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Let X be a tree and G a locally compact group acting on X by isometries with 
respect to the natural metric on X. We construct the series of representations of G 
parametrized by the complex unit disc associated canonically with the distance on 
X via the matrix coefficients. We apply this series to prove that for any group G 
acting on a tree in such a way that the stabilizer of a vertex is a compact subgroup 
of G the Fourier algebra A(G) admits an approximate unit bounded in the multiplier 
norm on A(G). For the special case of semihomogeneous trees and the full group 
Aut(X) of isometries of X we decompose the constructed representations obtaining 
finally an analytic continuation of the principal series of Aut(X). ko 1991 Academic 

Press. Inc. 

Let X be a tree and G be a group acting on 3E by automorphisms. One 
of the typical examples is the free group [F, on n generators which acts 
naturally on its Cayley graph which is the homogeneous tree of degree 2n. 
In the paper [9] a construction of analytic series of uniformly bounded 
representations of [F, was given. Here we generalize that construction to 
any group acting on an arbitrary tree (not necessarily homogeneous). As 
an application we prove that if a group G acts on a tree and the stabilizer 
of a vertex is compact then the Fourier algebra A(G) admits an 
approximate unit bounded in the multiplier norm on A(G) (even bounded 
in completely bounded multiplier norm on A(G) (see [ 51)). In particular 
we get the result of [3] which states that SL(2, Q,) over the p-adic number 
field has the completely bounded approximation property. These results 
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should be compared with a theorem of Julg and Valette [6] who proved 
that any group G acting on a tree with amenable stabilizers of vertices 
is so called K-amenable (see [7, 1.2. Definition]). Both notions of K- 
amenability and the completely bounded approximation property are 
generalizations of the amenability. 

In Section 2 we discuss the problem of irreducibility of representations 
z,, \zI < 1, constructed in Section 1. We give the solution for the full group 
Aut(X) of isometries of the semihomogeneous tree that is the tree with only 
two possible degrees of vertices with the property that the vertices of any 
edge have different degrees. In that case following the method of [11] we 
decompose the representations 7c, into two subrepresentations, one 
irreducible and another equivalent to the quasiregular representation of 
Aut(X). Then as in [ 111 we realize all irreducible components of 71, on the 
common Hilbert space which makes it possible to extend this series. The 
final result is the following 

THEOREM. Ler X Z,r 1’2 be a semihomogeneous tree of degrees 4,) Q, 4 1 < Q . 
Put q = (a1 Q)‘/~. There exists a series of untformly bounded representations 
I7,, qql < 1zI < 1, of the group Aut(X ~,, ,*) on the Hilbert space 2, such that 

(i) The series Z7, is analytic in the domain 52 = {z : qq’ < Izj < 1, 
z#it, tE(-1, -~11'2]u[-~~1'2,g;1'2]u[~l~1'2, l)}. 

(ii) Z7;=ZL, and LIZ = 17, where u = (qz) - ‘, z E Q. 

(iii) II,(i)* = ZZ,(i))‘. 

(iv) ZT,( i) - Z7,( i) has finite rank. 

(v) Any representation IT,, z2 # -k; ‘, -t; ‘, is irreducible. The 
representations II, and IT,. are equivalent tf and only tf z = z’, z = -z’, or 
z= (42’))‘. 

(vi) IT, is a unitary representation if and only zf Jz( = q-l’*, z E R, or 
z= it with t E [ -k;1/2, -a;1’2] u [ti/“, 4:” 1. Otherwise the representation 
LIZ cannot be made unitary by introducing another equivalent scalar product 
in 2. 

It turns out also that if K denotes the subgroup of Aut(X,,, ,,) which fixes 
a vertex e in X,, z2 then any representation Z7,, qql < Jzl < 1, admits a non- 
zero K-fixed vector in 2, which is unique up to scalar multiples. That is 
why they are called spherical representations (see [ 1, 81). 

1. THE GENERAL CASE 

The results of this section are adapted from [9, Sect. 21, where the case 
of the free group was treated. Here we restate them in terms of an arbitrary 
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tree and its group of all isometries. We also reprove some of them for the 
sake of completeness. 

By a tree we mean a connected graph without circuits. A chain in the 
tree 3E is a sequence x0, . . . . x, such that x, and xi+, are adjacent and 
xi # x,+~. For any two vertices x, 4’ E X there exists a unique chain 
x=xo,xl, . ..) X,-I, x, = y connecting x and y. We denote this chain by 
[x, y]. The natural distance d(x, y) between x and y is the length of the 
chain [x, y], i.e., d(x, y) = n if [x, y] = {x0, . . . . x,,}. 

Let 3 be an arbitrary tree. Fix a vertex e in 3. For any vertex x #e let 
c(x) denote the penultimate vertex of the chain [e, x] (when e and x are 
adjacent then c(x) = e). 

Let us fix for a while another vertex e’ and as above we define the 
operation c’ on X with respect to e’. 

LEMMA 1. Let x be a vertex ofX such that x # [e, e’]. Then c(x) = c’(x). 

