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Abstract. We prove that any tight frame {gn}
∞

n=0
, with ‖g0‖ =

1, in a Hilbert space can be obtained by the Kaczmarz algorithm.
The uniqueness of the correspondence is determined.

1. Introduction

Let {en}
∞
n=0 be a linearly dense sequence of unit vectors in a Hilbert

space H. In 1937 Kaczmarz considered the problem of reconstructing
vectors x from the data 〈x, en〉. He proved that in the finite dimen-
sional case we have xn → x for any x, where elements xn are defined
recursively by

x0 = 〈x, e0〉e0,

xn = xn−1 + 〈x − xn−1, en〉en.

This formula is called the Kaczmarz algorithm ([1]).
It can be shown that if vectors gn are given by the recurrence relation

(1) g0 = e0, gn = en −
n−1
∑

i=0

〈en, ei〉gi

then g0 is orthogonal to gn, for any n ≥ 1 and

(2) xn =

n
∑

i=0

〈x, gi〉ei.

By (1) the vectors {gn}
∞
n=0 are linearly dense in H. Also by definition

of the algorithm the vectors x−xn and en are orthogonal to each other.
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Hence

‖x‖2 = ‖x − x0‖
2 + |〈x, g0〉|

2,

‖x − xn−1‖
2 = ‖x − xn‖

2 + |〈x, gn〉|
2, n ≥ 1.(3)

For n ≥ 1 let Sn denote a finite dimensional operator defined by the
rule

(4) Sny =
n

∑

j=0

〈y, ej〉gj, y ∈ H.

Observe that the formulas (1) and (2) can be restated as

(I − Sn−1)en = gn(5)

(I − S∗
n)x = x − xn.(6)

Moreover by (3) it follows that

(7) ‖x − xn‖
2 = ‖(I − S∗

n)x‖2 = ‖x‖2 −

n
∑

j=0

|〈x, gj〉|
2.

In particular

(8)
∞

∑

n=0

|〈x, gn〉|
2 ≤ ‖x‖2, x ∈ H.

A sequence {en}
∞
n=0 is called effective if xn → x for any x ∈ H. By

virtue of (7) this is equivalent to ‖x‖2 =
∑∞

n=0
|〈x, gn〉|

2 for any x ∈ H,

which means {gn}
∞
n=0 is a tight frame. We refer to [2] for more informa-

tion on the Kaczmarz algorithm and to [3] for the characterization of
effective sequences through the Gram matrix of the sequence {en}

∞
n=0.

2. Bessel sequences

Definition 1. A sequence of vectors {gn}
∞
n=0 in a Hilbert space H will

be called a Bessel sequence if (8) holds. The sequence {gn}
∞
n=0 will be

called a special Bessel sequence if in addition ‖g0‖ = 1.

Observe that if {gn}
∞
n=0 is a special Bessel sequence then substituting

x = g0 into (8) implies gn ⊥ g0 for n ≥ 1.
Let Pn denote the orthogonal projection onto e⊥n , the orthogonal

complement to the vector en. By [3, (1)] we have

I − S∗
n = PnPn−1 . . . P0,(9)

I − Sn = P0 . . . Pn−1Pn.(10)
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Theorem 1. For any special Bessel sequence {gn}
∞
n=0 in a Hilbert space

H there exists a sequence {en}
∞
n=0 of unit vectors such that (1) holds.

In other words any special Bessel sequence can be obtained through the
Kaczmarz algorithm.

Proof. We will construct the sequence {en}
∞
n=0 recursively. Set e0 = g0.

Assume the unit vectors e1, . . . , eN−1 have been constructed such that
the formula (1) holds for n = 0, . . . , N −1. We want to find y such that

(11) (I − SN−1)y = gN , ‖y‖ = 1.

By (10) we have (I−SN−1)eN−1 = 0, i.e. the operator I−SN−1 admits
nontrivial kernel. Hence the solvability of (11) is equivalent to that of

(12) (I − SN−1)y = gN , ‖y‖ ≤ 1.

