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CONVOLUTION OPERATORS OF WEAK TYPE (2,2)
WHICH ARE NOT OF STRONG TYPE (2,2)

RYSZARD SZWARC

ABSTRACT. It is well known that if G is a locally compact and amenable group then
the Banach spaces of operators of weak type (2,2) and of strong type (2.2)
commuting with the right translations on G are the same. In contrast we show that if
G is a nonabelian free group then there exists an operator of weak type (2,2)
commuting with the right translations on G which is not of strong type (2,2).

Introduction. Let G be a locally compact group. We let L(G), L3*(G) be the
Banach spaces of convolution operators of respectively strong type (2, 2), weak type
(2,2). By convolution operator we mean a linear operator from one space of
functions on G that is closed -under right translations to another such space, that
commutes with right translations. We always have: L3(G) C L3*(G). M. Cowling
proved that if G is an amenable group then these two spaces coincide [2, Theorem
5.4]. In this note we show that if G is a nonabelian free group then L3(G) % L3%(G).

Preliminaries. Let G be a locally compact group and m a fixed left invariant Haar
measure on G. For a function f in L'(G) + L®(G) let f* denote the unique right
continuous positive function on R™ which is of the same distribution as the function
| f| - By f** we denote the function defined on R* by

o= (1) [re e

The Lorentz space L?+9(G) is the Banach space of m-measurable functions f on G for
which

0 q 1/q
(f (£'77f**(1)) dt/t) , 1<p<o,1<g< oo,
0

sup (£/2/**(1)), I <p<oo,g=co,
>0

fl,, =

is finite. Up to equivalence of norms L??(G) = L?(G). If p > 1 then the conjugate
Banach space of L7 is L7, where 1/p + 1/p’ = 1. The duality is given by the
formula

(*) (f,g)=f6f(x)g<x>dm(x). feLrl geLr>.
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We need also the following

PROPOSITION [4, p. 259]. Suppose T is a linear operator which maps characteristic
functions x ., m(E) < oo, into a Banach space B and |ITx ;|| < cllx gl ,, where c is
independent of E. Then there exists a unique linear extension of T to a continuous map
of L”"" into B and |ITf || < c,cll f I, . where c, depends only on p.

A linear operator T: L?(G) — L”*(G) is called of weak type (p, p) if it is
bounded. In contrast, by definition T: L”(G) — L?(G) is bounded if and only if T
is of strong type ( p, p). The spaces of operators commuting with the right transla-
tions on G which are of weak type (p, p), of strong type (p. p) we denote
respectively L)*°(G), L7(G). Generally, following (2], if T is a continuous linear
operator from L7 to L”" (1 <p < oo, | <gq,r< o0) commuting with the right
translations we will say that 7 belongs to L[ .

The case of the free groups. Let G be a free group on r generators, r = 2. For
x € G let | x| denote the usual length of the word x that is the number of factors in
generators or their inverses which are needed to write x as a reduced word. Let x,
denote the characteristic function of the words of length n. Let us regard x, as the
element of L2*(G) or L(G) acting by left convolution. By [1,5]:

(**) X, Ml 3 =2r(2r = ])"[] + n(r— ])r-l](zr N

LEMMA. lIx, |l 3= < b[3(n + D])'/*2r — 1)"/*, where b is a constant independent

of n.

PRrOOF. First let us compute the norm (x|l ;; . By Proposition it suffices to act
only on characteristic functions. Let g be the characteristic function of a finite set
E C G. Without loss of generality we may assume that g is supported by the words
longer than 2n, because we may take g * 8 = x,, instead of g, where x is a

sufficiently long word. Let h =x, *g. h, = (x,*g)x, for m=0,1..... and
8. = gx, fork =0,1,.... Then
- 2
”hm”%: 2 (Xn*gl\)x'n
k=0 2

It is easy to see that h, =0 for m<n and (x, * g)x,, = 0 for all k except
k=m-—-nm-—n+2..., m + n. Since that for m > n:

2

n

E (x'z * gm*n+2k)Xm
k=0

2 —
A, I3 =

5

n n
= E ”(Xn*gm—n+2k)Xm”% + 2 <(Xn*gm--n+2A)Xm*(Xn*gm*n+2l)Xm>'
A=0 1Lh=0
k<1

By a simple computation (or see [1]) we have

A
(Xn * gm-n+2k)Xm < (Xn * Xm*n+2l\)Xm < (2" - I) Xm
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and
<Xm’ (Xn * gm—n+2/)Xm>: <Xrn’ Xn* gm-—n+2l>: <Xn *Xmo gm—n+2/>

= <(Xn * Xm)gm—n+2l7gm—n+2/>< (2r - 1)"_/“gm—n+2/”%'
So we obtain that

)n+k~I

<(Xn * gm—n+2k )XM’ (Xn * gm*n+2/)Xm>< (2" - 1
Hence

2
“gm—n-rﬂ“ 2

“hm“2s E (2"“‘ l)nllgm'n+2k||§ +2 E (2r— I)"+k_l|'gnr—lz+2l||§
k=0 kl“l<=l()

n
S 2r=1)"" g il

k(=0
k<l

n /-1
=Q2r=1"3lgm pinl3 S 2r—1)*"!

>0 k=0
n
n
<(2r— l) 2 ”gmfn—FZIng'
=0

The last inequality follows from the fact that 2r — 1 =3 when r = 2. Now we
conclude that

“hm“g_ < 3(2" - ])" 2 “ng!“[1+2/\“%'
A-=0

Furthermore
oc ox n
5 n 2
a3 =2 WA, 3<32r=1" 3 3 lgy »oul3
m=n+1 m=n+1hA=0

Il

32r = 1)"Y 3 Mg g I3 =3(n+ 1)(2r — 1)l gll3.
A=0m=n+1

Hence llx, * gll,- l1gll3' <[3(n + 1))'/2(2r — 1)"/2. By Proposition we obtain that

X, Iz, < ¢)[3(n + 1D]?@2r — 1)"/2 and by duality (x)

Ixnlliz3- < ce5[3(n + 1]V (2r - ])"/2,

THEOREM. Let G be a free group on r (r = 2) generators. Then the Banach spaces of
the operators of strong type (2,2) and of weak type (2,2) commuting with the right
translations on G are not the same.

PROOF. By the preceding Lemma and (**) we have that [Ix, [l 2~ - l1x, /I ;1 — 0, so
the norms |1 - || , 2« and || - || , » are not equivalent on L3(G). Hence the Banach spaces
LX(G) and L}*(G) must be different.

REMARKS. Every nonabelian free group contains the free group on two generators
as the subgroup. So the foregoing theorem holds for all nonabelian free groups. In
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this case by standard application of Banach-Steinhaus theorem and closed graph
theorem we may easily attain that L2%(G) is not an algebra under convolution.
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