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1. Introduction

We are studying the integral equation of the form

u(x) =
∫ x

0

a(x, y)ϕ (u(y)) dy. (1)

All function appearing here are nonnegative and defined for 0 ≤ y ≤ x. The
Eq.(1) has the trivial solution u(x) ≡ 0. It can have also other solutions. We
prove, using the method due to Okrasiński, that under certain conditions upon
a(x, y) and ϕ(x) there can be at most one solution which does not vanish iden-
tically in a neighborhood of 0. Our main result is the attraction property of
this nonnegative solution, provided that it exists. Namely we show that the
iterations Tnu of the operator

Tu(x) =
∫ x

0

a(x, y)ϕ (u(y)) dy

tend to the unique nonnegative solution for every function u, strictly positive
in a neighborhood of 0.
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A similar equation was studied in [3], under the conditions that a(x, y) is
invariant and ϕ(x) is concave.

2. The results

We will deal with the integral operators T of the form

Tu(x) =
∫ x

0

a(x, y)ϕ (u(y)) dy.

The functions u and ϕ are assumed to be nonnegative and strictly increasing
on the half-axis [0, +∞) and u(0) = 0, ϕ(0) = 0. Let the kernel a(x, y), x > y,
be positive and satisfy the following conditions.

∂a

∂x
≥ 0

∂a

∂x
+

∂a

∂y
≥ 0. (2)

We also assume that a(x, x) = 0. If not specified otherwise all the functions we
introduce are smooth on the open half-axis (0, +∞) and continuous on [0, +∞).
The kernel a(x, y) is to be smooth for x > y and continuous for x ≥ y. The task
we are going to take up is to study the equation

Tu(x) = u(x),

where u is nonnegative, strictly increasing and u(0) = 0. Obviously the condi-
tions (2) imply that if u(x) is strictly positive for x > 0 and satisfies (1), then
u is strictly increasing . Observe that the conditions (2) are equivalent to the
following.

a(x, y) ≥ a(s, t) for 0 ≤ s ≤ x, 0 ≤ t ≤ y, (3)
y ≤ x and x− y > s− t.

Lemma 1 Let u and h be increasing functions on [0, +∞) such that u(0) =
h(0) = 0. Assume also that h(x) is a continuous and piecewise smooth function
on [0, +∞). Put ũ(x) = u(h(x)).

(i) If Tu(x) ≥ u(x) and h′(x) ≤ 1, then T ũ(x) ≥ ũ(x).

(ii) If Tu(x) ≤ u(x) and h′(x) ≥ 1, then T ũ(x) ≤ ũ(x).

Proof. We will only prove the first part of the lemma. The proof of the
second part is similar. Observe that if 0 < y < x then

a (h(x), h(y)) ≤ a(x, y). (4)
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Indeed, since h′ ≤ 1 and h(0) = 0 we have h(x) ≤ x, h(y) ≤ y and h(x)−h(y) ≤
x− y for 0 < y < x. Applying (3) we get the inequality (4). Therefore

T ũ(x) =
∫ x

0

a(x, y)ϕ (u(h(y))) dy

≥
∫ x

0

a(x, y)ϕ (u(h(y))) h′(y)dy

=
∫ h(x)

0

a
(
x, h−1(s)

)
ϕ (u(s)) ds

≥
∫ h(x)

0

a (h(x), s) ϕ (u(s)) ds

= Tu (h(x)) ≥ u (h(x)) = ũ(x).

By applying Lemma 1 with

h(x) =
{

0 if 0 ≤ x ≤ c
x− c if c < x

we get the following.

Corollary 1 Assume that u satisfies Tu (x) ≥ u(x). For a given c > 0 let

uc(x) =
{

0 if 0 ≤ x ≤ c
u(x− c) if c < x

Then Tuc(x) ≥ uc(x).

Example Let f(x) be an increasing function such that f(0) = 0. Then the
invariant kernel

a(x, y) = f(x− y)

satisfies the conditions (1). Observe, that if Tu = u then Tuc = uc in this case.

