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Nonnegative Linearization for Polynomials Orthogonal
with Respect to Discrete Measures

Wojciech MÃlotkowski and Ryszard Szwarc

Abstract. We give conditions for the coefficients in three term recurrence relations
implying nonnegative linearization for polynomials orthogonal with respect to measures
supported on convergent sequences of points. The previous methods were unable to
cover this case.

1. Introduction

If Pn(x) is a sequence of orthogonal polynomials, then thelinearization coefficientsare
defined by

Pn(x)Pm(x) =
∑

k

g(n,m, k)Pk(x).(1)

By the orthogonality relation each coefficientg(n,m, k) can be computed as the integral
of the triple productPn PmPk with respect to the orthogonality measure. For many polyno-
mials, like ultraspherical polynomials and theirq-analogues, the coefficientsg(n,m, k)
can be calculated explicitly. However, there are many orthogonal systems, including
nonsymmetric Jacobi polynomials, for which explicit formulas are not available.

The problem of determining if a given orthogonal polynomial system admitsnon-
negative product linearization(i.e., if all g(n,m, k) are nonnegative) is one of the most
important in the theory of orthogonal polynomials. The main reason is that the property
has many important consequences. Nonnegativity of linearization coefficients gives rise
to a convolution structure associated with the polynomialsPn.

There are general criteria, stated in terms of the recurrence relation (2), that the
polynomialsPn always satisfy (see [1], [4], [5], [6]). For example, the following criterion
have been shown in [5] and [6].

Let the polynomialsPn satisfy the recurrence relation

x Pn(x) = αn Pn+1(x)+ βn Pn(x)+ γn−1Pn−1(x),(2)
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whereαn, γn > 0 and P0 = 1 and P−1 = 0. If the sequences{γn}, {αn + γn−1},
and {βn} are all nondecreasing andαn ≥ γn−1 for everyn, then the polynomialsPn

admit nonnegative product linearization. This criterion is strong enough to include many
classical polynomial systems; however, it cannot cover the case when the orthogonality
measure is supported on a sequence of points accumulating at some pointb. In that case,
it can be shown that

αnγn→ 0, βn→ b.

One can easily check that no sequencesαn andγn can satisfy all the mentioned assump-
tions simultaneously.

An example of such a system, not covered by the results of this paper, are the so-called
little q-Legendre polynomials, 0< q < 1, orthogonal with respect toµ =∑∞k=0 qkδqk ,

for which nonnegative linearization was proved by Koornwinder [3].
The aim of this paper is to give new criteria that can handle the case of coefficients

satisfyingαnγn → 0. In doing this, we will apply two different methods. Following
[4] we will use a combinatorial interpretation of linearization coefficientsg(n,m, k)
as a weighted sum over special paths connecting points(0,m) and(k,n) in the plane
lattice. Next, following [5], we will use the method of maximum principle for a discrete
boundary problem associated with the recurrence relation. This method will also be used
to cover the case of measures which are symmetric about the origin and supported on a
set{±an} with an ↗ a. This is done in Section 5.

The main result of this paper is the following:

Theorem 1. Let the polynomials Pn satisfy(2). Assume thatβn is increasing and that
for every n the sequence

αmγm

(βn − βm)(βn − βm+1)
, m= 0,1,2, . . . ,n− 2,

is a chain sequence. Then the polynomials Pn admit nonnegative product linearization.

In particular, ifβn is increasing andαnγn ≤ (βn+2− βn+1)
2 for everyn then, in view

of Corollary 1,Pn admits nonnegative product linearization.

2. Preliminary Results

The main results of this paper can be stated in terms of chain sequences or positive definite
matrices. Recall that a sequence(u0,u1, . . . ,un) is called achain sequenceif there exist
numbers(g0, g1, . . . , gn+1), 0≤ gi ≤ 1, satisfyingui = (1− gi )gi+1 for 0 ≤ i ≤ n. A
complex matrix(ai, j )

n
i, j=1 is said to bepositive definiteif the inequality

∑
ai, j zi z̄j ≥ 0

holds for every collectionz1, . . . , zn of complex numbers. For the sake of completeness
we prove the following equivalence which can be derived from the Wall monograph [8].

Lemma 1. Let (u0,u1, . . . ,ut−2) be a sequence of positive numbers. Then the follow-
ing conditions are equivalent:

(i) (u0,u1, . . . ,ut−2) is a chain sequence.
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(ii) The numbers f(r, s), where0≤ r ≤ s ≤ t, defined by

f (r, r ) = 1,

f (r, r + 1) = 1,

f (r, s+ 1) = f (r, s)− f (r, s− 1)us−1,

are all nonnegative.
(iii) The matrix A= (ai, j )

t
i, j=1, where

ai,i = 1,

ai,i+1 = ai+1,i = √ui−1,

ai, j = 0 for |i − j | > 1,

is positive definite.