By the Fredholm alternative the equation (I −SN−1)y = gN is solvable
if and only if gN is orthogonal to ker(I−S∗

N−1). We will check that this
condition holds. Let x ∈ ker(I − S∗

N−1
). Then by (7) and (8) we have

0 = ‖(I − S∗
N−1)x‖

2 = ‖x‖2 −

N−1
∑

j=0

|〈x, gj〉|
2 ≥

∞
∑

j=N

|〈x, gj〉|
2.

In particular 〈x, gN〉 = 0, i.e. gN ⊥ ker(I − S∗
N−1).

Let y denote the unique solution to

(I − SN−1)y = gN , y ⊥ ker(I − SN−1).

The proof will be complete if we show that ‖y‖ ≤ 1. Again by the
Fredholm alternative we have y ∈ Im (I − S∗

N−1). Let y = (I − S∗
N−1)x

for some x ∈ H. We may assume that x ⊥ ker(I −S∗
N−1

). In particular
〈x, g0〉 = 0, as (9) yields g0 ∈ ker(I − S∗

N−1). By (7) we have

‖y‖2 = ‖(I − S∗
N−1)x‖

2 = ‖x‖2 −
N−1
∑

j=1

|〈x, gj〉|
2.

On the other hand

‖y‖2 = 〈x, (I − SN−1)y〉 = 〈x, gN〉.

Therefore

‖y‖2 − ‖y‖4 = ‖x‖2 −

N
∑

j=1

|〈x, gj〉|
2 ≥ 0,

which implies ‖y‖ ≤ 1. �



4 RYSZARD SZWARC

Corollary 1. For any special tight frame {gn}
∞
n=0 in a Hilbert space H

there exists an effective sequence {en}
∞
n=0 of unit vectors such that (1)

holds, i.e. any special tight frame can be obtained through the Kaczmarz
algorithm.

For a sequence {en}
∞
n=0 of unit vectors the special Bessel sequence

{gn}
∞
n=0 is determined uniquely by (1). However a given special Bessel

sequence may correspond to many sequences of unit vectors due to two
reasons. First of all for certain N the dimension of the space ker(I −
SN−1) may exceed 1. Secondly, if we fix a unit vector u in ker(I−SN−1)
the vector eN can be defined as eN = y +λu for any complex λ number
such that |λ|2 + ‖y‖2 = 1. In what follows we will indicate properties
which guarantee a one to one correspondence between {en}

∞
n=0 and

{gn}
∞
n=0.

Definition 2. A sequence of unit vectors {en}
∞
n=0 will be called strongly

redundant if the vectors {en}
∞
n=N are linearly dense for any N. A special

Bessel sequence {gn}
∞
n=0 will be called strongly redundant if the vectors

{g0} ∪ {gn}
∞
n=N are linearly dense for any N.

Proposition 1. Let sequences {en}
∞
n=0 and {gn}

∞
n=0 satisfy (1). The

sequence {gn}
∞
n=0 is strongly redundant if and only if {en}

∞
n=0 is strongly

redundant and 〈en, en+1〉 6= 0 for any n ≥ 0.

Proof. Assume {gn}
∞
n=0 is strongly redundant. First we will show that

the kernel of I − SN−1 is one dimensional and thus consists of the
multiples of the vector eN−1 (see (10)). Assume for a contradiction that
dim ker(I−SN−1) ≥ 2. By the Fredholm alternative we get dim ker(I−
S∗

N−1
) ≥ 2. Hence there exists a nonzero vector x such that x ⊥ g0 and

(I − S∗
N−1)x = 0. By (3) we obtain

‖x‖2 =
N−1
∑

n=1

|〈x, gn〉|
2.

This and the condition (8) imply that x is orthogonal to all the vectors
g0 and {gn}

∞
n=N , which contradicts the strong redundancy assumption.

Assume 〈eN−1, eN〉 = 0 for some N ≥ 1. Then by (10) we have
eN−1, eN ∈ ker(I − SN) which is a contradiction as the kernel is one
dimensional.