ProoJ: Let x not belong to [e, e’]. Then if we go from x towards e or 
e’ the first steps are the same. It means c(x) = c’(x). Moreover let [e, e’] = 

x, = e’}. Then c(xi)=xip, for i= 1, . . . . n and c’(x,) =xi+, 
n - 1. Thus the operations c and c’ act on the chain [e, e’] as 

opposite directions. 

COROLLARY 1. Let i be an automorphism of X. Then we have 
iocoi-‘(x)=c(x)f y or an uertex x E X such that x # [e, i(e)]. 

Proof: Put e’ = i(e) and observe that c’ = io c 0 i- ‘. The operation c can 
be lifted in a natural way to complex functions defined on X. Namely let 
P be the linear operator defined on the space .9(X) of finitely supported 
complex functions on X by the rule 

pd, = 
i 

;+I if x#e 
if x = e, 

where 6, denotes as usual the function which admits the value 1 at x and 
vanishes elsewhere. 

The isometries of X act on the space 9(X) by compositions: 

fHfoi-‘. (2) 

The corresponding map is denoted by A(i). Now the preceding corollary 
can be restated as follows. 

COROLLARY 2. For any isometry iE Aut(X) the operator l(i) Pi,(i) --l-P 
has finite rank. Moreover the operators P and l(i) PI(i) - ’ coincide on the 
functions vanishing on [e, i(e)]. 
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For any complex number z the operator I- ZP is invertible on the space 
9(X). This is because iff E .9(X) then P”f = 0 for n sufficiently large so the 
series 2 z”P”f has only finitely many non-zero terms. 

For any z E @ define the representation rcz of Am(X) on the space S(X) 
setting 

71!(i) = (I- zP)-’ A(i)(Z- zP). (3) 

LEMMA 2. Let ZEC Then rcy extends by continuity to a bounded 
representation of Aut(X) on the Hilbert space l’(X). Moreover: 

(i) The correspondence z H $(i) is an analytic function. 

(ii) 117cp(i)ll 6 (1 + IzI -2 (~l~(~,~(~))+~)/(l - lzl). 
(iii) n:(i) - A(i) has finite rank for any ie Aut(X). 
(iv) (x:(i) 6,, 6,) = z~(~~~(‘)). 

Proof: Let i E Aut(X). Then 

7c~(i)~(i)-1-Z=(Z-zP)-1A(i)(Z-zP)A(i)~1-I 

=(I-zP)-‘[A(i)(Z-zP)A(i)-‘-(I-zP)] 

=z(Z-zP)-’ [P-A(i) PA(i)-‘] 

=cz ‘+lPk[P-l(i) PA(i)-‘]. 

Hence the difference n:(i) A.(i)- ’ - Z vanishes on the orthogonal comple- 
ment {a,, . . . . SXn} 1 where [e, i(e)] = {x,, . . . . x,}. In particular it implies 
(iii). Furthermore on the subspace span {dXO, . . . . S,“} the operators 
A(i) PA(i)-’ and P are contractions in virtue of Lemma 1. Thus 
lIn~(i)4i)-‘-ZIl <2X;=, Izlk+’ and II$(i)ll <1 +2Cz=, lzlk+i which 
gives (ii). At the same time we have proved (i) because the function 
~t+7c~(i)=A(i)+~~=~z k + ‘Pk[ PI( i) - n(i) P] is a polynomial of degree 
d(e, i(e)) + 1. Finally 

(n3i) 6,, Se> = <(I- ZP)-’ di(e), 6,) 

= f zk(pk hi(+ 6,) = zd(e,i(e)). 
k=O 

Let T denote the orthogonal projection onto the one-dimensional sub- 
space C 6,. For any complex z with lzl < 1 we define the linear operator T, 
as 

T, = J-T+ (I- T), 

where ,/I -z* denotes the principal branch of the square root. The 
operator T, is invertible on Z*(X) whatever z, (zl < 1. 
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For any complex z, Iz/ < 1, define the representation 7~; of Am(X) by 

n,(i) = T,%c;(i) T,. 

THEOREM 1. The representations 7cz, z E { 121 < 1 ), form an analytic series 
of uniformly bounded representations of Aut(X) on the Hilbert space 12(3E). 
Moreover: 

(i) ll~,(~)ll SW1 -z’l/(l - IA)). 
(ii) z,(i)* = z,(i)-‘. In particular the representations n,, t E (- 1, l), 

are unitary. 

(iii) x2(i) - A(i) is a finite rank operator. 

(iv) d,(i) = (n,(i) 6,, S,) =z~(~~~(‘)). 

Proof: The first part of the theorem together with (iii) and (iv) are 
straightforward consequences of Lemma 2. The proof of the estimate in (i) 
can be simply copied from [9, Theorem 11, so we will omit it. What is left 
is to prove (ii) only. But before doing so, we derive some auxiliary facts 
which we will need in the sequel. 