Proof. Assume thatui = (1− gi )gi+1, where 0≤ gi ≤ 1 andi = 0,1, . . . , t − 2.
By induction onk ≥ 0, we get

f (r, r +2k) =
k∑

j=0

gr gr+1 . . . gr+2 j−1(1−gr+2 j+1)(1−gr+2 j+2) . . . (1−gr+2k−1),

f (r, r + 2k+ 1) =
k∑

j=0

gr gr+1 . . . gr+2 j−1(1− gr+2 j+1)(1− gr+2 j+2) . . . (1− gr+2k).

For complex numbersz1, . . . , zt we recall the formula 16.10 from [8] to obtain

t∑
i, j=1

ai, j zi z̄j =
t∑

i=1

|zi |2+
t−1∑
i=1

√
ui−1(zi z̄i+1+ zi+1z̄i )

= g0|z1|2+
t−1∑
i=1

|zi

√
1− gi−1+ zi+1

√
gi |2+ (1− gt−1)|zt |2 ≥ 0.

This shows that (i) implies (ii) and (iii).
Now assume that all the numbersf (r, s) are nonnegative. Note thatf (r, s) = 0

can occur only fors = t. Otherwise we can fixr and take the smallest possibles for
which f (r, s) = 0. Then r + 1 < s < t and f (r, s − 1) > 0. Next f (r, s + 1) =
− f (r, s− 1)us−1 < 0, which is a contradiction.

Put g0 = 0 and g1 = u0. Now assumes < t and that we have defined 0<
g1, g2, . . . , gs−1 < 1 and thatf (0, k) = (1−g1) · · · (1−gk−1) holds fork = 1,2, . . . , s.
Then

f (0, s+ 1) = (1− g1) · · · (1− gs−1)− (1− g1) · · · (1− gs−2)us−1

= (1− g1) · · · (1− gs−2)(1− gs−1− us−1) > 0,

(≥ 0 can occur ifs+1= t).Sous−1 = (1−gs−1)gs for a uniquegs satisfying 0< gs < 1
if s+ 1 < t or 0< gs ≤ 1 if s+ 1 = t. Hence(u0,u1, . . . ,ut−2) is a chain sequence.
This shows that (ii) implies (i).
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Finally, if A is positive definite, then one can easily check that

0≤ det(ai, j )
s
i, j=r = f (r − 1, s).

Assume that we are given two infinite sequences(β0, β1, . . .), (c0, c1, . . .) of real
numbers, the first one strictly increasing and the second positive. We will associate with
them a collection of numbersF(r, s, t), 0≤ r ≤ s ≤ t, defined by the rule:

F(r, r, t) = 1, 0≤ r ≤ t,
F(r, r + 1, t) = βt − βr , 0≤ r < t,
F(r, s+ 1, t) = F(r, s, t)(βt − βs)− F(r, s− 1, t)cs−1, 0≤ r < s< t,

and a sequence of matricesA(t) = (a(t)i, j )ti, j=1 by putting

a(t)i,i = βt − βi−1,

a(t)i,i+1 = a(t)i+1,i = √ci−1,

a(t)i, j = 0 for |i − j | > 1.

Proposition 1 provides five equivalent forms of the hypothesis of Theorem 1.

Proposition 1. The following conditions are equivalent:

(i) For every t≥ 2 the sequence

cs

(βt − βs)(βt − βs+1)
, s= 0,1, . . . , t − 2,

is a chain sequence.
(ii) The numbers F(r, s, t) are all nonnegative.

(iii) The matrices A(t) are all positive definite.
(iv) The determinantsdetA(t) are all nonnegative.
(v) The finite continued fractions

βt+1− βt − ct−1|
|βt+1− βt−1

− ct−2|
|βt+1− βt−2

− · · · − c0|
|βt+1− β0

are all nonnegative.

Before proving the proposition let us consider the following auxiliary continued frac-
tions:

B(r, s, t) = βt+1− βs − cs−1|
|βt+1− βs−1

− cs−2|
|βt+1− βs−2

− · · · − cr |
|βt+1− βr

,

0≤ r ≤ s ≤ t. They satisfy the following recurrence:

B(s, s, t) = βt+1− βs, 0≤ s ≤ t,

B(r, s, t) = βt+1− βs − cs−1

B(r, s− 1, t)
, 0≤ r < s ≤ t.

