Puttingcs = asys leads toh(r, s, t) = F(r, s, t).
Therefore, if for0O< r < s < t allthe number$-(r, s, t) are nonnegative, then so are all
the weightsiv (e) and, by (8), soisv(k, m, n). This, in view of Proposition 1, concludes
the proof of Theorem 1. [ ]

4. Maximum Principle Method

In this section we prove Theorem 1 using a discrete version of the boundary value
problem associated with the recurrence relation (2).

The nonnegativity of the linearization coefficients does not depend on the normaliza-
tion of the polynomialsP,. Therefore we may replace the polynomi#&ls with their
positive multiplesQ,, and the new polynomials satisfy

9) XQn(X) = 01;1 Qny1(X) + ,Br,1 Qn(x) + VrLlQn—l(X)-

The fact that the polynomial®, and P, are the positive multiples of each other is
equivalent to

(10) IBrG = Bn, a;ﬂ/r; = Un¥n,
for n > 0. In particular, wherQ, are orthonormal they satisfy
(11) XQn(X) = AnQni1(X) + BnQn(X) + An—1Qn-1(X),

wherer2 = anyn. As had been observed in [5], nonnegative linearization is equivalent to
the following maximum principle (note the slight difference between (2) and the notation
in [5]).

Letu = u(n, m) denote a matrix defined fo, m > 0. Let L; andL , denote operators
acting onu according to the rule

Liu(n,m) = apu(n+1, M) + Bau(n, m) 4+ yp_1u(n — 1, m),
Lou(n,m) = onu(n, m+1) + Buru(n, m) + ym_gu(n, m—1).
LetH = L1 — L,. Assume the matrixi = u(n, m) satisfies

{Hu(n,m):O for n,m> 0,

(12) un,0)>0 for n>0.

The polynomialsP, admit nonnegative linearization if and only if every solution of the
boundary value problem (12) satisfigg, m) > 0 forn > m > 0. This leads to another
proof of Theorem 1.
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Proof. Instead of showing the nonnegative linearizatio@gfwe will show that prop-
erty for their positive multiple®, satisfying (2). The coefficients,, y, will be specified
later in the proof. Assuma is a solution of (12). We will proceed by induction am
Assumeu(t,s) > 0fort > s> 0 ands < m— 1. We will show thatu(n, m) > 0. By
assumption, we have

22
; = (1-9)gi+1.
T T A
where 0< gj <1forj=0,1,...,n—2 Set
o] :(ﬁn_ﬂj+l)gj+lv j:071a"'vn_2»
al =)\‘J’ Jzn—l,
Yi = (B — B -0, i=01..,n=-2

Hence the coefficients; andy; are nonnegative and y; = A2. This means the polyno-
mials satisfying (2) are positive multiples &,. Therefore it suffices to show nonnega-
tive linearization forP,. This in turn amounts to showing that the problem (12) admits
nonnegative solutions. By (12) and by the definitiortbfve have (see Figure 1):

m—-1
0= ZHu(n,s)
s=0

m—1

= —amaU(n. M+ > yp_gun —1.5)
s=0

m-1 m-1
+ Y equ(n+1,5) + Y csu(n,s)
s=0 s=0

m-1

—am-1U(n, M) + Y " ceu(n, s).
s=0

v

m

i
A4

Fig. 1.
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It can be easily computed that

Cm-1 = Bn— Bm-1— om-2,
Cs = PBn—PBs—ds—1— Vs, s=0,1....m—2

By the definition ofy; andy;, we get

Cn-1 = ,Bn - ,Bm—l - (ﬁn - ,Bm—l)gm—l = (,Bn - ,Bm—l)(l - gm—l) > O,
Cs = Bn— Bs— (Bn— Bs)Os — (Bn — Bs)(1—0s) = 0.

Thusu(n, m) > 0. [ |

5. The Symmetric Case

The orthogonal polynomialB, are calledsymmetridf they satisfy
Pa(=X) = (=1)"Pa(x).

This is equivalent to the fact that the orthogonality measure is symmetric about the origin
(in the determinate case). Another equivalent condition is that the general recurrence
relation for the symmetric polynomials is

(13) XPh(X) = anPny1(X) + yn_1Pa_1(X),
whereP_; =0, P, =1, and
(14) XQn(X) = AnQnt1(X) + An—1Qn-1(X),

An > 0O for orthonormalized symmetric polynomials. As we have seen in the previous
section, the polynomialB, andQ, are the multiples of each other if and only if

)\ﬁ = Un¥n.

By [6] nonnegative linearization of the polynomidPs satisfying (13) is equivalent
to the following boundary problem

Hu(,m =0 for n.m=>0,
(15) u@2n+1,00=0 for n>0,
u2n,0) >0 for n>0,

having only nonnegative solutiongn, m).

