

Attraction principle for nonlinear integral operators of the Volterra type

Ryszard Szwarc

Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706, USA

and

Institute of Mathematics
Wrocław University
pl.Grunwaldzki 2/4
50-384 Wrocław, Poland

1. Introduction

We are studying the integral equation of the form

$$u(x) = \int_0^x a(x, y)\varphi(u(y)) dy. \quad (1)$$

All function appearing here are nonnegative and defined for $0 \leq y \leq x$. The Eq.(1) has the trivial solution $u(x) \equiv 0$. It can have also other solutions. We prove, using the method due to Okrasinski, that under certain conditions upon $a(x, y)$ and $\varphi(x)$ there can be at most one solution which does not vanish identically in a neighborhood of 0. Our main result is the attraction property of this nonnegative solution, provided that it exists. Namely we show that the iterations $T^n u$ of the operator

$$Tu(x) = \int_0^x a(x, y)\varphi(u(y)) dy$$

tend to the unique nonnegative solution for every function u , strictly positive in a neighborhood of 0.

A similar equation was studied in [3], under the conditions that $a(x, y)$ is invariant and $\varphi(x)$ is concave.

2. The results

We will deal with the integral operators T of the form

$$Tu(x) = \int_0^x a(x, y)\varphi(u(y)) dy.$$

The functions u and φ are assumed to be nonnegative and strictly increasing on the half-axis $[0, +\infty)$ and $u(0) = 0$, $\varphi(0) = 0$. Let the kernel $a(x, y)$, $x > y$, be positive and satisfy the following conditions.

$$\begin{aligned} \frac{\partial a}{\partial x} &\geq 0 \\ \frac{\partial a}{\partial x} + \frac{\partial a}{\partial y} &\geq 0. \end{aligned} \quad (2)$$

We also assume that $a(x, x) = 0$. If not specified otherwise all the functions we introduce are smooth on the open half-axis $(0, +\infty)$ and continuous on $[0, +\infty)$. The kernel $a(x, y)$ is to be smooth for $x > y$ and continuous for $x \geq y$. The task we are going to take up is to study the equation

$$Tu(x) = u(x),$$

where u is nonnegative, strictly increasing and $u(0) = 0$. Obviously the conditions (2) imply that if $u(x)$ is strictly positive for $x > 0$ and satisfies (1), then u is strictly increasing. Observe that the conditions (2) are equivalent to the following.

$$\begin{aligned} a(x, y) &\geq a(s, t) \quad \text{for } 0 \leq s \leq x, 0 \leq t \leq y, \\ &\quad y \leq x \text{ and } x - y > s - t. \end{aligned} \quad (3)$$

Lemma 1 *Let u and h be increasing functions on $[0, +\infty)$ such that $u(0) = h(0) = 0$. Assume also that $h(x)$ is a continuous and piecewise smooth function on $[0, +\infty)$. Put $\tilde{u}(x) = u(h(x))$.*

(i) *If $Tu(x) \geq u(x)$ and $h'(x) \leq 1$, then $T\tilde{u}(x) \geq \tilde{u}(x)$.*

(ii) *If $Tu(x) \leq u(x)$ and $h'(x) \geq 1$, then $T\tilde{u}(x) \leq \tilde{u}(x)$.*

Proof. We will only prove the first part of the lemma. The proof of the second part is similar. Observe that if $0 < y < x$ then

$$a(h(x), h(y)) \leq a(x, y). \quad (4)$$

Indeed, since $h' \leq 1$ and $h(0) = 0$ we have $h(x) \leq x$, $h(y) \leq y$ and $h(x) - h(y) \leq x - y$ for $0 < y < x$. Applying (3) we get the inequality (4). Therefore

$$\begin{aligned} T\tilde{u}(x) &= \int_0^x a(x, y)\varphi(u(h(y))) dy \\ &\geq \int_0^x a(x, y)\varphi(u(h(y))) h'(y) dy \\ &= \int_0^{h(x)} a(x, h^{-1}(s))\varphi(u(s)) ds \\ &\geq \int_0^{h(x)} a(h(x), s)\varphi(u(s)) ds \\ &= Tu(h(x)) \geq u(h(x)) = \tilde{u}(x). \end{aligned}$$

By applying Lemma 1 with

$$h(x) = \begin{cases} 0 & \text{if } 0 \leq x \leq c \\ x - c & \text{if } c < x \end{cases}$$

we get the following.

Corollary 1 *Assume that u satisfies $Tu(x) \geq u(x)$. For a given $c > 0$ let*

$$u_c(x) = \begin{cases} 0 & \text{if } 0 \leq x \leq c \\ u(x - c) & \text{if } c < x \end{cases}$$

Then $Tu_c(x) \geq u_c(x)$.

Example Let $f(x)$ be an increasing function such that $f(0) = 0$. Then the invariant kernel

$$a(x, y) = f(x - y)$$

satisfies the conditions (1). Observe, that if $Tu = u$ then $Tu_c = u_c$ in this case.

Before stating the main result about attraction principle for the equation

$$Tu(x) = u(x) \tag{5}$$

we need some auxiliary lemmas.