Note that the continued fraction which appears in Proposition 1(v) is equal toB(0, t, t)
and that the consecutive denominators ofB(r, s, t) are B(r, r, t), B(r, r + 1, t), . . . ,
B(r, s− 1, t).
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Lemma 2. Suppose that B(0, k, k) are well defined and nonnegative for all k< s.
Then B( j, k, l ) are well defined for0 ≤ j ≤ k ≤ l , k ≤ s, and nonnegative if k< s.
Moreover,

(i) B(r, s, t)+ βt+2− βt+1 ≤ B(r, s, t + 1) for 0≤ r ≤ s ≤ t ;
(ii) B(r − 1, s, t) < B(r, s, t) for 1≤ r ≤ s ≤ t .

In particular, if B(0, s, s) ≥ 0, then B(r, s, t) are positive for all0 ≤ r ≤ s ≤ t ,
(r, t) 6= (0, s).

Proof. For s = 0 the statement is obvious. Suppose it holds for somes ≥ 0 and that
B(0, k, k) ≥ 0 for k ≤ s. Then, by induction,B(r, s+ 1, t) are all well defined and

B(r, s+ 1, t)+ βt+2− βt+1 = βt+2− βs+1− cs

B(r, s, t)

< βt+2− βs+1− cs

B(r, s, t + 1)
= B(r, s+ 1, t + 1)

if r < s+ 1≤ t and

B(s+ 1, s+ 1, t)+ βt+2− βt+1 = βt+2− βs+1 = B(s+ 1, s+ 1, t + 1),

if s+ 1≤ t. This proves (i) fors+ 1.
Now we turn to proving (ii). We have

B(s, s+ 1, t) = βt+1− βs+1− cs

βt+1− βs
< βt+1− βs+1 = B(s+ 1, s+ 1, t)

and

B(r − 1, s+ 1, t) = βt+1− βs+1− cs

B(r − 1, s, t)

< βt+1− βs+1− cs

B(r, s, t)
= B(r, s+ 1, t),

if r ≤ s+ 1≤ t. This completes the proof of the lemma.

Proof of Proposition 1. Put f (r, r, t) = 1 and for 0≤ r < s ≤ t :

f (r, s, t) = F(r, s, t)

(βt − βr )(βt − βr+1) . . . (βt − βs−1)
.

Then we havef (r, r + 1, t) = 1 for 0≤ r < t, and

f (r, s+ 1, t) = f (r, s, t)− f (r, s− 1, t)
cs−1

(βt − βs−1)(βt − βs)
,

for 0≤ r < s< t.
Next observe that the positive definiteness ofA(t) is equivalent to that ofB(t) =

(b(t)i, j )ti, j=1, where

b(t)i,i = 1,

b(t)i,i+1 = b(t)i+1,i =
√

ci−1

(βt − βi−1)(βt − βi )
,

b(t)i, j = 0 for |i − j | > 1.
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In view of Lemma 1, this proves that conditions (i), (ii), and (iii) are equivalent. Moreover,
they imply (iv) because detA(t) = F(0, t, t).

Assume that

cs

(βt+1− βs)(βt+1− βs+1)
= (1− gs)gs+1, s= 0,1, . . . , t − 1,

whereg0 = 0, 0< g1, g2, . . . , gt−1 < 1, 0< gt ≤ 1. Then by induction ons, we get

βt+1− βs − cs−1|
|βt+1− βs−1

− cs−2|
|βt+1− βs−2

− · · · − c0|
|βt+1− β0

= (βt+1− βs)(1− gs).

Therefore the continued fraction in (v) is well defined and equal to(βt+1−βt )(1−gt ) ≥ 0.
Assume now that (v) holds. By Lemma 2, the quantityB(r, s, t) is well defined and

nonnegative for every 0≤ r ≤ s ≤ t. One can check that

F(r, s, t) = B(r, r, t − 1)B(r, r + 1, t − 1) · · · B(r, s− 1, t − 1),

hence allF(r, s, t) are nonnegative.
Finally, assume that detA(t) = F(0, t, t) is nonnegative for everyt ≥ 0. We will

show the nonnegativity ofF(r, s, t) by induction ont. Fix t and suppose thatF( j, k, l )
is nonnegative wheneverj ≤ k ≤ l ≤ t. As we noticed in the proof of Lemma 1, the
numbersF( j, k, l ) are strictly positive forj ≤ k < l ≤ t. Thus the numbers

B(0, k, k) = F(0, k+ 1, k+ 1)

F(0, k, k+ 1)
, 0≤ k < t,

are well defined and nonnegative. Therefore, by Lemma 2, the quantitiesB( j, k, l ) are
also well defined and positive whenever 0≤ j ≤ k ≤ l , k < t, ( j, l ) 6= (0, k). Since

F(0, t + 1, t + 1) = B(0,0, t) B(0,1, t) . . . B(0, t − 1, t)B(0, t, t) ≥ 0,

we also haveB(0, t, t) ≥ 0, and henceB(r, s, t) ≥ 0 for r ≤ s ≤ t. The latter implies
F(r, s, t + 1) ≥ 0 for everyr ≤ s ≤ t + 1.