Before stating the main result about attraction principle for the equation

Tu(x) = u(x) (5)

we need some auxiliary lemmas.

Lemma 2 Assume that the function u(x) satisfies Tu(x) ≥ u(x) and let

v(x) =
{

u(x) if 0 ≤ x ≤ c
u(c) if c < x

Then there exists ε > 0 such that

lim inf
n→∞

Tnv (x) ≥ u(x),

for c < x < c + ε.
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Proof. Assume that ε < 1. Let

ca = sup
y≤x≤c+1

a(x, y),

cϕ = sup
u(c)≤x≤u(c+1)

ϕ′(x),

cu = sup
c≤x≤c+1

u′(x).

Then for c < x < c + 1 we have

u(x)− Tv (x) ≤ Tu (x)− Tv (x)

=
∫ x

0

a(x, y) [ϕ(u(y))− ϕ(v(y))] dy

=
∫ x

c

a(x, y) [ϕ(u(y))− ϕ(u(c))] dy

≤ cacϕ[u(x)− u(c)](x− c)
≤ cacϕcu(x− c)2.

Similarly we get

u(x)− Tnv (x) ≤ Tnu (x)− Tnv (x)

=
∫ x

c

a(x, y)
[
ϕ(u(y))− ϕ(Tn−1v(y))

]
dy

≤ cacϕ(x− c) sup
c<y<c+1

[
ϕ(u(y))− ϕ(Tn−1v(y))

]
.

Thus by induction we can prove that

u(x)− Tnv(x) ≤ cu(cacϕ)n(x− c)n+1.

This implies
lim inf
n→∞

Tnv (x) ≥ u(x),

if x− c < c−1
a c−1

ϕ and x− c < 1.

Lemma 3 Assume that Tu (x) = u(x) and let

v(x) =
{

u(x) if 0 ≤ x ≤ c
u(c) if c < x

Then there is ε > 0 such that

lim
n→∞

Tnv (x) = u(x),

for c < x < c + ε.
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Proof. From the preceding lemma we have that lim infn→∞ Tnv (x) ≥ u(x),
for c < x < c + ε. for some ε > 0. On the other hand

lim sup
n→∞

Tnv (x) ≤ u(x).

This is because u(x) ≥ v(x) and T is monotonic.

The idea of the proof of the next proposition is due to Okrasiński.

Proposition 1 The equation (1) can have at most one positive solution .

Proof. Suppose u(x) and v(x) are two different positive solution of (1).
Without loss of generality we may assume that u 6≤ v. Then there is c > 0 such
that u(x−d) > v(x) for some x > 0. If not, then we would have u(x−d) ≤ v(x)
for every x and d, which would imply u ≤ v. Thus let u(x − d) > v(x). This
can be written as ud(x) > v(x). Let c be the lower bound of the numbers x for
which ud(x) > v(x). Thus ud(x) ≤ v(x) for 0 ≤ x ≤ c. Define the function ũ(x)
as follows.

ũ(x) =
{

ud(x) if 0 ≤ x ≤ c
ud(c) if c < x

By Corollary 1 we have Tud(x) ≥ ud(x). Moreover ũ(x) ≤ v(x). Therefore

lim sup
n→∞

Tnũ(x) ≤ v(x).

On the other hand by Lemma 2

lim inf
n→∞

Tnũ(x) ≥ ud(x).

for c < x < c + ε. This implies that ud(x) ≤ v(x) for c < x < c + ε. The latter
contradicts the choice of c.

We are now ready to prove the attraction principle for the equation (1).

Theorem 1 Let u(x) be a positive solution of (1) and let a(x, y) satisfy (2).
Assume v(x), x > 0 is a positive function satisfying v(0) = 0. Then

lim
n→∞

Tnv (x) = u(x),

for x ≥ 0. The convergence is uniform on every bounded interval.