Theorem 2. Let the orthogonal polynomials {Fatisfy(14). Assume that either

(i) Forevery N=0,1,2,..., the sequence?/A3,_, forn =0,1,...,2N, isa
chain sequence

(i) Forevery N=0,1,2,..., the sequenck?/A3, forn=0,1,...,2N -1, isa
chain sequence

Then the polynomials Qadmit nonnegative product linearization
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Proof. We will show part (i) only, since part (ii) can be shown similarly.

Again as in the proof of Theorem 1 we consider the polynomialsatisfying (13)
and being positive multiples @,,.

Assumeu is a solution of (15). First observe that this implies

uinmy =0 for n+ modd

We will proceed by induction om. Assumeu(t,s) > Ofort > s> 0ands <m-— 1
We will show thatu(n, m) > 0.

We will consider two cases depending on the paritg.dfirst letn = 2N. If mis odd
u(n, m) = 0. Letm be an even number, i.an = 2M. By assumption we have

2

j
I (1—9j)9gj+1,
2N-1

where0<g; <1forj=0,1,...,2N — 2 Set

(16) aj = Aan-10j+1, j=0,1,...,2N -2,
(7) aj = Aj, j>=2N -1,
(18) Yp = Aon-1(1—Gp), j=01...,2N -2,
(19) Yi = A, j>2N -1

Hence the coefficients; andy; are nonnegative ang y; = /\12. Thus the polynomials
satisfying (13) are positive multiples €J,. By (15) we have (see Figure 2):

M-1 M
(20) 0= > Hu@N -1,25)+» Hu@N,2s—1)
s=0 s=1

M M-1
= —oom-1URN, 2M) + ) " Cos U@N — 1,25 — 1) + ) CU(2N, 25)

s=1 s=0
m
/
//
. (n,m)
[} . B
< 3 e}
o . >

iy

n

Fig. 2.
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M-1 M
+ > yan-2UN — 2,25) + > " aonU(2N + 1, 25 — 1).

s=0 s=1
The coefficientgs are given by

CoM-1 = V2N-1 — Q2M-2,
Cos—1 = VoN-1 — 02s—2 — V251,

Cos = O2N-1 — O2s-1 — Va2s.
By the definition ofw; andy; we obtain

Com-1 = Aan-1 — A2n-102m-1 > O,
Cos—1 = Aan-1— Aan-102s-1 — A2n-1(1 — Q2s-1) = O,
Cos = Aan-1— Aan-102s — Aon-1(1 — O25) = 0.
Thus, by the inductive hypothesis, all the terms in (20), exeegti_1U(2N, 2M), are

nonnegative. Henaa(n, m) = u(2N, 2M) > 0.
The case when bothh= 2N — 1 andm = 2M — 1 are odd numbers can be dealt with

similarly, by analyzing the expression

<

—1 M-1
0= HU@N - 1,25s—1) + ) " Hu(@N, 2s). =
s=0

I
i

S

By Wall's characterization of chain sequences we immediately get the following:

Theorem 3. Let the orthogonal polynomials fBatisfy(14). Assume that either
() Forevery N=1,2, ..., the matrix

AoN—_1 Ao 0 e 0 0
)\.0 )\.2N_1 )\.1 cee 0 0
(21) O Ak w00
0 0 0 -+ Aon—1 Aon—2
0 0 0 -+ Aon—2 ANz
is positive definite
(i) Forevery N=1,2,..., the matrix
AN Ao O . 0 0
)\.O )\ZN )\1 s 0 0
0 A1 Aan - 0 0
0 0 0 -+ Asn—1 Aon—1
0 0 0 -+ Xon—1 Aow

is positive definite

Then the polynomials Qadmit nonnegative product linearization
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Corollary 2.  Assume that either
(i) For every n> 0Othere holds

Aon—2 + Aon—1
Aon—1+ Aon

A2n+l,

IAIA

A2ng 1.

(i) For every n> 0there holds

Aon—1+Aon =< Aongo,
=<

Aon + Az2ne1 < Aong2.

Then the polynomials (xsatisfying(14) admit nonnegative product linearization

Proof. We will show (i) only, since the proof of (ii) is similar. By assumption, the
sequence.o,_; is increasing. Hence
Azn—2+ Aon-1 < Azni1r < Aon-1,
Aon—1+ Azn < Aonta < Aon-1,
for n < N. Thus, in matrix (21), the sum of absolute values of the entries off the main

diagonal in thenth row is less than the entry on the main diagonal of this row. This
implies that the matrix (21) is positive definite. ]

Remark. 1. If 12, is chosen to be decreasing then we can drop the second inequality
of assumption (i). A typical example of a sequengesatisfying assumption (i) can be
obtained by picking up an increasing sequenge; and then choosing a sequenggso
that (i) is satisfied. For example, the following choice.pBatisfies (i) if0< a < q < 1:
Aono1 = 1—0",
lon = aq'(1—q).