The next corollary provides three sufficient and one necessary condition for simulta-
neous nonnegativity ofF(r, s, t).

Corollary 1. Suppose that one of the following conditions holds:

(i) For every s≥ 0:

cs ≤ (βs+2− βs+1)

(
βs+2− βs − cs−1

βs+2− βs

)
, with c−1 = 0.

(ii) cs ≤ (βs+2− βs+1)
2 for every s≥ 0.
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(iii) The infinite sequence
cs

(βs+1− βs)(βs+2− βs+1)

is a chain sequence.

Then F(r, s, t) are nonnegative for all0≤ r ≤ s ≤ t.
On the other hand, if F (r, s, t) are all nonnegative, then

cs ≤ (βs+2− βs+1) (βs+2− βs) , s= 0,1,2, . . . .(3)

Proof. (i) We will proceed by induction. Assume thatB(0, k, k) are nonnegative for
k ≤ s. Then we have to prove that so is

B(0, s+ 1, s+ 1) = βs+2− βs+1− cs

B(0, s, s+ 1)
,

i.e., that

cs ≤ (βs+2− βs+1)B(0, s, s+ 1).

By assumption we have

cs

(βs+2− βs+1)
≤ βs+2− βs − cs−1

βs+2− βs

≤ βs+2− βs − cs−1

βs+2− βs + B(0, s− 1, s− 1)

≤ βs+2− βs − cs−1

B(0, s− 1, s+ 1)
= B(0, s, s+ 1).

This shows that (i) yields the conclusion. Next observe that if condition (ii) holds, then
so does (i).

Finally, assume

cs = (βs+1− βs)(βs+2− βs+1)(1− gs)gs+1,

where 0≤ g0 < 1 and 0< gi < 1 for i ≥ 1. We will prove by induction that
B(0, s, s) ≥ (βs+1− βs)(1− gs). This is true fors= 0, and if it holds for everyk ≤ s,
then

B(0, s+ 1, s+ 1) = (βs+2− βs+1)

(
1− (βs+1− βs)(1− gs)gs+1

B(0, s, s+ 1)

)
≥ (βs+2− βs+1)

(
1− (βs+1− βs)(1− gs)gs+1

B(0, s, s)+ βs+2− βs+1

)
≥ (βs+2− βs+1)

(
1− (βs+1− βs)(1− gs)gs+1

(βs+1− βs)(1− gs)+ βs+2− βs+1

)
≥ (βs+2− βs+1)(1− gs+1).

On the other hand, ifF(r, s, t) are all nonnegative, then

cs ≤ (βs+2− βs+1)B(0, s, s+ 1) ≤ (βs+2− βs+1)(βs+2− βs).

Remark. Note that ifβn is increasing and bounded then (3) implies thatcs tends to 0.
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3. Motzkin Paths Method

This part contains the first proof of Theorem 1, which uses ideas of de M´edicis and Stanton
[4] and Viennot [7]. Assume thatPn andg(n,m, k) satisfy (2) and (1), respectively.

DefineL to be the linear functional onR[x] satisfyingL(P0) = 1 andL(Pn) = 0 for
n ≥ 1. Note that by (2) we haveL(xmPn(x)) = 0 and, consequently,L(Pm(x)Pn(x)) = 0
if m< n. We also have

L(Pm(x)Pm(x)) = γ0γ1 · · · γm−1

α0α1 · · ·αm−1
.(4)

Indeed,

αmL(Pm+1Pm+1) = L(x PmPm+1) = γmL(PmPm).

Now multiplying both sides of (1) byPk and applyingL yields

L(Pk PmPn) = g(n,m, k)L(P2
k ).

Thus, we can examine the nonnegativity ofL(Pk PmPn) instead ofg(n,m, k). We have

L(x Pk PmPn) = αkL(Pk+1PmPn)+ βkL(Pk PmPn)+ γk−1L(Pk−1PmPn),

L(x Pk PmPn) = αnL(Pk PmPn+1)+ βnL(Pk PmPn)+ γn−1L(Pk PmPn−1).