For any vertex x E X let (n ~ + 1) denote the number of edges to which x 
belongs. The number n, is called the degree of the vertex x. Assume that 
the degrees of X are uniformly bounded or equivalently there are only 
finitely many possible degrees. In this case P becomes an invertible 
operator on 12(X). Moreover its adjoint operator P* is given by 

(5) 

Consider the sum P + P*. It acts as (P + P*) 6, = &X,YJ = 1 6,. Hence the 
operator P + P* commutes with all isometries of the tree because any 
isometry i maps the circle {y E X : d(x, y) = 1 } onto the circle (y E X: 
d(G), Y) = 1). 

LEMMA 3. For any ZEC the operator (I-zP) T:(Z-zP*) commutes 
with all isometries of X. 

ProoJ: Define the linear operator N on l”(X) as N 6, = n, 6, for x E X. 
Clearly N commutes with isometries of X because the degree of vertices is 
invariant under isometries. Then observe that PP* = N+ T (cf. [ll, (5)]). 
Hence 

(I- zP) T;(I- zP*) 

= (I- zP)(Z- z2T)(I- zP*) 

=I-z2T+z2PP*-z(P+P*)=Z+z2N-z(P+P*). (6) 
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This gives the desired result as we have seen before that N and P + P* 
commute with all n(i), i E Aut(X). 

Proof of Theorem l(iii). Using (ii) we can restrict our attention to the 
case when the degrees of vertices of X are uniformly bounded. As P and P* 
are bounded on Z’(X) so the operators I- ZP and I- zP* are invertible for 
IzI small enough. Therefore by Lemma 3 and by A(i)* = l(i)-’ we obtain 

n,(i) n,(i)* = Tzp’(Z-zP)p’ A(i)(Z- zP) Tz(Z-zP*) 

x,?(i)-‘(I-zP*)-’ T;-‘=I. 

Thus we have proved the identity n?(i)* =x,(i)-’ for small values of JzI. 
But both sides of this identity are analytic functions of z. It implies that (ii) 
holds for any z, IzJ < 1. 

Remark 1. The estimate in (i) is not sharp. It can be proved that the 
optimal estimate is (11 - z21 + 2 lImzl)/( 1 - JzI ‘). This unpublished result is 
due to Uffe Haagerup. 

Remark 2. Consider the case when there are finitely many possible 
degrees of vertices. Then as we saw before the operators P and P* are 
bounded. It turns out that the subspaces Ker(Z- zP) T, and Im TJZ- zP*) 
are invariant under the representation 71,. Indeed, it follows from the 
formulas below 

(I-zP) T;n;(i)=il(i)(Z-zP)T, 

z;(i) T,(Z- zP*) = T,(Z- zP*) A.(i). 
(7) 

The first identity is a simple transformation of (4) while the second relies 
on Lemma 3. The subspace Ker(Z-zP)T, is closed for any z in contrast 
to the second subspace Im TJZ-zP*). For real z these subspaces are 
orthogonal to each other and Z*(X) is a direct sum of Ker(Z- zP) T, and 
the closure of Im T,(Z-zP*). In the next section we examine when 
Im T,(Z-zP*) is closed and when the whole space can be split into the 
direct sum of these two invariant subspaces. All this will be done for the 
case of semihomogeneous trees. 

Remark 3. Let G be a group acting on the tree X. It means any element 
g of G defines an automorphism i, of X and the correspondence g H i, is 
a homomorphism. Thus we can define the representations n= for G acting 
on X by g H nc,(i,). 

580/95/2-7 
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2. SEMIHOMOGENEOUS TREES 

Let tI and iz be two different natural numbers. Let X,,, ,~ denote a tree 
such that in any vertex there meet t, + 1 or t2 + 1 edges and moreover the 
vertices of any edge have different degrees. Trees of this type are called 
semihomogeneous. They are the only trees which have the property that for 
any vertex x all its neighbors, i.e., { y: d(x, y) = 11, have the same degree. 

We divide vertices of X,,, ,: into two disjoint subsets X,, and X,, with 
respect to the degree, Let I,, and I,, denote the orthogonal projections onto 
Z’(X,,) and 12(X,2), respectively. ‘Fix a vertex e in X,, and define the 
operator P associated with e. We are going to identify the spectrum of P 
and its spectral properties. Denote q = (4, e,)‘12 and z = min(t,, 22). Clearly 
we have 

P2nP*2n 6, = q’” 6,, for x#e 

P*“P*2”&=(1+d, ‘)q%,. 

Thus )I P2nII “2n = (1 -t-a;;‘)“‘” q112 and the spectral radius of P amounts to 
q”‘. Actually a(P) = { ZE @ : Iz/ d q’j2}, because the interior of the disc 
consists of eigenvalues of P. In fact, set x,(x) to be the function on X,,, ,~ 
which admits the value 1 when d(e, x) = n and 0 otherwise. Put 

h,=(z,+l)q”*6,+ f, q-nZn(2:i2X2n+~~‘2X2n-1). (8) 

Then h,~ Z2(X,,, ,,) for (zl <q’!’ and Ph, = zh,. It can be shown also that 
for any z from the circle IzI = q- “* the operator zZ- P is a bijection 
(cf. [ 11, Corollary 1 I). 

