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Introduction. We are studying the integral inequality

u(x) ≤
∫ x

0
a(x− y)ψ(u(y)) dy,

where all appearing functions are defined and increasing on the right half-axis
and take the value zero at zero. We are interested in determining when the
inequality admits solutions u(x) nonvanishing in a neighbourhood of zero.
It is well-known that if ψ(x) is the identity function then no such solution
exists. This due to the fact that the operator defined by the integral on the
right hand side of the equation is linear and compact. So if we are interested
in nontrivial solutions it is natural to admit that ψ(x) ≥ x at least in a
neighbourhood of zero. One of the typical examples is the power function
ψ(x) = xα, where α < 1. This situation was explored in [2]. The functions
a(x), that admit nonzero solutions where characterized by Bushell in [1]. For
general approach to the problem we refer to [2], [3] and [4].
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In the present paper we give sufficient conditions for nonexistence of non-
trivial solutions. We prove that no matter how large ψ(x) is we can always
find an appropriate a(x) such, that nontrivial solutions are nonexistent. In
particular when ψ(x) =

√
x and a(x) = exp[− exp(1/x)], then we have no

such solutions.
We give also sufficient conditions for existence of nontrivial solutions. In

particular we show that such solutions exist for

ψ(x) =
√
x and a(x) = exp[− exp(1/xα)], where 0 < α < 1.

The results.
We will deal with the integral inequality

u(x) ≤
∫ x

0
a(x− y)ψ (u(y)) dy. (1)

The functions a(x) and ψ(x) are defined for x ≥ 0, and are assumed to be
smooth, strictly increasing and satisfying ψ(0) = a(0) = 0. We are looking
for solutions u(x), which are nonnegative and do not vanish identically in a
neighborhood of 0. We can assume that u(x) is strictly increasing without
loss of generality. Indeed, if u(x) is a solution of (1), u(x) ≥ 0, and u(x) does
not vanish identically in a neighborhood of 0, then the function represented
by the right hand side of (1) satisfies (1) and is strictly increasing. This is
due to the fact that the operator T defined as

T u(x) =
∫ x

0
a(x− y)ψ (u(y)) dy. (2)

is monotonic.
Moreover the following simple comparison result holds.

Proposition 1 Let ψ1(x) and ψ2(x) be nonnegative functions defined on
[0,+∞) and satisfying ψ1(x) ≤ ψ2(x). Then if the inequality (1) is unsolvable
with ψ(x) = ψ2(x) it is such with ψ(x) = ψ1(x).

Now we give a condition under which the inequality (1) has no solutions.

Proposition 2 Let φ(x) be the inverse function for ψ(x). Assume that there
is a positive constant C such that

x− a−1 ◦ φ ◦ a (x)

x2
≤ C. (3)
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Then the inequality (1) does not admit any solution u(x), which is nonnega-
tive and does not vanish identically in a neighborhood of 0.

Proof. Assume that u(x) satisfies (1). We then have the following ele-
mentary estimate.

u(x) ≤ x a(x)ψ(u(x)).

Hence u(x) = o(a(x)), when x→ 0+. Consequently there is a function f(x),
such that

u(x) = a(f(x)), and 0 ≤ f(x) ≤ x. (4)

We can assume that φ(x) ≤ x, replacing φ(x) with min{φ(x), x} if neces-
sary. Observe that the modified function satisfies the assumption (3) and by
Proposition 1 it suffices to show the conclusion of Proposition 2 for this new
function. So if φ(x) ≤ x, then ψ(x) ≥ x, This implies that there is a function
g(x) such that

ψ (u(x− g(x))) = u(x). (5)

The equations (4) and (5) imply that

a−1 ◦ φ ◦ a(f(x)) = f(x− g(x)). (6)

The integral in (1) can be then split as follows∫ x

0
a(x− y)ψ (u(y)) dy =

∫ x

0
a(y)ψ (u(x− y)) dy =

∫ f(x)

0
a(y)ψ (u(x− y)) dy +

∫ g(x)

f(x)
a(y)ψ (u(x− y)) dy+∫ x

g(x)
a(y)ψ (u(x− y)) dy.

The integral over [0, f(x)] can be majorized by a(f(x))f(x)ψ(u(x)) which
by virtue of (4) is o(u(x)), when x tends to 0. The integral over [g(x), x] is
also o(u(x)), because it can be majorized by ψ (u(x− g(x))) (x− g(x))a(x),
which in turn can be majorized by xu(x)a(x). We are going to prove that
f(xn) ≥ g(xn) for a sequence xn tending to 0. It will imply that

Tu (xn) = o(u(xn)),

when n tends to infinity.
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First of all we can assume that

f(x) ≤ x2.