This implies the recurrence relation

αkL(Pk+1PmPn) = αnL(Pk PmPn+1)+ γn−1L(Pk PmPn−1)(5)

+ (βn − βk)L(Pk PmPn)− γk−1L(Pk−1PmPn).

In order to evaluateL(Pk PmPn) we need to introduce two sets of so-called Motzkin
paths. Define the following classes of directed edges (steps):

U = {((i, j ), (i + 1, j + 1)) : i, j ≥ 0},
D = {((i, j ), (i + 1, j − 1)) : i ≥ 0, j ≥ 1},
Hd = {((i, j ), (i + d, j )) : i, j ≥ 0},

whered ≥ 1. For a pathf = (S0, S1, . . . , Sp), with (Si−1, Si ) ∈ Ai ∈ {U,D,H1,

H2, . . .}, we define itstypeby t (f) = (A1, . . . ,Ap). Note that the pair(S0, t (f)) deter-
minesf.

Now fix k,m,n ≥ 0 and denote byM(k,m,n) the family of paths

f = (S0, S1, . . . , Sp)

with S0 = (0,m), Sp = (k,n) and satisfying(Si−1, Si ) ∈ U ∪D ∪H1 ∪H2. Note that
by the definition of the classesU, D, andHd, f lies at or above thex-axis. For such a
path we define itsweightto be

w(f) = w(S0, S1)w(S1, S2) · · ·w(Sp−1, Sp),
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where for an edgee= (S′, S′′) with S′ = (i, j ) we set

w(e) =


γj if e∈ U ,
αj−1 if e∈ D,
βj − βi if e∈ H1,
−αi γi if e∈ H2.

Put

w(k,m,n) =
∑

f∈M(k,m,n)

w(f) .(6)

Formulas (4) and (5) yield

L(Pk PmPn) = γ0γ1 · · · γm−1

α0α1 · · ·αm−1α0α1 · · ·αk−1
w(k,m,n).(7)

By definition, the classM(k,m,n) contains paths in which the only horizontal steps
allowed are of length 1 or 2.Collecting all the consecutive horizontal steps together, into
single long horizontal steps in each path ofM(k,m,n), gives rise to a new class of paths
denoted bỹM(k,m,n). Precisely, this is the class of pathsg = (T0, T1, . . . , Tq) such
that

T0 = (0,m),

Tq = (k,n),

(Tr−1, Tr ) ∈ U ∪D ∪
∞⋃

d=1

Hd,

and with no two consecutive horizontal steps allowed, i.e., if(Ti−1, Ti ) ∈ Hd, then either
i = q or (Ti , Ti+1) /∈

⋃∞
d=1Hd.

There is a natural mapping3 from M(k,m,n) onto M̃(k,m,n) given as follows.
If f ∈ M(k,m,n) and t (f) = (A1, . . . ,Ap), then t (3(f)) is defined by replacing in
t (f) every maximal block(Au,Au+1, . . . ,Av) of type (Hεu,Hεu+1, . . . ,Hεv ), where
εj ∈ {1,2}, byHε, ε = εu + εu+1+ · · · + εv.

We can endow̃M(k,m,n) with the weight

w̃(g) =
∑

f∈M(k,m,n)
3(f)=g

w(f).

In this way we get (see (6)):

w(k,m,n) =
∑

g∈M̃(k,m,n)

∑
f∈M(k,m,n)
3(f)=g

w(f) =
∑

g∈M̃(k,m,n)

w̃(g).(8)

Moreover,

w̃(T0, T1, . . . , Tq) = w̃(T0, T1)w̃(T1, T2) · · · w̃(Tq−1, Tq),

wherew̃(e) = w(e) if e ∈ U ∪ D. For e = ((r, t), (s, t)) denotẽh(r, s, t) = w̃(e).
Observe that

h̃(r, s, t) =
∑

w(e1)w(e2) · · ·w(ep),
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where the sum is taken over all paths(e1,e2, . . . ,ep) from (r, t) to (s, t) with ei ∈
H1∪H2. Now by decomposing this sum into6(1)+6(2), according to whether the last
stepep belongs toH1 orH2, we get, fors− r ≥ 2:

h̃(r, s, t) =
∑(1)

w(e1) · · ·w(ep)+
∑(2)

w(e1) · · ·w(ep)

= h̃(r, s− 1, t)(βt − βs−1)− h̃(r, s− 2, t)αs−2γs−2,

with the initial values̃h(r, r, t) = 1 and̃h(r, r + 1, t) = βt − βr .