PROPOSITION 1. Let IzI #q- ‘I2 and z2 # --z-I. Then the operator 
(I-zP) Tz(Z- zP*) is invertible on the space 1*(X,,, ,,). 

Proof: First observe that the case Izl <q-“’ is trivial because both 
I-ZP and I-zP* are invertible. Let us introduce a notation which we 
apply throughout the paper: 

24= (qz)-1, a(z) = *,z2 + 1. 

Define the linear operators A, and F, as 

(9) 

A;=aoz,,+aoz,2; F, = f (I- zP) T;(Z-zP*). (10) u Z 

We assert that 

FzA, = A,F,,. (11) 
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Indeed, by (6) we have 

Fz=(~+z~,)z,,+(~+z~,),,,-(P+P*) 

=noz<l + z 
0 

u2 u(u) 
z u I,, - (P + P*). 

Now we can easily get (11) using the above formula and the obvious iden- 
tities PI,, = Z,,P and P*Z,, = Z,,P*. Assume that IzI > qq112 and z* # ---l. 
Then by (9), 1~1 <q-l’*, a(z) # 0, and a(u) # 0. It implies that A,, A,, and 
F, are invertible thus by (11) it regards the operator F, as well. 

For z E @, q-1’2 < IzI < 1, define the operator U, by 

uz = T;‘(z- UP))’ A,(Z- ZP) T,. (12) 

Then we have (cf. [ 11, Proposition 1 ] ). 

PROPOSITION 2. Let q- 1/2 < IzI < 1 and z2 # --&-I. Then 

(i) U,Uf = (a(z) a(u)/u’)Z; 
(ii) Rz = I- (u’/u(z) u(u)) U:U= is a projection and R,* = R,; 

(iii) U,7cz(i) = x,(i) U, and x,(i) U) = U,*n,(i); 

(iv) Ker U, = Ker(Z- zP) T, and Im U,* = Im T,(Z-zP*); 

(v) R,x,(i) = n,(i)R,. 

The proof is rather easy and we omit it. Anyway we can refer to [ 11, 
Proposition 11. 

THEOREM 2. Let q- ‘12< IzI < 1 and z2# --Al. Then Im T,(Z-zP*) 
and Ker(Z-zP)T, are invariant subspaces for the representation 71,. 
Moreover they give a decomposition of the entire space 12(X,,, ,,) into the 
direct sum, i.e., Z2(X,,, ,,) = Im T,(Z- zP*) @ Ker(Z- zP) T,. The representu- 
tion 71, restricted to the invariant subspuce Im T,(Z-zP*) is equivalent to 
the representation 2. 

As in [ll, Theorems 3 and 43, the proof relies on Proposition 2 and the 
lemma below 

LEMMA 4 [ 11, Lemma 11. Let A and B be bounded linear operators on 
a Hilbert space 2 such that their composition AB is an invertible operator. 
Then we have 

(i) The subspace Im B is closed and 2 is a direct sum of the 
subspaces Ker A and Im B. 
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(ii) The operator B(AZ?)A-’ is a projection (not necessaril~~ 
orthogonal) onto the s&space Im B along Ker A. 

(iii) A linear operator C on the space X leaves the subspuces .Im B 
and Ker A invariant if and only if C commutes with the projection 
B( AB) A - ‘. 

(iv) Let .,&’ be a subspace of Ker A. Then 4! is dense in Ker A if and 
only iffor any v E Ker B* the condition v I 4’ implies v = 0 (in other words 
&l is a separable space for Ker B*). 

Proof of Theorem 2. By Proposition 1 we can apply Lemma 4 to the 
operators A = Uz and B= U,*. Hence the first part of the theorem 
follows from Lemma 4, Proposition 2, and Remark 2 of the first section. 
Concerning the last statement of the theorem, by Proposition 2(i), (iv) the 
operator U) maps Z2(3E,,, ,,) onto Im T,(I-- zP*) isomorphically. Moreover 
by Proposition 2(iii) the operator U, intertwines the representation 
rr2 lIrn T.(,-zzp*j with the representation zU. But rr, is equivalent to the 
representation II because JuJ < qp”2. 

From now on we discuss only the representation rc, restricted to 
Ker(Z-zP)T=. In particular we are going to show the irreducibility of 7~; 
on this subspace. Before doing so we introduce some new notation. 

Let K denote the set of all automorphisms which leave the vertex e fixed. 
K turns out to be a compact open subgroup of Aut(X,,, ,,) (see [lo]). The 
function f on X,,, ,2 is called radial if it is K-invariant; that is, A(i) f = f for 
any itz K. The radial functions have the property that f(x) = f( y) for any 
x7 YE XL,, t> such that d(x, e) = d( y, e). Indeed, it suffices to observe that if 
d(x, e) = d( y, e) then there exists iE K for which i(x) = y. Thus the values 
f(x) of the radial function depend only on d(x, e). Moreover any radial 
function admits the unique representation of the form x,-0 a,,~, with 
complex coefficients a,, n = 0, 1, . . Clearly all the operators I,,, Z,2, 
P, P*, T=, Rz leave invariant the space of radial functions, as well as its 
orthogonal complement. 

