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Abstract

Let G be a group generated by r elements g1, g2, . . . , gr. Among the
reduced words in g1, g2, . . . , gr of length n some, say γn, represent the
identity element of the group G. It has been shown in a combinatorial
way that the 2nth root of γ2n has a limit, called the cogrowth ex-
ponent with respect to generators g1, g2, . . . , gr. We show by analytic
methods that the numbers γn vary regularly; i.e. the ratio γ2n+2/γ2n

is also convergent. Moreover we derive new precise information on
the domain of holomorphy of γ(z), the generating function associated
with the coefficients γn.

Every group G generated by r elements can be realized as a quotient of the
free group IFr on r generators by a normal subgroup N of IFr, in such a way
that the generators of the free group IFr are sent to the generators of the group
G. With the set of generators of IFr we associate the length function of words
in these generators. The cogrowth coefficients γn = #{x ∈ N | |x| = n} were
first introduced by Grigorchuk in [2]. The numbers γn measure how big the
group G is when compared with IFr. It has been shown that the quantities
2n
√

γ2n have a limit denoted by γ, and called the growth exponent of N in
IFr. Since the subgroup N can have at most 2r(2r− 1)n−1 elements of length
n, the cogrowth exponent γ can be at most 2r − 1. The famous Grigorchuk
result, proved independently by J. M. Cohen in [1], states that the group G
is amenable if and only if γ = 2r − 1 (see also [6], [8]).
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The main result of this note is that the coefficients γ2n satisfy not only
the Cauchy nth root test but also the d’Alambert ratio test.

Theorem 1 The ratio of two consecutive even cogrowth coefficients γ2n+2/γ2n

has a limit. Thus the ratio tends to γ2, the square of the cogrowth exponent.

Proof. Let us denote by g1, g2, . . . , gr the generators of G. Let µ be the
measure equidistributed over the generators and their inverses according to
the formula

µ =
1

2
√

q

r∑
i=1

(gi + g−1
i ),

where q = 2r − 1. By an easy transformation of [6, Formula (*)] we obtain

z

1− z2

∞∑
n=0

γnz
n =

1

2
√

q

∞∑
n=0

µ∗n(e)

(
2
√

qz

qz2 + 1

)n+1

, (1)

for small values of |z|. Let % denote the spectral radius of the random walk
defined by µ; i.e.

% = lim
n→∞

2n

√
µ∗2n(e).

By dσ(x) we will denote the spectral measure of this random walk. Hence

µ∗n(e) =
∫ %

−%
xndσ(x). (2)

Note that the point % belongs to the support of σ. Combining (1) and (2)
gives

z

1− z2

∞∑
n=0

γnz
n =

1

2
√

q

∫ %

−%

∞∑
n=0

xn

(
2
√

qz

qz2 + 1

)n+1

dσ(x)

=
1

2
√

q

∫ %

−%

z

1− 2
√

qxz + qz2
dσ(x). (3)

By the well known formula for the generating function of the second kind
Chebyshev polynomials Un(x) (see [4, (4.7.23), page 82]) where

Un(1
2
(t + t−1)) =

tn+1 − t−n−1

t− t−1
, (4)
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we have
1

1− 2
√

qxz + qz2
=

∞∑
n=0

Un(x)qn/2zn.

Thus
z

1− z2

∞∑
n=0

γnz
n = z

∞∑
n=0

qn/2zn
∫ %

−%
Un(x)dσ(x).

Therefore for n ≥ 2 we have

γn = qn/2
∫ %

−%
{Un(x)− q−1Un−2(x)} dσ(x). (5)

Since U2n(−x) = U2n(x) we get

γ2n = qn
∫ %

0
{U2n(x)− q−1U2n−2(x)} dσ̃(x), (6)

where σ̃(A) = σ(A) + σ(−A) for A ⊂ (0, %] and σ̃({0}) = σ({0}). Let

In =
∫ %

0
{U2n(x)− q−1U2n−2(x)} dσ̃(x).

By [3, Corollary 2] we have % > 1. Hence we can split the integral In into
two integrals: the first In,1 over the interval [0, %0] and the second In,2 over
[%0, %], where %0 = (1 + %)/2. By (4) we have |Um(x)| ≤ (m + 1) for x ∈ [0, 1]
and

|Um(x)| ≤ (m + 1)[x +
√

x2 − 1]m for x ≥ 1.