Assume thatk ≤ m ≤ n. Then we haveT0, T1, . . . , Tq ∈ {(i, j ) : 0 ≤ i ≤ j } for
every(T0, T1, . . . , Tq) ∈ M̃(k,m,n). Puttingcs = αsγs leads tõh(r, s, t) = F(r, s, t).
Therefore, if for 0≤ r ≤ s ≤ t all the numbersF(r, s, t) are nonnegative, then so are all
the weights̃w(e) and, by (8), so isw(k,m,n). This, in view of Proposition 1, concludes
the proof of Theorem 1.

4. Maximum Principle Method

In this section we prove Theorem 1 using a discrete version of the boundary value
problem associated with the recurrence relation (2).

The nonnegativity of the linearization coefficients does not depend on the normaliza-
tion of the polynomialsPn. Therefore we may replace the polynomialsPn with their
positive multiplesQn and the new polynomials satisfy

x Qn(x) = α′nQn+1(x)+ β ′nQn(x)+ γ ′n−1Qn−1(x).(9)

The fact that the polynomialsQn and Pn are the positive multiples of each other is
equivalent to

β ′n = βn, α′nγ
′
n = αnγn,(10)

for n ≥ 0. In particular, whenQn are orthonormal they satisfy

x Qn(x) = λnQn+1(x)+ βnQn(x)+ λn−1Qn−1(x),(11)

whereλ2
n = αnγn.As had been observed in [5], nonnegative linearization is equivalent to

the following maximum principle (note the slight difference between (2) and the notation
in [5]).

Letu = u(n,m) denote a matrix defined forn,m≥ 0. Let L1 andL2 denote operators
acting onu according to the rule

L1u(n,m) = αnu(n+ 1,m)+ βnu(n,m)+ γn−1u(n− 1,m),

L2u(n,m) = αmu(n,m+ 1)+ βmu(n,m)+ γm−1u(n,m− 1).

Let H = L1− L2. Assume the matrixu = u(n,m) satisfies{
Hu (n,m) = 0 for n,m≥ 0,

u(n,0) ≥ 0 for n ≥ 0.
(12)

The polynomialsPn admit nonnegative linearization if and only if every solution of the
boundary value problem (12) satisfiesu(n,m) ≥ 0 for n ≥ m≥ 0. This leads to another
proof of Theorem 1.
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Proof. Instead of showing the nonnegative linearization ofQn we will show that prop-
erty for their positive multiplesPn satisfying (2). The coefficientsαn, γn will be specified
later in the proof. Assumeu is a solution of (12). We will proceed by induction onm.
Assumeu(t, s) ≥ 0 for t ≥ s ≥ 0 ands ≤ m− 1. We will show thatu(n,m) ≥ 0. By
assumption, we have

λ2
j

(βn − βj )(βn − βj+1)
= (1− gj )gj+1,

where 0≤ gj ≤ 1 for j = 0,1, . . . ,n− 2. Set

αj = (βn − βj+1)gj+1, j = 0,1, . . . ,n− 2,
αj = λj , j ≥ n− 1,
γj = (βn − βj )(1− gj ), j = 0,1, . . . ,n− 2,
γj = λj , j ≥ n− 1.

Hence the coefficientsαj andγj are nonnegative andαj γj = λ2
j . This means the polyno-

mials satisfying (2) are positive multiples ofQn. Therefore it suffices to show nonnega-
tive linearization forPn. This in turn amounts to showing that the problem (12) admits
nonnegative solutions. By (12) and by the definition ofH we have (see Figure 1):

0 =
m−1∑
s=0

Hu(n, s)

= −αm−1u(n,m)+
m−1∑
s=0

γn−1u(n− 1, s)

+
m−1∑
s=0

αnu(n+ 1, s)+
m−1∑
s=0

csu(n, s)

≥ −αm−1u(n,m)+
m−1∑
s=0

csu(n, s).

Fig. 1.
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It can be easily computed that

cm−1 = βn − βm−1− αm−2,

cs = βn − βs − αs−1− γs, s= 0,1, . . . ,m− 2.

By the definition ofαj andγj , we get

cm−1 = βn − βm−1− (βn − βm−1)gm−1 = (βn − βm−1)(1− gm−1) ≥ 0,

cs = βn − βs − (βn − βs)gs − (βn − βs)(1− gs) = 0.

Thusu(n,m) ≥ 0.

5. The Symmetric Case

The orthogonal polynomialsPn are calledsymmetricif they satisfy

Pn(−x) = (−1)n Pn(x).