LEMMA 5. Let q- If2 < IzJ < 1. Then the subspace of radial function in 
Ker(Z- zP) T, is one-dimensional. 

Proof: If f=CncOa,Xn then this leads to a recurrent formula for the 
sequence {a,} which for given a, has the unique solution. 

By (8) the unique, up to a constant multiple, function in Ker(Z-zP)T= 
is 

.&=a,+%$, (4z)r” CX2n+4X2np11. 
I 

(13) 
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We can express f, in terms of R, as well. In fact, observe that R,6, is 
also a radial function which belongs to Ker(Z- zP) T,. By ( 12) and by 
Proposition 2(ii) we can compute 

= 1 _ (1 - z’) a(u) = (%+ 1 Nz’- u’) 
(I-u2)a’ (1 - 24’) a(z) . 

Thus R, 6, # 0. Hence by Lemma 5 

Let k E K. Since I(k) commutes with P and with T, then n,(k) = I(k) for 
any IzI < 1. Let 9 denote the operator defined as 9 = SK I(k) dk where dk 
is a normalized Haar measure on K. Then 9 is the orthogonal projection 
onto the radial functions in 1*(X (,, ,,). Furthermore 9 commutes with P 
and with T, so 9 leaves Ker(Z-zP)T, and Im T,(Z-zP*) invariant. 

THEOREM 3. Let qp1j2 < IzI -C 1 and z2 # -4-l. Then the representation 
rc, restricted to the invariant subspace 2== Ker(Z-zP)T, is irreducible. 
Moreover representations n21 H. and rcl( IX=, are equivalent if and only if 
22 = 2’2. For z 4 [w v i[w the representation 71, is not unitarizable. 

Proof First we prove that f, or R, 6, is a cydic vector of n, / %,. We will 
base this on the formula below which can be easily derived from the 
definition of 71,: 

n,(i) 6, = zdCiCe)@) 6, + JiX 
d(i(e),e)- 1 

1 zn c?~(~(,)). (15) 
l7=0 

Assume on the contrary that J? = span(n,(i) R, 6, : ie Aut(X*,, ,,)> is 
not dense in X=. By Lemma 4(iv) applied to A = (I-zP)T, and B= 
T,(Z- zP*) there exists a function f~ Ker(Z-.FP)T, such that for any 
iE Au@,,, ,,I 

O= (di) R=S,,f) = (R,di)6,,f) = (di)6,, &f) 

= (di) S,,f> = (de, dp')f>. 

In particular f(e) = 0. Let x be a vertex belonging to the support off for 
which the distance d(x, e) is minimal. We consider two cases: 
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(a) XEX,,. Then there exists i~Aut(X,,, ,>) with i(e) =x. Hence by 
(15) we have 0= (6,,rci(i -‘).f)= (~Z(i)s,,,~)=~~f(x). Thus 
,f(x) = 0 which gives a contradiction. 

(b) XEX . Let y E X,! be such that c(y) = X. Then there exists in 
Aut(X,,, ,,) with*i(e) = y. Again by (15), 

0 = (6,, 7cz(i-- ‘)f> = (nz(i) 6,, f) = JTq-f(y) + zf(x)]. 

It means that j”(y) = -jf(x) for any 4’ satisfying c(y) = x. On the other 
hand the condition (I- ZP) f(x) = 0 implies f(x) = z CCC,,) = x f(u) = 
-F2&, f(x). Therefore (1 + 2’4,) f(x) = 0 which contradicts f(x) # 0. 

In order to prove irreducibility let ,M be an invariant subspace of nz 
contained in zz. Then 9’4 c A. By Lemma 5 there are two possible 
cases: 

(a) PJz’ = Cfi. Then Xz E k! because fi is a cyclic vector of rcz I,fl:. 
(b) .YJ%’ = (0). Hence JS? consists of functions orthogonal to all 

radial functions. In particular for any iE Aut(X,,, ,,) and any f E A', 
0= (rr,(i)J fz) = (f, rri(iP’) f,). This implies that f is orthogonal to 
Ker(Z-SP) T,. Hence by Lemma 4(iv) applied to A = (I- %‘)T,, B= 
T,(I-S’*), and J! = Ker A we get f = 0. Because f was an arbitrary 
function in ~8 thus we have proved J? = 0. 

Let 4z be the matrix coefficient of the representation rczIJuz associated 
with the unique K-fixed function R, 6,, i.e., 

Applying the explicit formula expressing Rz we get 

i,(i) = -& [ (w2 + 1x1 -u’) Zd,r(e),r) 

I( 

z2 - u2 
21 zf2 + 1 I(1 - z’) 

z2 - u2 
*dd(i(e),e) 

I. 

(16) 

(17) 

Next observe that since 9 restricted to ;xi is the orthogonal projection 
onto R, 6, then 

Bn,(i)P = qhz(i)9 on XV. 