This can be achieved as follows. Let the function u(x) satisfy the inequality
(1), and u(x) = a(f(x)). Then by [4], Proposition 1, the function u(x2/(x2 +
1)) also satisfies (1). Moreover

u(x2/(x2 + 1)) = a(f̃(x)),

where f̃(x) = f(x2/(x2 + 1)) ≤ x2.
The function f(x)/x cannot be decreasing as it approaches 0 when x

tends to 0. Thus there is a sequence xn such that limn xn = 0 and

f(xn)

xn

= max
0≤x≤xn

f(x)

x
.

We will show that g(xn) ≤ f(xn). By (3) and (6) we have that

f(x)− f(x− g(x))

f(x)2
≤ C,

for some constant C. By the choice of the sequence xn we get

f(xn)− f(xn − g(xn))

f(xn)2
≥ xnf(xn)− (xn − g(xn))f(xn)

xnf(xn)2
=

g(xn)

xnf(xn)
.

Thus we arrive at
g(xn) ≤ Cxnf(xn),

which shows that g(xn) ≤ f(xn), for n large enough. As it was shown before
this implies Tu (xn) = o(u(xn)), which contradicts (1).

Example 1. Let ψ(x) =
√
x and

a(x) = exp
(
− exp(x−1)

)
.

Then ψ(x) and a(x) satisfy the assumptions of Proposition 2. Indeed, since

a−1 ◦ φ ◦ a(x) =
x

1 + x log 2
,

then

x− a−1 ◦ φ ◦ a(x) =
x2 log 2

1 + x log 2
≤ x2.

Therefore the inequality (1) has no nontrivial solutions u(x).
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Proposition 3 Let ψ(x) be an increasing function on [0,+∞), such that
ψ(0) = 0. There exists an increasing positive function a(x) such that the
inequality (1) has no solution u(x) positive in a neighborhood of zero.

Proof. We are going to find a function ψ(x) which satisfies (3). We can
assume that ψ(x) > x, replacing ψ(x) by max{ψ(x), 2x}, if necessary, and
observing that by Proposition 1 nonsolvability of (1) with this new function
implies that with ψ(x). If so we have φ(x) < x. Let yn be sequence defined
recursively by

yn+1 = φ(yn), y0 = 1.

Then yn is strictly decreasing and convergent to zero. Let xn be the sequence
defined by

xn+1 = xn − x2
n, x0 =

1

2
.

Then xn is also strictly decreasing and convergent to zero. First we define
the function a(x) on the terms of the sequence {xn}∞n=0 as

a(xn) = yn.

Then a(x) can be extended (for example linearly) to a continuous nonnega-
tive function strictly increasing on the half-axis [0,∞). We claim that a(x)
satisfies (3). Let 0 < x < 1

2
. Then there is n such, that

xn+1 ≤ x < xn.

Thus, observing that a−1 ◦ φ ◦ a(xn) = xn+1 we get

x− a−1 ◦ φ ◦ a(x)

x2
≤ xn − a−1 ◦ φ ◦ a(xn+1)

x2
n+1

=
xn − xn+2

x2
n+1

=
xn − xn+1 + xn+1 − xn+2

x2
n+1

= 1 +
x2

n

x2
n+1

= 1 +
1

(1− xn)2
≤ 1 +

1

(1− x0)2
= 5.

Thus we can apply Proposition 2. Observe that (1) has no nonvanishing
solution for every ã(x) ≤ a(x). For example we can take

ã(x) =
∫ x

0

a(y)

1 + y
dy.
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Therefore a(x) can be taken to be smooth.

Proposition 2 can be strenghtened using Corollary 2 from [4]. Namely
the following holds.

Theorem 1 Let φ(x) denote the inverse function for ψ(x). Assume that
limt→∞(ψ(t) /t) = +∞ and

x

x− a−1 ◦ φ ◦ a(x)
≥ h(x), (7)

where h(x) is a positive function satisfying:
(i) h(x) is nonintegrable about 0, and h(x) ≤ x−1,
(ii) Let H(x) be the antiderivative of h(x). The function H−1(log x) is

convex in a neighborhood of zero and has second derivative bounded.
Then inequality (1) has no nontrivial solutions.

Proof. We will construct a family of functions uε(x) such, that

Tuε (x) ≤ uε(x), lim
ε→0+

uε(x) = 0, (8)

for x in a neighborhood of zero. The conclusion will then follow from Corol-
lary 2 , [4] and the following lemma.