2. Assumel,, is bounded and satisfies assumption (i). SiRge ; is increasing it
is convergent, say ta, and therefore the sequenzg, tends to 0 The polynomials
satisfying (14) are orthonormal with respect to the meagur&he support ofu is

symmetric about 0 by (14) and it coincides with the spectrum of the following difference
operator or¢?:

(La)n = An@ns1+ An—18n-1.
We have
An—1+An <A and An—1+An — A.
Thus the norm ot is equal tox. Observe that

(L2@)n = AnAnt18ni2 + (A2 + 22 a0 + An_1An_28n_2.
Thus we have

)\.n)\.n+1 o O, n— oo,
A2, - A% n— oo
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Therefore the operatdr? — A1 is compact. We can conclude that the spectrum of the
operatorL consists ottA and the eigenvaluesx, wherex, is a sequence convergent
to A. Since the norm oL is equal tox, we may assume that,  A.

Thus also the support of the orthogonality measure consists of the seduenebere
Xn /' A. The same conclusion holdsif, satisfies (ii).

6. Relation Between Symmetric and Nonsymmetric Cases

Let polynomialsQ, satisfy (14). Then they satisfy
Qn(=X) = (=1)"Qn(x).

This implies that the polynomial®,, involve even powers ok only. Therefore the
functions defined as

Rn(Y) = Qzn(/Y)
are polynomials of degre® By iterating (14) twice and substituting= x> we get

YR (Y) = Aznrani1Ros1(Y) + (A3, + A3 1) Ra(Y) + Azn—2A2n-1Ra-1(Y).

By Theorem 2 we get the following:

Corollary 3. Assume the polynomials, Ratisfy

YR\(Y) = AnRnya(Y) + BaRa(Y) + An—1Ra-1(y)

and that there are coefficienis, such that

An = )¥2n)\2n+1,
Bn = )‘gn +)‘§n—l'

If the coefficients., satisfy the assumptions of Theor@nthe polynomials Radmit
nonnegative product linearization

Remark. In examples that can be constructed by using Corollary 3 combined with
Corollary 2 the sequeng®, is always increasing. Indeed, by the assumptions of Corol-
lary 2, we have

ﬂn+1 = )“gm—l + )‘gn-s-z
> (Aon—1+ Azn)? > A3, 1 + A3, = B

It would be interesting to determine if the conditiBp, 1 > Bn, for everyn > 0, is a
necessity for nonnegative linearization in the caskg.of> 0.

Acknowledgments. W. Mlotkowski has been partially supported by KBN (Poland) 2
PO3A 054 15 and R. Szwarc has been partially supported by KBN (Poland) 2 PO3A
048 15.



Polynomials Orthogonal with Respect to Discrete Measures 429

References

1. R. AsKey (1970): Linearization of the product of orthogonal polynomiala: Problems in Analysis
(R. Gunning, ed.). Princeton, NJ: Princeton University Press, pp. 223-228.

2. T.HIHARA (1978): An Introduction to Orthogonal Polynomials, Vol. 13. Mathematics and Its Applica-
tions. New York: Gordon and Breach.

3. T.H. KOORNWINDER(1995):Discrete hypergroups associated with compact quantum Gelfand prairs
Applications of Hypergroups and Related Measure Algebras (W. Connett at al., eds.). Contemp. Math.
183213-237.

4. A.DE MEDICIS, D. STANTON (1996): Combinatorial orthogonal expansionBroc. Amer. Math. Soc.,
123469-473.

5. R. SwARcC (1992):Orthogonal polynomials and a discrete boundary value probler8IAM J. Math.
Anal., 23:959-964.

6. R. SwWARC (1992):0rthogonal polynomials and a discrete boundary value problénSIAM J. Math.
Anal., 23:965-969.

7. G. VIENNOT (1983): Une treorie combinatoire des pol@mes orthogonauxéyéraux Lecture Notes,
UQAM.

8. H.S.WALL (1948): Analytic Theory of Continued Fractions. New York: D. van Nostrand.

W. Mlotkowski R. Szwarc

Institute of Mathematics Institute of Mathematics
Wrodaw University Wrodaw University

pl. Grunwaldzki 2/4 pl. Grunwaldzki 2/4
50-384 Wroclaw 50-384 Wroclaw
Poland Poland

mlotkow@math.uni.wroc.pl szwarc@math.uni.wroc.pl