Fix any automorphism i of X,,, z2 such that d(i(e), e) = 2 and i2 = Id. If 
two representations R, 1 Jr”, and rc,, 1 Pz, are equivalent then the spectra of the 
operators S?c,( i) 9 ) Xz and Pz,( i) B 1 Xz, should coincide (because 9 can be 
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expressed as B = lKrr,(k) dk). But by (17), b,(i) = d,(i) if and only if 
z2 = z’*. Moreover because i = iP ’ then if rr, 1 XZ is equivalent to a unitary 
representation then the spectrum of the operator 9%,(i) 9 ( XZ must be real. 
But #Z(i) is a real number if and only if z2 E R. 

To complete the proof assume that z = -z’ and check that the operator 
I,, - I,, intertwines the representations 7~~ 1 J1”Z and nL,, lx,,. 

Remark 4. The functions 4, defined in (16) are the spherical functions 
corresponding to the compact subgroup K of Aut(XS1, z2). Indeed 

Remark 5. We have shown that for z unreal and non-purely imaginary 
the representation rr, 1 S2 cannot be made unitary. In the sequel we prove 
that also for z = it with t E ( - 1, - 4 ~ ‘j2) u (4 -‘I*, 1) it is nonunitarizable 
while for t E [-pi/‘, -qe1j2) u (q-‘i2, B- 1’2] the representations are 
equivalent to unitary ones. 

3. ANALYTIC CONTINUATION OF THE PRINCIPAL SERIES 

In the previous section we have constructed the series of representations 
parametrized by the annulus q ~ ‘I* < Jtl < 1, z2 # -4-i, having the spheri- 
cal functions 4, as its unique bi- K-invariant matrix coefficients. On the 
other hand the formula (17) which expresses explicitly c$, can be extended 
by analycity to the annulus q-’ < lz\ < 1. In this way we obtain the family 
of functions 4, with property 4, = c$, for q-l < lz( < 1. Moreover by [l] we 
know that the series Jzl =q- ‘I2 consists of positive definite functions which 
together with dZO, z0 = -C ‘, give the decomposition of the regular 
representation of Aut(X,, z2 ) into irreducible ones. That is why it is called 
the principal series. In this section we are going to extend the series of 
representations 7c, ( ZZT q -l/2 < Jz( < 1, to the annulus q-l < Izl < 1 to get 
the analytic continuation of the principal series. But before doing so we will 
realize all representations on a common Hilbert space. Our method is 
analogous to that of [ll]. 

Let Sa = Ker P. Notice that 6, is the unique K-fixed vector in %m. We 
are going to map the subspaces XZ onto Zm. This mapping will be defined 
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separately between the radial one-dimensional subspaces and between the 
nonradial parts of X2 and Xx. 

For a linear subspace A of 1’(X,!, ,,) let A0 denote the subspace of AV 
consisting of all functions orthogonal to radial functions, i.e., .A@‘= 
(fEA:Pf=O}. w e a so 1 introduce two linear operators 

112 112 
A,= 0 2 I,, + 

21 
IQ’ A,=Z,,+ 0 ‘“1 

22 

I,,. 

LEMMA 6. Let z ~0. Then (A, - (u/z) A=) A, = q((z2 - u2)/z)Z. 

Proof: 

*2 u2 a(z) 

0 ( 

us(u) =- 
41 

z-;u 
> ( 

I,, + 
a(u) u 4z) 
y-17 

> 
It? 

42 

0 

1/Z a(z) - a( 24) z%(u) - u’s(z) =- z 

*I Z 
It, + 

Z2U 
“2 

22 

0 

112 
=- 

41 
41 

~~t,+q~L1=q~I 

PROPOSITION 3. Let IzI > q ~ ‘I2 and z2 # -e-I. Then the operator 
A,‘(Z--UP*)-’ A;’ maps X”, onto .YF~ isomorphically; u = (qz)-‘. 

Proof The claim follows from the formulas 

PA,(Z-uP*)A, = -iAoAz(Z-zP) (18) 

(I-zP) A,‘(Z- UP*)-’ A,’ = -zA,‘A;‘P (19) 

valid on I’(X,,, L2)o. 
Concerning the first identity 

PA,(Z- uP*)A, = A,P(Z- uP*)A, = A,(PA, - uPP*A,) 

=A,(A,P-uPP*A,)=A,A,(P-uA,‘PP*A,) 

=A;A,(P-uqZ)= -;A,A,(Z-zP). 

The second identity is just a simple transformation of the first one. 
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LEMMA 7. Let Iz( > q-‘12 and z*# -kc*. Then uR,A.(I-uP*)A, = 
( (z2 - u*)/z’) R,. Moreover if f, g E YE'", then 

(Rzf, R,g) =y (A,‘(uA,)-‘1; g). (20) 

Proof: Observe that in all computations we may omit the operator TZ 
because it coincides with the identity on Z2(X,l,,,)o. By Proposition 2(ii), 
(iv) and Lemma 4(ii) we have R,(Z--zP*)=O. Thus R,P*=(l/z)R,. Then 
by virtue of Lemma 6 

uR,A,(I- uP*)A, = uR,A,A, - u2RZAUP*A, 

= uR,A,A, -112R,AIA,=~R,(A,-~AZ)A, 
Z 

The above implies that uR,AJ- UP*) A, = ((z’- u*)/z')i on 2:. Thus 
by Proposition 3 we obtain R, = (( z2- u2)/z2) A;‘(I- UP*)-’ (uA,)-’ on 
the space X”,. Thus if f, g E X”, then 

(R=f, Rig)= (R,f, g> =f$ (A,‘(&UP*)-’ (uA,)-‘f, g) 

=f$ ((uA,)-‘f, (Z-UP)-’ A,‘g) 

=y ((uA,)-‘f, AzIg) =$fff (A;‘(uA,)-If, g). 