Lemma 1 Let limt→∞(ψ(t) /t) = +∞. If the inequality (1) has an increasing
solution not vanishing in a neighborhood of zero then there is such solution
of the equation

u(x) = Tu (x) =
∫ x

0
a(x− y)ψ (u(y)) dy.

Proof. If u(x) is an increasing function satisfying the inequality (1), then

u(x) ≤ ψ(u(x))A(x), where A(x) =
∫ x

0
a(t) dt.

Thus
u(x)

ψ(u(x))
≤ A(x).

Fix x0 > 0. Since limt→∞(ψ(t) /t) = +∞, there is a constant cx0 such that
0 ≤ u(x) ≤ cx0 for 0 ≤ x ≤ x0. Observe that if u(x) satisfies (1) then also
T nu (x) do so for every natural n. Hence we have

T nu (x) ≤ cx0 .
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The sequence of functions T nu is thus increasing and bounded from above
on [0, x0] , hence it converges to a limit ũ, on [0, x0]. The function ũ satisfies
the equation for 0 ≤ x ≤ x0 and does not vanish about 0 as u(x) ≤ ũ(x).
Since x0 is arbitrary the function ũx can be defined for every x > 0.

Let us return to the proof of Theorem 1. For 1 ≥ ε > 0 let f(x) denote
the function defined as

f(x) = H−1(log x). (9)

Set
fε(x) = f(εx).

By assumptions fε(x) is a convex function with bounded second derivative.
We claim that if we set uε(x) = a (fε(x)) , then (8) holds. First observe that
since h(x) ≤ 1/x, we have fε(x) ≤ f(x) ≤ x. for 0 < x ≤ 1. This is true,
because

H(x) =
∫ x

1
2

h(t) dt = −
∫ 1

2

x
h(t) dt

≥ −
∫ 1

2

x
t−1dt = log x.

Now we are going to estimate the integrals∫ x

0
a(x− y)ψ (uε(y)) dy

following the method from the proof of Proposition 2.∫ x

0
a(x− y)ψ (uε(y)) dy =

∫ x

0
a(y)ψ(u(x− y))dy

=
∫ fε(x)

0
· · · +

∫ gε(x)

fε(x)
· · · +

∫ x

gε(x)
· · · .

The functions fε(x) and gε(x) are defined according to (4) and (6). The first
and the third integrals can be majorized as follows.∫ fε(x)

0
· · · ≤ a (fε(x)) fε(x)ψ (uε(x)) ≤ uε(x)xψ (u1(x)) ,∫ x

gε(x)
· · · ≤ ψ (uε(x− gε(x))) (x− gε(x) a(x) ≤ uε(x)x a(x).
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Thus either integrals can be majorized by Cxuε(x) for 0 < x ≤ 1, where C
is a constant independent of ε. The proof will be complete if we show that
the second integral is nonpositive for small x. Namely, we will show that
gε(x) ≤ Cx fε(x), for 0 < x ≤ 1 and 0 < ε ≤ 1, where C is a constant
independent of ε.

Combining (6) (where f = fε and g = gε) and (7) gives

fε(x)

fε(x)− fε (x− gε(x))
≥ h (fε(x)) . (10)

We then have

fε (x− x fε(x)) = f(εx− ε xf(εx))

= f(εx)− εx f(εx) f ′(εx) +
1

2
ε2x2f 2(εx) f ′′(ξ),

where 0 < ξ < εx. Since f(x) is a convex function

f(εx) ≤ εx f ′(εx).

Therefore by (6) and by definition of f(x) we have

fε(x)f ′ε(x)

fε(x)− fε (x− 2xfε(x))
=

εf(εx)f ′(εx)

2εx f(εx) f ′(εx)− 2ε2x2f 2(εx) f ′′(ξ)

=
1

2x
(
1− εx f(εx)

f ′(εx)
f ′′(ξ)

)
≤ 1

2x(1− ε2x2f ′′(ξ)
≤ 1

x
,

for 0 ≤ x ≤ x0, where x0 does not depend on ε.
On the other hand by (10) we have

fε(x)f ′ε(x)

fε(x)− fε (x− gε(x))
≥ f ′ε(x)h (fε(x))

= (H ◦ fε)
′ (x) =

1

x
.

The above calculations show that

fε(x)f ′ε(x)

fε(x)− fε (x− gε(x))
≥ fε(x)f ′ε(x)

fε(x)− fε (x− 2xfε(x))
.
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This implies
gε(x) ≤ 2x fε(x),

for 0 ≤ x ≤ x0, and for every 0 < ε ≤ 1. Therefore

gε(x) ≤ fε(x),

for 0 < x ≤ min{1
2
, x0}. This completes the proof of the theorem.