Proof. Suppose first that

Tv (x) ≥ v(x)

and 0 ≤ v(x) ≤ u(x). Then the sequence of functions {Tnv (x)} is increasing
and bounded by u(x). Thus the limit

ũ(x) = lim
n→∞

Tnv (x)

5



defines the solution ũ(x) of (1). By Proposition 1 we have ũ(x) = u(x). This
proves the theorem in the case when Tv ≥ v.

A similar reasoning shows that if

Tv (x) ≤ v(x)

and 0 ≤ u(x) ≤ v(x), then

lim
n→∞

Tnv (x) = u(x),

for x ≥ 0.
We will complete the proof by showing that there exist increasing positive

functions w1 and w2 such that

w1(x) ≤ v(x) ≤ w2(x), w1(x) ≤ u(x) ≤ w2(x),

and
Tw1(x) ≥ w1(x), Tw2(x) ≤ w2(x).

We can assume that v(x) is a strictly increasing function. If not, then Tv (x)
is so. Obviously the solution u(x) is strictly increasing. Introduce the increasing
function w1(x) by

w−1
1 (x) = v−1(x) + u−1(x).

Then
0 ≤ w1(x) ≤ v(x) and w1(x) ≤ u(x).

Since the functions u−1, v−1, w−1
1 are increasing(
w−1

1

)′ ≥ (
u−1

)′
. (6)

Write w1 in the form w1(x) = u (h1(x)) . Then h1(x) = u−1(w1(x)) and by (6)

h′1(x) =
(
u−1

)′
(w1(x)) w′1(x) ≤ 1.

By Lemma 1 we then have

Tw1 (x) ≥ w1(x).

Define the function w2(x) as

w−1
2 (x) =

∫ x

0

min
{(

u−1
)′

(y),
(
v−1

)′
(y)

}
dy.

Then
w−1

2 (x) ≤
∫ x

0

(
v−1

)′
(y) dy = v−1(x),
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w−1
2 (x) ≤

∫ x

0

(
u−1

)′
(y) dy = u−1(x),

Thus w2(x) ≥ max{u(x), v(x)}. Moreover,(
w−1

2

)′ ≤ (
u−1

)′
. (7)

Thus w2 can be written as w2(x) = u ((h2(x)) , where h2(x) = u−1 (w2(x)) . By
(7) we have

(h2)′ (x) =
(
u−1

)′
(w2(x)) w′2(x) ≥ 1.

Again by Lemma 1
Tw2(x) ≥ w2(x).

Summarizing we proved that there are w1 and w2 such that

w1(x) ≤ v(x) ≤ w2(x),

lim
n→∞

Tnwi(x) = u(x), i = 1, 2.

Thus
lim

n→∞
Tnv (x) = u(x).

Furthermore, the sequences Tnw1 and Tnw2 are increasing and decreasing
respectively. Hence by Dini’s theorem both converge to u(x) uniformly on
bounded intervals. So does Tnv as

Tnw1 (x) ≤ Tnv (x) ≤ Tnw2 (x).

This completes the proof.
Remark. By Theorem 1 we can get an estimate for the nonzero solution u(x),
if it exists. Assume that the function v(x) satisfies

Tv(x) ≤ v(x), for 0 ≤ x ≤ c.

Then
u(x) ≤ v(x) for 0 ≤ x ≤ c.

In particular we have the following.

Corollary 2 Let {vn(x)}∞n=1 be a sequence of positive increasing functions such
that

lim
n→∞

vn(x) = 0, for x ≥ 0.

and
Tvn (x) ≤ vn(x), for x ≥ 0.

Then the equation Tu(x) = u(x) has no positive solutions.

In a forthcoming paper we will use Corollary 2 to prove that if ϕ(x) =
√

x
and a(x, y) = f(x− y) is an invariant kernel given by the function

f(x) = e−e1/x

,

then the equation (2) admits no nonzero solutions.
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