Lemma 2 *Assume that the function $u(x)$ satisfies $Tu(x) \geq u(x)$ and let*

$$v(x) = \begin{cases} u(x) & \text{if } 0 \leq x \leq c \\ u(c) & \text{if } c < x \end{cases}$$

Then there exists $\varepsilon > 0$ such that

$$\liminf_{n \rightarrow \infty} T^n v(x) \geq u(x),$$

for $c < x < c + \varepsilon$.

Proof. Assume that $\varepsilon < 1$. Let

$$\begin{aligned} c_a &= \sup_{y \leq x \leq c+1} a(x, y), \\ c_\varphi &= \sup_{u(c) \leq x \leq u(c+1)} \varphi'(x), \\ c_u &= \sup_{c \leq x \leq c+1} u'(x). \end{aligned}$$

Then for $c < x < c + 1$ we have

$$\begin{aligned} u(x) - Tv(x) &\leq Tu(x) - Tv(x) \\ &= \int_0^x a(x, y) [\varphi(u(y)) - \varphi(v(y))] dy \\ &= \int_c^x a(x, y) [\varphi(u(y)) - \varphi(u(c))] dy \\ &\leq c_a c_\varphi [u(x) - u(c)](x - c) \\ &\leq c_a c_\varphi c_u (x - c)^2. \end{aligned}$$

Similarly we get

$$\begin{aligned} u(x) - T^n v(x) &\leq T^n u(x) - T^n v(x) \\ &= \int_c^x a(x, y) [\varphi(u(y)) - \varphi(T^{n-1} v(y))] dy \\ &\leq c_a c_\varphi (x - c) \sup_{c < y < c+1} [\varphi(u(y)) - \varphi(T^{n-1} v(y))]. \end{aligned}$$

Thus by induction we can prove that

$$u(x) - T^n v(x) \leq c_u (c_a c_\varphi)^n (x - c)^{n+1}.$$

This implies

$$\liminf_{n \rightarrow \infty} T^n v(x) \geq u(x),$$

if $x - c < c_a^{-1} c_\varphi^{-1}$ and $x - c < 1$.

Lemma 3 *Assume that $Tu(x) = u(x)$ and let*

$$v(x) = \begin{cases} u(x) & \text{if } 0 \leq x \leq c \\ u(c) & \text{if } c < x \end{cases}$$

Then there is $\varepsilon > 0$ such that

$$\lim_{n \rightarrow \infty} T^n v(x) = u(x),$$

for $c < x < c + \varepsilon$.

Proof. From the preceding lemma we have that $\liminf_{n \rightarrow \infty} T^n v(x) \geq u(x)$, for $c < x < c + \varepsilon$, for some $\varepsilon > 0$. On the other hand

$$\limsup_{n \rightarrow \infty} T^n v(x) \leq u(x).$$

This is because $u(x) \geq v(x)$ and T is monotonic.

The idea of the proof of the next proposition is due to Okrasiński.

Proposition 1 *The equation (1) can have at most one positive solution .*

Proof. Suppose $u(x)$ and $v(x)$ are two different positive solution of (1). Without loss of generality we may assume that $u \not\leq v$. Then there is $c > 0$ such that $u(x-d) > v(x)$ for some $x > 0$. If not, then we would have $u(x-d) \leq v(x)$ for every x and d , which would imply $u \leq v$. Thus let $u(x-d) > v(x)$. This can be written as $u_d(x) > v(x)$. Let c be the lower bound of the numbers x for which $u_d(x) > v(x)$. Thus $u_d(x) \leq v(x)$ for $0 \leq x \leq c$. Define the function $\tilde{u}(x)$ as follows.

$$\tilde{u}(x) = \begin{cases} u_d(x) & \text{if } 0 \leq x \leq c \\ u_d(c) & \text{if } c < x \end{cases}$$

By Corollary 1 we have $Tu_d(x) \geq u_d(x)$. Moreover $\tilde{u}(x) \leq v(x)$. Therefore

$$\limsup_{n \rightarrow \infty} T^n \tilde{u}(x) \leq v(x).$$

On the other hand by Lemma 2

$$\liminf_{n \rightarrow \infty} T^n \tilde{u}(x) \geq u_d(x).$$

for $c < x < c + \varepsilon$. This implies that $u_d(x) \leq v(x)$ for $c < x < c + \varepsilon$. The latter contradicts the choice of c .

We are now ready to prove the attraction principle for the equation (1).

Theorem 1 *Let $u(x)$ be a positive solution of (1) and let $a(x, y)$ satisfy (2). Assume $v(x)$, $x > 0$ is a positive function satisfying $v(0) = 0$. Then*

$$\lim_{n \rightarrow \infty} T^n v(x) = u(x),$$

for $x \geq 0$. The convergence is uniform on every bounded interval.

Proof. Suppose first that

$$Tv(x) \geq v(x)$$

and $0 \leq v(x) \leq u(x)$. Then the sequence of functions $\{T^n v(x)\}$ is increasing and bounded by $u(x)$. Thus the limit

$$\tilde{u}(x) = \lim_{n \rightarrow \infty} T^n v(x)$$

defines the solution $\tilde{u}(x)$ of (1). By Proposition 1 we have $\tilde{u}(x) = u(x)$. This proves the theorem in the case when $Tv \geq v$.