From now on we restrict ourselves to the case *I < 42. The case h1 > ‘Lo 
can be treated in a similar way. Consider two functions z I-+ a(z) = e1z2 + 1 
and z I-+ a(u) = (,z2z2))r + 1. The first function admits the analytic square 
root in the domain (z: (~1 < 2; ‘I21 while the second in the domain {z: (z( > 
h;‘/*}. Both square roots can be continued analytically to the common 
domain 

- l/2 
$1 

-l/2 
42 

-I-- -,*-112 -4 ; ‘P 
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Moreover a(~)“~, a(u)‘!’ are even functions symmetric with respect to the 
real line, i.e., 

a(z)“’ = a( -;)‘,I, a(u) 1 2--u(-u)15 

43”2 =a(;)1’2, a(G)” = a(u)‘.‘2. 

Let us define the square root of the operator uA,, as 

(uA,)“2 = a(u)“2 I,, + q ‘j2,- ‘a(z)“2 I,,. (21) 

Observe that due to this definition we have 

(-UA J”2 = (UAp (I,, -I,,). (22) 

For any complex number z, Iz/ > q ‘j2 and z2 # -c; ‘, define the operator 
V;” as 

(23) 

Then by Lemma 7 and Proposition 3 we have 

PROPOSITION 4. Let q ~ ‘I2 < Iz( and z2 # -*‘-I. Then the operator Vf 
maps Z”, onto Y?: isomorphically. For real z this mapping is an isometry. 

What is left is to extend the operator V: to the one-dimensional radial 
part of &. For q - ‘I* < Izj < 1 and z2 # -4;’ let us define the operator V, 
on &?I! as 

V,f= VSf if ,fE&?& 

vz 6, = ti’“( 1 - U2)“2 vp 6,. 
(24) 

The constant by V,” 6, is chosen to satisfy (V, 6,, V, 6,) = 1. 

THEOREM 4. Let q-l/*< IzI < 1 and z2# -ai-‘. Then the operator V, 
maps the space X, onto the space X2 isomorphically. If z is real then Vz is 
an isometry. Moreover 

(Vzf, v,g> = (f, s>, .L geJfiiz. (25) 

Proof: The only thing we should prove is (25). But it holds for real z 
by Proposition 4. Then by analycity of the function z H ( Vzf, V, g) it 
holds also for other z. 

The isomorphisms Vz allow us to settle all the representations n, I Xl on 
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the common Hilbert space &. To see how they act on the new space we 
are going to compute the matrix coefficients. To simplify the notation set 

B, = A ~(uA,)“*. (26) 

Due to the definition of (uA .) li2 the function z I--, B, is analytic in the 
domain g=(z~C:z#it,t~(-a, -~~‘2]u[-~~‘2,~~‘2]u[~~‘2, +a]}. 
Moreover 

B,* = B,, B-z = &(I,, -I,,) for zE9, (27) 

lim BE+if= (I,,-I,,) lim B--E+jI, 
E-O+ E-o+ 

tE(-co, -t:‘2]u[-4;‘2,t,:‘2]u[B:‘2, +m]}. (28) 

Assume f, g E X”, . Then applying (25), Proposition 2(ii), and (12) gives 

=-& <R,di) kf, B,g) = & (~(4 Bzf, B,g) 
z2 u= -- 

z2 - u2 u(z) a(u) (U?u,n,(i) B,f, kg) 

=e (n,(i) B,f, B,g) 

Since U,f=A,fand Uig=A,gforf,gE&‘L, then 

Now observing that (a(z) a(u))-“‘(zA,) B, = B, gives 

<v; ‘%(4 vzf, g> = -& < Cz2Bzd4 B, - u’B,di) 41 f, g>. (29) 
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In a similar way we can compute the remaining formulas: 

(V-‘n,(i) v, 6,, g) = q 
( > 

I 12 

gJ ([z2(1 - U2)‘11 B,rc,(i)B, 

- u’( 1 -z2)‘;2 B,7r,(i) B,] 6,, g) (30) 

(IJ-‘n;(i) v; d,, 6,) = y -& < Cz’(l - u2) B;T-(~) B, 

- ~‘(1 - z2) Bun,(i) B,] 6,, S,). (31) 

THEOREM 5. Let X,,, t2 be a semihomogeneous tree of degrees 
21, ti2,atl-c 62. Put q=(451”2) . ‘I2 There exists a series of uniformly bounded 
representations II=, qq’< JzI < 1, of the group Aut(X,,,,,) on the Hilbert 
space %a = Ker P, such that 

(i) The series IIZ is analytic in the domain Sz = {z; q-’ < IzI < 1, z # 
it, tE(-1, -*1-1’2] u [-a;“‘, 4;‘/2]u [*;l”, l)}. 