This is equivalent to the fact that the orthogonality measure is symmetric about the origin
(in the determinate case). Another equivalent condition is that the general recurrence
relation for the symmetric polynomials is

x Pn(x) = αn Pn+1(x)+ γn−1Pn−1(x),(13)

whereP−1 = 0, P0 = 1, and

x Qn(x) = λnQn+1(x)+ λn−1Qn−1(x),(14)

λn > 0 for orthonormalized symmetric polynomials. As we have seen in the previous
section, the polynomialsPn andQn are the multiples of each other if and only if

λ2
n = αnγn.

By [6] nonnegative linearization of the polynomialsPn satisfying (13) is equivalent
to the following boundary problem Hu (n,m) = 0 for n,m≥ 0,

u(2n+ 1,0) = 0 for n ≥ 0,
u(2n,0) ≥ 0 for n ≥ 0,

(15)

having only nonnegative solutionsu(n,m).

Theorem 2. Let the orthogonal polynomials Qn satisfy(14). Assume that either:

(i) For every N= 0,1,2, . . . , the sequenceλ2
n/λ

2
2N+1 for n = 0,1, . . . ,2N, is a

chain sequence.
(ii) For every N= 0,1,2, . . . , the sequenceλ2

n/λ
2
2N for n = 0,1, . . . ,2N − 1, is a

chain sequence.

Then the polynomials Qn admit nonnegative product linearization.
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Proof. We will show part (i) only, since part (ii) can be shown similarly.
Again as in the proof of Theorem 1 we consider the polynomialsPn satisfying (13)

and being positive multiples ofQn.

Assumeu is a solution of (15). First observe that this implies

u(n,m) = 0 for n+m odd.

We will proceed by induction onm. Assumeu(t, s) ≥ 0 for t ≥ s ≥ 0 ands ≤ m− 1.
We will show thatu(n,m) ≥ 0.

We will consider two cases depending on the parity ofn. First letn = 2N. If m is odd
u(n,m) = 0. Let m be an even number, i.e.,m= 2M. By assumption we have

λ2
j

λ2
2N−1

= (1− gj )gj+1,

where 0≤ gj ≤ 1 for j = 0,1, . . . ,2N − 2. Set

αj = λ2N−1gj+1, j = 0,1, . . . ,2N − 2,(16)

αj = λj , j ≥ 2N − 1,(17)

γj = λ2N−1(1− gj ), j = 0,1, . . . ,2N − 2,(18)

γj = λj , j ≥ 2N − 1.(19)

Hence the coefficientsαj andγj are nonnegative andαj γj = λ2
j . Thus the polynomials

satisfying (13) are positive multiples ofQn. By (15) we have (see Figure 2):

0 =
M−1∑
s=0

Hu(2N − 1,2s)+
M∑

s=1

Hu(2N,2s− 1)(20)

= −α2M−1u(2N,2M)+
M∑

s=1

c2s−1u(2N − 1,2s− 1)+
M−1∑
s=0

c2su(2N,2s)

Fig. 2.
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+
M−1∑
s=0

γ2N−2u(2N − 2,2s)+
M∑

s=1

α2Nu(2N + 1,2s− 1).

The coefficientscs are given by

c2M−1 = γ2N−1− α2M−2,

c2s−1 = γ2N−1− α2s−2− γ2s−1,

c2s = α2N−1− α2s−1− γ2s.

By the definition ofαj andγj we obtain

c2M−1 = λ2N−1− λ2N−1g2M−1 ≥ 0,

c2s−1 = λ2N−1− λ2N−1g2s−1− λ2N−1(1− g2s−1) = 0,

c2s = λ2N−1− λ2N−1g2s − λ2N−1(1− g2s) = 0.

Thus, by the inductive hypothesis, all the terms in (20), except−α2M−1u(2N,2M), are
nonnegative. Henceu(n,m) = u(2N,2M) ≥ 0.

The case when bothn = 2N−1 andm= 2M −1 are odd numbers can be dealt with
similarly, by analyzing the expression

0 =
M−1∑
s=1

Hu(2N − 1,2s− 1)+
M−1∑
s=0

Hu(2N,2s).

By Wall’s characterization of chain sequences we immediately get the following:

Theorem 3. Let the orthogonal polynomials Qn satisfy(14).Assume that either:

(i) For every N= 1,2, . . . , the matrix

λ2N−1 λ0 0 · · · 0 0
λ0 λ2N−1 λ1 · · · 0 0
0 λ1 λ2N−1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λ2N−1 λ2N−2

0 0 0 · · · λ2N−2 λ2N−1

(21)

is positive definite.
(ii) For every N= 1,2, . . . , the matrix

λ2N λ0 0 · · · 0 0
λ0 λ2N λ1 · · · 0 0
0 λ1 λ2N · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λ2N−1 λ2N−1

0 0 0 · · · λ2N−1 λ2N


is positive definite.