Concerning strong redundancy of {en}
∞
n=0, assume a vector y is or-

thogonal to all the vectors {en}
∞
n=N . In particular y is orthogonal to

eN . Since ker(I − SN) = CeN , by the Fredholm alternative y belongs
to Im (I − S∗

N). Let y = (I − S∗
N)x for some x ∈ H. We may assume

that x ⊥ g0 as g0 ∈ ker(I − S∗
N ). By (9), since y is orthogonal to en for
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n ≥ N, we get y = (I − S∗
n)x = (I − S∗

N )x for n ≥ N. On the other
hand by (2) and (6) we obtain that 〈x, gn〉 = 0 for n > N + 1. Since
x ⊥ g0, by strong redundancy assumptions we obtain x = 0 and thus
y = 0.

For the converse implication assume {en}
∞
n=0 is strongly redundant

and 〈en, en+1〉 6= 0. By the inequality (see [2])

‖x − xn‖ ≥ |〈en−1, en〉|‖x − xn−1‖

we get that x − xn 6= 0 for any x ⊥ e0. Since x − xn = (I − S∗
n)x, the

kernel of I − S∗
n consists of the multiples of e0 = g0, only.

Let x be orthogonal to {g0} ∪ {gn}n≥N+1 for some N ≥ 1. By (2)
we obtain that xn = xN for n ≥ N. By the definition of the Kaczmarz
algorithm we get x − xN ⊥ en for n ≥ N + 1. Now strong redundancy
of {en}

∞
n=0 implies x − xN = 0. By (6) we obtain (I − S∗

N )x = 0. This
yields x = 0 since the kernel is one dimensional and consists of the
multiples of g0. �

For sequences {en}
∞
n=0 and {σnen}

∞
n=0, where σn are complex num-

bers of absolute value 1, the Kaczmarz algorithm coincides. Therefore
we will restrict our attention to admissible sequences of unit vectors
{en}

∞
n=0 such that 〈en, en+1〉 ≥ 0.

Theorem 2. Let {gn}
∞
n=0 be a strongly redundant special Bessel se-

quence. Then there exists a unique admissible sequence {en}
∞
n=0 of unit

vectors such that (1) holds. Moreover the sequence {en}
∞
n=0 is strongly

redundant.

Proof. The proof will go by induction. The vector e0 is determined by
e0 = g0. Assume the vectors e0, . . . , eN−1 were determined uniquely.
We have to show that the problem

(I − SN−1)y = gN , ‖y‖ = 1, 〈y, eN−1〉 ≥ 0

has a unique solution y.

By the proof of Proposition 1 the kernel of I−SN−1 is one dimensional
and thus consists of the multiples of the vector eN−1. By the proof of
Theorem 1 there exists a unique solution yN to the problem

(I − SN−1)y = gN , y ⊥ ker(I − SN−1)

and ‖yN‖ ≤ 1. Moreover by this proof ‖yN‖ = 1 if and only if

‖x‖2 −

N
∑

j=1

|〈x, gj〉|
2 = 0,
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where yN = (I − S∗
N−1)x and x ⊥ ker(I − S∗

N−1). This leads to a
contradiction because by inequality (8) we get that x is orthogonal to
all the vectors g0 and {gn}

∞
n=N . Hence ‖yN‖ < 1.

At this stage we know that any solution to the equation

(I − SN−1)y = 0

is of the form
y = yN + λeN−1, λ ∈ C

because ker(I − SN−1) = CeN−1. Since ‖yN‖ < 1 and yN ⊥ eN−1 there
exists a unique solution y satisfying ‖y‖ = 1 and 〈y, eN−1〉 ≥ 0 namely

the one corresponding to λ =
√

1 − ‖yN‖2. �

Corollary 2. Let {gn}
∞
n=0 be a strongly redundant special tight frame.

Then there exists a unique admissible effective sequence {en}
∞
n=0 of unit

vectors such that (1) holds. Moreover the sequence {en}
∞
n=0 is strongly

redundant.
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