Thus we get

In,1 ≤ 2(2n + 1)
(
%0 +

√
%2

0 − 1
)2n ∫ %0

0
dσ̃(x)

≤ 2(2n + 1)
(
%0 +

√
%2

0 − 1
)2n

. (7)

Let’s turn to estimating the integral In,2 over [%0, %]. By (4) one can easily
check that ∣∣∣∣∣Un(x)− (x +

√
x2 − 1)n+1

2
√

x2 − 1

∣∣∣∣∣ = o(1) when n →∞,
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uniformly on the interval [%0, %]. Hence∣∣∣∣∣U2n(x)− q−1U2n−2(x)− (x +
√

x2 − 1)2n−1 (x +
√

x2 − 1)2 − q−1

2
√

x2 − 1

∣∣∣∣∣ = o(1),

when n tends to infinity, uniformly in the interval [%0, %]. This implies

In,2 ≈ Ĩn,2 =
∫ %

%0

(x +
√

x2 − 1)2n (x +
√

x2 − 1)2 − q−1

2
√

x2 − 1(x +
√

x2 − 1)
dσ̃(x). (8)

Since the endpoint % belongs to the support of σ̃, we get

Ĩ
1/2n
n,2 −→ % +

√
%2 − 1. (9)

By combining this with (7) and (8) we obtain

In = In,1 + In,2 = Ĩn,2(1 + o(1)), n →∞. (10)

In view of (9) the integral Ĩn,2 tends to infinity. Thus by (6) and (10) we
have

γ2n+2

γ2n

≈ q
Ĩn+1,2

Ĩn,2

.

Lemma 1 ([7]) Let f(x) be a positive and continuous function on [a, b], and
µ be a finite measure on [a, b]. Then

lim
n→∞

∫ b
a f(x)n+1dµ(x)∫ b

a f(x)ndµ(x)
= max{f(x) | x ∈ supp µ}.

Applying Lemma 1 and using the fact that % belongs to the support of σ̃
gives

γ2n+2

γ2n

→ q
{
% +

√
%2 − 1

}2

. (11)

ut

Theorem 2 The generating function γ(z) =
∑∞

n=0 γnz
n can be decomposed

into a sum of two functions γ(0)(z) and γ(1)(z) such that γ(0)(z) is analytic in
the open disc of radius q−1/2 (where q = 2r − 1), while γ(1)(z) is analytic in
the whole complex plane after removing the two real intervals [−γq−1, −γ−1]
and [γ−1, γq−1]. Moreover, γ(1) satisfies the functional equation

zγ(1)(z)

1− z2
=

(q/z)γ(1)(q/z)

(q/z)
.
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Proof. By (3) we have

γ(z) = (1− z2)
∫ %

−%

1

1− 2
√

qxz + qz2
dσ(x).

Let

γ(0)(z) = (1− z2)
∫ 1

−1

1

1− 2
√

qxz + qz2
dσ(x),

γ(1)(z) = (1− z2)
∫
1<|x|≤%

1

1− 2
√

qxz + qz2
dσ(x).

For −1 ≤ x ≤ 1 the expression 1 − 2
√

qxz + qz2 vanishes only on the circle
of radius q−1/2. Thus γ(0)(z) has the desired property. For 1 < |x| ≤ % the
expression 1− 2

√
qxz + qz2 vanishes only on the intervals[

−% +
√

%2 − 1
√

q
, −%−

√
%2 − 1
√

q

]
,

[
%−

√
%2 − 1
√

q
,

% +
√

%2 − 1
√

q

]
.

By (11) we have that γ = q1/2(% +
√

%2 − 1). This shows that γ(1) is analytic
where it has been required.

The functional equation follows immediately from the formula

zγ(1)(z)

1− z2
=
∫
1<|x|≤%

1

z−1 − 2
√

qx + qz
dσ(x).

ut
Remark. Combining (6) and (10) yields

γ2n = qn

{∫ %

%0

(x +
√

x2 − 1)2n (x +
√

x2 − 1)2 − q−1

2
√

x2 − 1(x +
√

x2 − 1)
dσ̃(x) + o(1)

}
.

We have

h(%0) :=
(%0 +

√
%2

0 − 1)2 − q−1

2
√

%2
0 − 1(%0 +

√
%2

0 − 1)
≥ (x +

√
x2 − 1)2 − q−1

2
√

x2 − 1(x +
√

x2 − 1)
,

(% +
√

%2 − 1)

%
x ≥ x +

√
x2 − 1.
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Therefore, in view of (2), we get

γ2n ≤ qn

{
h(%0)

(% +
√

%2 − 1)2n

%2n

∫ %

0
x2ndσ̃(x) + o(1)

}

= qnh(%0)

{
(% +

√
%2 − 1)2n µ∗2n(e)

%2n
+ o(1)

}
.

Finally we obtain

γ2n

γ2n

%2n

µ∗2n(e)
=

γ2n

µ∗2n(e)

{
%

√
q(% +

√
%2 − 1)

}2n

≤ h(%0) + o(1).

We conjecture that the opposite estimate also holds; i.e. the quantity on the
left hand side is bounded away from zero, by a positive constant depending
only on %. This conjecture can be checked easily if the measure σ is smooth
in the neighbourhood of % and the density has zero of finite order at %.

Acknowledgement. For a long time I thought Theorem 1 follows from
the following statement.

If f(z) =
∑∞

n=0 anz
n is analytic in the complex plane except

the half line [1, +∞), then the ratio an+1/an converges to 1.

I am grateful to Jacek Zienkiewicz from my Department for constructing a
fine counterexample to this statement.
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