Example 2.
(a) Let h(x) = x−1. Then H(x) = log x and according to (9) we have f(x) =
x. Thus h(x) satisfies the assumptions (i) and (ii) of Theorem 1.

(b) Let h(x) = −(x log x)−1. Then H(x) = − log(− log x) and from (9) we get
f(x) = e−1/x. Again the assumptions (i) and (ii) are fulfilled. In particular
f(x) is convex in the interval [0, 1

2
].

(c) Consider finally

h(x) =
−1

x log x log(− log x)) . . . log(log(. . . (− log x) . . .))
,

where the last factor in the denominator is a composition of n logarithms.
Then

H(x) = − log(log(. . . (− log x) . . .)).

By (9) we have

f(x) = f1 ◦ f1 ◦ . . . ◦ f1(x) (n times),

where
f1 = e−1/x.

Since f1 is convex in the interval [0, 1
2
] and f1[0,

1
2
] ∈ [0, 1

2
], the composition

of any number of exemplars of f1 is a convex function on [0, 1
2
]. It is not hard

to see that the second derivative of f(x), as well as the higher derivatives, is
bounded.

Example 3. Let ψ(x) =
√
x and

a(x) = exp

(
− exp

(
−1

x log x

))
.
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We claim that φ(x) and a(x) satisfy (7) with

h(x) =
−1

x log x log 2
.

Indeed, observe that if a−1 ◦ φ ◦ a(x) = y, then

−y log y =
−x log x

1− x log x log 2
.

Thus setting g(x) = −x log x we get

g(x)− g(y) = g(x)g(y) log 2.

Therefore

x− a−1 ◦ φ ◦ a(x) = x− y = (g(x)− g(y))
x− y

g(x)− g(y)

=
g(x)g(y) log 2

g′(ξ)
=
xy log x log y log 2

−1− log ξ

≤ x2 log2 x log 2

−1− log x
= −x2 log x

log x log 2

1 + log x

≤ −x2 log 2 log x,

where y < ξ < x < e−2. Hence for 0 < x < e−2 we have

x

x− a−1 ◦ φ ◦ a(x)
≥ −1

x log x log 2

Combining Theorem 1 and Example 2(b) gives that the inequality (1) has
no solution nonvanishing in a neighborhood of zero.

A contradiction to the condition leads to the existence of solutions non-
vanishing in neighborhood of zero. Namely the following holds.

Theorem 2 Let φ(x) be the inverse function for ψ(x). Assume that φ(x) ≤
x, and

x

x− a−1 ◦ φ ◦ a(x)
≤ h(x), (11)

where h(x) is a positive function satisfying:
(i) h(x) is integrable about 0,
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(ii) Let H(x) be the antiderivative of h(x). The function H−1(x) is convex
in a neighborhood of zero.

Let Ω(x) be an increasing function defined on [0,+∞), such that Ω(0) = 0
and Ω(φ(x)) ≤ φ(Ω(x)). Then there exists a function u(x), nonnegative and
strictly increasing in a neighborhood of zero, and satisfying there∫ x

0
a(x− y)ψ (u(y)) dy ≥ a−1(Ω(u(x))) Ω(u(x))u(x). (12)

Remark. Obviously this is not a direct conversion of (1). Observe that we
can take Ω(x) = ψ ◦ ψ ◦ · · · ◦ ψ(x), (n times). In this case if a(x) ≤ xα and
ψ(x) > xβ, β < 1, then

a−1(Ω(u(x))) Ω(u(x)) ≥ u(x)(1+α−1)βn

.

The right hand side of this inequality tends to 1 when n goes to infinity.
Therefore the right hand side of (12) is close to u(x).

Proof. Let Ω(x) be an arbitrary function satisfying the assumptions
of the theorem. Let f(x) = H−1(x2). By assumptions f(x) is an increas-
ing function convex in a neighborhood of zero (composition of two convex
function is again a convex function). Let u(x) be defined according to

u(x) = Ω−1(a(f(x))). (13)

Analogously to (5) there is g(x) such that 0 ≤ g(x) ≤ x, and

ψ (u(x− g(x))) = u(x). (14)

By (13), (14) and by the fact that Ω(φ(x)) ≤ φ(Ω(x)), we have (cf (6))

a−1 ◦ φ ◦ a(f(x)) ≥ a−1 ◦ Ω ◦ φ ◦ Ω−1 ◦ a(f(x))

= f(x− g(x)). (15)

We are going to show that f(x) is infinitesimal with respect to g(x) when x
tend to zero. By assumptions and by (15) we get

f(x)

f(x)− f(x− g(x))
≤ h(f(x)).
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Therefore

1 ≤ f(x)− f(x− g(x))

f(x)
h(f(x)) = f ′(ξ)h(f(x))

g(x)

f(x)

≤ f ′(x)h(f(x))
g(x)

f(x)
= (H ◦ f)′(x)

g(x)

f(x)
= 2x

g(x)

f(x)
,

where x−g(x) < ξ < x, and f ′(ξ) ≤ f ′(x) by the convexity of f(x). Thus for
x ≤ 1

4
we have 2f(x) ≤ g(x). Now we can estimate the integral as follows.