Then the polynomials Qn admit nonnegative product linearization.
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Corollary 2. Assume that either:

(i) For every n≥ 0 there holds

λ2n−2+ λ2n−1 ≤ λ2n+1,

λ2n−1+ λ2n ≤ λ2n+1.

(ii) For every n≥ 0 there holds

λ2n−1+ λ2n ≤ λ2n+2,

λ2n + λ2n+1 ≤ λ2n+2.

Then the polynomials Qn satisfying(14)admit nonnegative product linearization.

Proof. We will show (i) only, since the proof of (ii) is similar. By assumption, the
sequenceλ2n−1 is increasing. Hence

λ2n−2+ λ2n−1 ≤ λ2n+1 ≤ λ2N−1,

λ2n−1+ λ2n ≤ λ2n+1 ≤ λ2N−1,

for n < N. Thus, in matrix (21), the sum of absolute values of the entries off the main
diagonal in thenth row is less than the entry on the main diagonal of this row. This
implies that the matrix (21) is positive definite.

Remark. 1. If λ2n is chosen to be decreasing then we can drop the second inequality
of assumption (i). A typical example of a sequenceλn satisfying assumption (i) can be
obtained by picking up an increasing sequenceλ2n−1 and then choosing a sequenceλ2n so
that (i) is satisfied. For example, the following choice ofλn satisfies (i) if 0< a ≤ q < 1:

λ2n−1 = 1− qn,

λ2n = aqn(1− q).

2. Assumeλn is bounded and satisfies assumption (i). Sinceλ2n−1 is increasing it
is convergent, say toλ, and therefore the sequenceλ2n tends to 0. The polynomials
satisfying (14) are orthonormal with respect to the measureµ. The support ofµ is
symmetric about 0 by (14) and it coincides with the spectrum of the following difference
operator oǹ 2:

(La)n = λnan+1+ λn−1an−1.

We have

λn−1+ λn ≤ λ and λn−1+ λn→ λ.

Thus the norm ofL is equal toλ. Observe that

(L2a)n = λnλn+1an+2+ (λ2
n + λ2

n−1)an + λn−1λn−2an−2.

Thus we have

λnλn+1 → 0, n→∞,
λ2

n + λ2
n−1 → λ2, n→∞.



428 W. MÃlotkowski and R. Szwarc

Therefore the operatorL2 − λ2I is compact. We can conclude that the spectrum of the
operatorL consists of±λ and the eigenvalues±xn wherexn is a sequence convergent
to λ. Since the norm ofL is equal toλ, we may assume thatxn ↗ λ.

Thus also the support of the orthogonality measure consists of the sequence±xn where
xn ↗ λ. The same conclusion holds ifλn satisfies (ii).

6. Relation Between Symmetric and Nonsymmetric Cases

Let polynomialsQn satisfy (14). Then they satisfy

Qn(−x) = (−1)nQn(x).

This implies that the polynomialsQ2n involve even powers ofx only. Therefore the
functions defined as

Rn(y) = Q2n(
√

y)

are polynomials of degreen. By iterating (14) twice and substitutingy = x2 we get

yRn(y) = λ2nλ2n+1Rn+1(y)+ (λ2
2n + λ2

2n−1)Rn(y)+ λ2n−2λ2n−1Rn−1(y).

By Theorem 2 we get the following:

Corollary 3. Assume the polynomials Rn satisfy

yRn(y) = 3n Rn+1(y)+ βn Rn(y)+3n−1Rn−1(y)

and that there are coefficientsλn such that

3n = λ2nλ2n+1,

βn = λ2
2n + λ2

2n−1.

If the coefficientsλn satisfy the assumptions of Theorem2 the polynomials Rn admit
nonnegative product linearization.

Remark. In examples that can be constructed by using Corollary 3 combined with
Corollary 2 the sequenceβn is always increasing. Indeed, by the assumptions of Corol-
lary 2, we have

βn+1 = λ2
2n+1+ λ2

2n+2

> (λ2n−1+ λ2n)
2 > λ2

2n−1+ λ2
2n = βn.

It would be interesting to determine if the conditionβn+1 > βn, for everyn ≥ 0, is a
necessity for nonnegative linearization in the case ofλn→ 0.
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