A similar reasoning shows that if

$$Tv(x) \leq v(x)$$

and $0 \leq u(x) \leq v(x)$, then

$$\lim_{n \rightarrow \infty} T^n v(x) = u(x),$$

for $x \geq 0$.

We will complete the proof by showing that there exist increasing positive functions w_1 and w_2 such that

$$w_1(x) \leq v(x) \leq w_2(x), \quad w_1(x) \leq u(x) \leq w_2(x),$$

and

$$Tw_1(x) \geq w_1(x), \quad Tw_2(x) \leq w_2(x).$$

We can assume that $v(x)$ is a strictly increasing function. If not, then $Tv(x)$ is so. Obviously the solution $u(x)$ is strictly increasing. Introduce the increasing function $w_1(x)$ by

$$w_1^{-1}(x) = v^{-1}(x) + u^{-1}(x).$$

Then

$$0 \leq w_1(x) \leq v(x) \text{ and } w_1(x) \leq u(x).$$

Since the functions u^{-1} , v^{-1} , w_1^{-1} are increasing

$$(w_1^{-1})' \geq (u^{-1})'. \quad (6)$$

Write w_1 in the form $w_1(x) = u(h_1(x))$. Then $h_1(x) = u^{-1}(w_1(x))$ and by (6)

$$h_1'(x) = (u^{-1})'(w_1(x)) w_1'(x) \leq 1.$$

By Lemma 1 we then have

$$Tw_1(x) \geq w_1(x).$$

Define the function $w_2(x)$ as

$$w_2^{-1}(x) = \int_0^x \min \left\{ (u^{-1})'(y), (v^{-1})'(y) \right\} dy.$$

Then

$$w_2^{-1}(x) \leq \int_0^x (v^{-1})'(y) dy = v^{-1}(x),$$

$$w_2^{-1}(x) \leq \int_0^x (u^{-1})'(y) dy = u^{-1}(x),$$

Thus $w_2(x) \geq \max\{u(x), v(x)\}$. Moreover,

$$(w_2^{-1})' \leq (u^{-1})'. \quad (7)$$

Thus w_2 can be written as $w_2(x) = u((h_2(x))$, where $h_2(x) = u^{-1}(w_2(x))$. By (7) we have

$$(h_2)'(x) = (u^{-1})'(w_2(x)) w_2'(x) \geq 1.$$

Again by Lemma 1

$$Tw_2(x) \geq w_2(x).$$

Summarizing we proved that there are w_1 and w_2 such that

$$w_1(x) \leq v(x) \leq w_2(x),$$

$$\lim_{n \rightarrow \infty} T^n w_i(x) = u(x), \quad i = 1, 2.$$

Thus

$$\lim_{n \rightarrow \infty} T^n v(x) = u(x).$$

Furthermore, the sequences $T^n w_1$ and $T^n w_2$ are increasing and decreasing respectively. Hence by Dini's theorem both converge to $u(x)$ uniformly on bounded intervals. So does $T_n v$ as

$$T^n w_1(x) \leq T^n v(x) \leq T^n w_2(x).$$

This completes the proof.

Remark. By Theorem 1 we can get an estimate for the nonzero solution $u(x)$, if it exists. Assume that the function $v(x)$ satisfies

$$Tv(x) \leq v(x), \quad \text{for } 0 \leq x \leq c.$$

Then

$$u(x) \leq v(x) \quad \text{for } 0 \leq x \leq c.$$

In particular we have the following.

Corollary 2 *Let $\{v_n(x)\}_{n=1}^{\infty}$ be a sequence of positive increasing functions such that*

$$\lim_{n \rightarrow \infty} v_n(x) = 0, \quad \text{for } x \geq 0.$$

and

$$Tv_n(x) \leq v_n(x), \quad \text{for } x \geq 0.$$

Then the equation $Tu(x) = u(x)$ has no positive solutions.

In a forthcoming paper we will use Corollary 2 to prove that if $\varphi(x) = \sqrt{x}$ and $a(x, y) = f(x - y)$ is an invariant kernel given by the function

$$f(x) = e^{-e^{1/x}},$$

then the equation (2) admits no nonzero solutions.

References

- [1] P. J. Bushell, On a class of Volterraa and Fredholm non-linear integral equations, *Math. Proc. Camb. Phil. Soc.* **79** (1979), 329–335.
- [2] P. J. Bushell and W. Okrasinski, Uniqueness of solutions for a class of non-linear Volterra integral equations with convolution kernel, *Math. Proc. Camb. Phil. Soc.* **106** (1989), 547–552.
- [3] W. Okrasinski, Non-negative solutions of some non-linear integral equations, *Ann. Polon. Math.* **44**(1984), 209–218
- [4] W. Okrasinski, On a nonlinear Volterra equation, *Math. Methods Appl. Sc.* **8** (1986), 345–350.