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Abstract

Let G be a group generated by r elements g1, g2, - . ., g-. Among the
reduced words in g1, go, ..., g, of length n some, say -,, represent the
identity element of the group G. It has been shown in a combinatorial
way that the 2nth root of 79, has a limit, called the cogrowth ex-
ponent with respect to generators g1, go, ..., g-. We show by analytic
methods that the numbers ~,, vary regularly; i.e. the ratio ya2,4+2/72n
is also convergent. Moreover we derive new precise information on
the domain of holomorphy of v(z), the generating function associated
with the coefficients ~,,.

Every group G generated by r elements can be realized as a quotient of the
free group IF, on r generators by a normal subgroup N of IF,., in such a way
that the generators of the free group IF, are sent to the generators of the group
G. With the set of generators of IF,. we associate the length function of words
in these generators. The cogrowth coefficients v,, = #{z € N | |z| = n} were
first introduced by Grigorchuk in [2]. The numbers 7, measure how big the
group G is when compared with IF,.. It has been shown that the quantities
X/V2n have a limit denoted by <, and called the growth exponent of N in
IF,.. Since the subgroup N can have at most 2r(2r —1)"~! elements of length
n, the cogrowth exponent v can be at most 2r — 1. The famous Grigorchuk
result, proved independently by J. M. Cohen in [1], states that the group G
is amenable if and only if v = 2r — 1 (see also [6], [8]).
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The main result of this note is that the coefficients ~9, satisfy not only
the Cauchy nth root test but also the d’Alambert ratio test.

Theorem 1 The ratio of two consecutive even cogrowth coefficients Yon+2/Yon
has a limit. Thus the ratio tends to %, the square of the cogrowth exponent.

Proof. Let us denote by g1, ¢o, ..., g, the generators of G. Let u be the
measure equidistributed over the generators and their inverses according to

the formula
1 < 1
p=s—=) (9i+9 )
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where ¢ = 2r — 1. By an easy transformation of [6, Formula (*)] we obtain

e’} - n+1
Cat = e e () )

for small values of |z|. Let o denote the spectral radius of the random walk

defined by pu; i.e.
o= lim */pu=(e).

By do(z) we will denote the spectral measure of this random walk. Hence

pe) = [ ando(a). (2)

-0

Note that the point g belongs to the support of 0. Combining (1) and (2)
gives

z = n o 2\/qz il
1—227;)%2 B 2\/_/gn ! <q22+1> do(z)
do(z). (3)
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By the well known formula for the generating function of the second kind
Chebyshev polynomials U,,(x) (see [4, (4.7.23), page 82]) where

tn+1 t,n,1

Un(3(t+171)) = T o1

(4)



we have
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Thus
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Therefore for n > 2 we have
_ a2 [C —1
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Since U, (—x) = Usgp(x) we get
0
Yon = q”/o {Usn(z) — ¢ Usp—s(2)} d& (), (6)

where 6(A) = 0(A) + o(—A) for A C (0, 0] and ({0}) = 0({0}). Let

I = [ {Un(@) = 4 Vsu-a(a)} d5(x).

By [3, Corollary 2] we have g > 1. Hence we can split the integral I, into
two integrals: the first I, ; over the interval [0, go] and the second I,, 5 over
[00, 0], where g9 = (14 0)/2. By (4) we have |U,,(z)] < (m+ 1) for x € [0, 1]
and

|Un(2)] < (m+ 1)z + Va2 —1]" forx > 1.

Thus we get

2n QO
Lo < 220+1) <go+\/gg—1) / 45 (x)

< 22+ 1) (g0+ Jat — 1)2”. (7)

Let’s turn to estimating the integral I,, 5 over [0, ¢]. By (4) one can easily
check that

(x4 VT —T)r

Unle) = =1

=o0(1) when n — oo,




uniformly on the interval [gg, o]. Hence
r+vV12—1)2—q7! 1)
= 0 s
2vr? —1
when n tends to infinity, uniformly in the interval [gg, o]. This implies
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Since the endpoint g belongs to the support of o, we get

L — 042 — 1. 9)

By combining this with (7) and (8) we obtain

Usn (1) — ¢ Usp_o(x) — (7 + \/1*27—1)2”*1(

ILn=1,1+4 1,2 = I~n72(1 +0(1)), n — 00. (10)

In view of (9) the integral I, tends to infinity. Thus by (6) and (10) we
have

Yon+2 [n+1,2

~
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Lemma 1 ([7]) Let f(z) be a positive and continuous function on |a,b], and
i be a finite measure on [a,b]. Then

b n+1
i (2"
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Applying Lemma 1 and using the fact that o belongs to the support of &

gives
2
Vi"“ —>q{g+\/g2—1} : (11)
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= max{f(z) [ € supp p}.

Theorem 2 The generating function y(z) = Yo% 4 ¥n2" can be decomposed
into a sum of two functions v (2) and vV (2) such that v\ (2) is analytic in
the open disc of radius ¢~/ (where q¢ = 2r — 1), while vV (2) is analytic in
the whole complex plane after removing the two real intervals [—yq™t, —y71]
and [y, vq™']. Moreover, vV satisfies the functional equation

W) _ (g/27V(a/z)

122 (q/2)



Proof. By (3) we have

1) == [ g o)
Let
7O (z) = (1-22) /_11 — 2\/519% o do(z),

W) = (-2 [ do(a),

<Jal<e 1 — 2,/quz + q22

For —1 <z <1 the expression 1 —2,/qrz + gz* vanishes only on the circle
of radius ¢~/2. Thus 7(?(2) has the desired property. For 1 < |z| < o the
expression 1 — 2, /qzrz + qz* vanishes only on the intervals

o+ VeR-1 _Q—\/QQ—W l@—\/QQ—l o+ VP -1
Y va ’ Vi oo Va
By (11) we have that v = ¢"/?(0 + +/0®> — 1). This shows that v is analytic

where it has been required.
The functional equation follows immediately from the formula

2(z) = / ! do(x).

1—22 1<fel<e 271 = 2,/qv + qz

Remark. Combining (6) and (10) yields

Yon = q" {/gg(x + Va2 - 1) (zt Ve = 1) g do(x) + 0(1)} :

0 2va? —1(z +va? —1)
We have
h(00) (00 +y/a§—1)—q! - (r+vV22—-1)2—q!
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Therefore, in view of (2), we get

q" {h(Qo) Chs QQ;_ D™ /ngQ”d&(x) + 0(1)}

= ¢"h() {(@ +/0* — 1)2”“*2n(€) + o(l)} .
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Finally we obtain

Yon Q2n o Yon

0 2n
i i e ) <M

We conjecture that the opposite estimate also holds; i.e. the quantity on the
left hand side is bounded away from zero, by a positive constant depending
only on p. This conjecture can be checked easily if the measure ¢ is smooth
in the neighbourhood of ¢ and the density has zero of finite order at p.

+ o(1).

Acknowledgement. For a long time I thought Theorem 1 follows from
the following statement.

If f(2) = Y00 g an2" is analytic in the complex plane except
the half line [1,+00), then the ratio a,.1/a, converges to 1.

I am grateful to Jacek Zienkiewicz from my Department for constructing a
fine counterexample to this statement.
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