∫ x

0
a(x− y)ψ (u(y)) dy ≥

∫ g(x)

f(x)
a(x− y)ψ (u(y)) dy

≥ [g(x)− f(x)] a(f(x))ψ(u(x− g(x)))

≥ f(x) Ω(u(x))u(x).

By (12) f(x) = a−1(Ω(u(x))). This completes the proof.

Example 4. Consider

ψ(x) = xβ,

a(x) = exp
(
− exp(x−α)

)
,

where 0 < α < 1 and 0 < β < 1. Using Theorem 2 we will show that
the inequality (1) admits nonzero solutions. Let ψ0(x) = xγ, with γ < β.
We claim that a(x) and ψ0(x) satisfy the assumptions of Theorem 2 with
h(x) = c x−α. Indeed, observe that if

y = a−1 ◦ φ0 ◦ a(x), φ0(x) = x1/γ,

then
y = x(1− xα log γ)−1/α.

Therefore, using for example the binomial theorem, we conclude

x

x− y
≤ c x−α.

Since α < 1, the function h(x) is integrable and H−1(x) = c′ x1/(1−α) is
convex. Let Ω(x) = xδ. Then Ω(x) commutes with ψ(x). Thus by Theorem 2
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and by the fact that a(x) ≤ x, there exists a nonnegative strictly increasing
function u(x), defined in a neighborhood of zero and satisfying there∫ x

0
a(x− y)ψ0(u(y))dy ≥ [Ω(u(x))]2 u(x).

Hence ∫ x

0
a(x− y)u(y)γdy ≥ u(x)2δ+1.

This implies that the function v(x) = u(x)γ/β satisfies∫ x

0
a(x− y)ψ(v(y))dy ≥ v(x)(2δ+1)β/γ.

Choose δ sufficiently small so that (2δ + 1)β/γ ≤ 1. Then v(x) satisfies∫ x

0
a(x− y)ψ(v(y))dy ≥ v(x)

in a neighborhood of zero.

Example 5. Examples 1 and 4 can be yet strengthened. Consider

ψ(x) = xβ,

a(x) = exp
(
− exp(x−1| log x|α)

)
,

where 0 < α < 1 and 0 < β < 1. Let (as in Example 4) ψ0(x) = xγ. We will
show that a(x) and ψ0(x) satisfy (11) with h(x) = c x−1| log x|−α. Let

y = a−1 ◦ φ0 ◦ a(x), φ0(x) = x1/γ.

Then 0 < y < x and

y−1| log y|−α = x−1| log x|−α − log γ.

Let g(x) = x| log x|α. Then

g(x)− g(y) = g(x)g(y) log γ−1.

This implies

lim
x→0+

g(x)

g(y)
= 1.
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That in turn yields

lim
x→0+

x

y
= 1.

We can assume therefore that 0 < y < x/2. Following the lines of Example
3 we get

x− a−1 ◦ φ ◦ a(x) = x− y = (g(x)− g(y))
x− y

g(x)− g(y)

=
g(x)g(y) log γ−1

g′(ξ)
=
x| log x|α y| log y|α log γ−1

ξ| log ξ|α − α| log ξ|α−1

≥ x| log x|α y| log y|α log γ−1

ξ| log ξ|α
≥ xy| log x|α log γ−1

≥ 1

2
log γ−1 x2| log x|α,

where 0 < y < ξ < x. Thus

x

x− a−1 ◦ φ0 ◦ a(x)
≥ 2

x| log x|α log γ−1
.

Obviously the function h(x) = c x−1| log x|−α is integrable about zero. More-
over H(x) = c(log x)1−α and H−1(x) = exp(cx1/(1−α)) is convex in a neigh-
borhood of zero (c denotes a constant not necessarily the same at each ocur-
rence). Thus we can apply Theorem 2. The rest follows as it was shown in
Example 4.
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[3] W. Okrasiński, On a nonlinear Volterra equation, Math. Methods Appl.
Sc. 8 (1986), 345-350.

[4] R. Szwarc, Attraction principle for nonlinear integral operators of the
Volterra type, to appear in J. Math. Anal. Appl..

14