(ii) If qq112< Iz( < 1, z2# -*;I, then II2 is equivalent to 7t,IXV. 

(iii) 17, = IL, andII,=II, where u=(qz))‘,z~Q. 

(iv) II,(i)* = II,(i)-‘. 

(v) IIZ( i) - IIJ i) has finite rank. 

(vi) Any representation IIZ, z2 # -&;I, -“;-I, is irreducible. The 
representations IIZ and II=, are equivalent ty and only ty z = z’, z = -z’, or 
z = (qz’)-‘. 

(vii) II, is a unitary representation if and only if Jzj = q-‘12, z E 172, or 
z = it with t E [ -h; ‘j2, -4; ‘j2] u [a:12, 4 iI2 1. Otherwise the representation 
II, cannot be made unitary by introducing another equivalent scalar product 
in X,. 

Proof: By the formulas (28), (29), (30) the family V;%,(i) VZ, qql < 
Izl < 1, z2# -“;‘, extends to the analytic series of representations 
l7,, ~~52, satisfying (i), (ii), and the second part of (iii). 

For z=it with tE C-4;“‘, -q-‘)u [h~“~, 1) we define Z7,, by 

II,,(i) = lim IIEfi,(i), 
E-ro+ 

andforz=itwithtE(-l,--;1’2]u(qq’,~;”2] weput 

n,,(i) = ,:ty+ K+,,(i). 

In this way we obtain the series of representations l7,, qq’ < (zl < 1, still 
satisfying (i), (ii), and the second part of (iii). 
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We turn now to the proof of (v). Let ZEQ, then 

+ & Cz’BAd4 - 4i))B, - u2B,(di) - 44)&J. 

The second term, now denoted by K,, is a finite-dimensional operator by 
Theorem 3(iii). On the other hand by the definition of B, and by Lemma 6 
it is easy to check that 

A [z2Bf - u2Bt] = I. 
z -u 

Thus 

’ 22 [z~BJc,(~)B,- u~B,Tz,(~)B,] = A(i)+ K,, 

where K, is a finite-dimensional operator. Combined with (28) it implies 
(VI 

In order to prove the first part of (iii) note that for any z, (z( < 1, we 
have 

=-z(i) = (I,, -I,,) %(4U*, - 14,) 

(see the last part of the proof of Theorem 3). Then by (27) we get 
B,nJi)B,= B-,x,(i)B-, for any z, q-l < Iz\ < 1. Now the claim in (iii) 
follows easily from the formulas (29), (30), (31). 

As regards to (iv) for real z in Q the representation Z7, is unitary because 
in this case rc,IxZ is a unitary representation and I’, is an isometry 
(Theorem 4). Then by the Riemann-Schwarz Reflection Principle, (iv) 
holds for all z E Sz. Furthermore if (zl = q- ‘I2 then u = 5. Hence by (iii) and 
(iv) we have 

n,(i)* =z7,(i)-’ = n,(i)-’ = n,(i)-‘. 

It means n, is unitary for lz( = q-‘j2. Assume now z = it where ZE 
[-p, -p]” [*;W, p 1. Then Z= -z. Hence by (iii) and (iv) we 
derive 

n,(i)* = n,(i)-’ = n-,(i)-’ = n,(i)-‘. 
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To complete the proof of (vii) in view of (i) and Theorem 3 it s&ices to 
show that Z7= is not unitarizable only for z = it where t E ( - 1, - 2; I”) u 
(--l;li*, -q-l)” (q-1, t;‘:* ) u (3;;“‘, 1). Because of (iii) it is enough to 
consider t E (B; ‘j2, 1). We claim that for such t there holds 

n,,(i)* = (I,, -I,,) n,,(i) -’ (I,, - I,J (32) 

Indeed, it follows directly from the definition of Z7, (recall n,,(i) = 
lim C-t0+ Z7,+i,(i)) and the formulas (28), (29), (30), (31). Now the fact that 
ZZZ cannot be made unitary relies on the following 

PROPOSITION 5. Let 7c be a bounded irreducible representation of a 
locally compact group G in a Hilbert space X. Assume there exists a unitary 
operator U such that 

71(g)* = i%(g)-’ u-l. 

Then 71 is equivalent to a unitary representation if and only if U is a constant 
multiple of the identity operator. 

ProoJ Assume that there exists an invertible linear operator A on Z’ 
and a unitary representation fl of G in the space Z’ such that n(g) = 
A-‘a(g)A. Thus 

A*o(g)-’ (A*)-‘=x(g)* = Uz(g)-’ U-’ = UA-b(g)-’ U-IA. 

It implies 

(A*)-’ UA-‘a(g)-‘=a(g)-’ (A*)-’ UA-‘. 

Since r~ is also an irreducible representation of G then by the Schur lemma 
(A *) ~ I UA ~’ = cZ for some complex constant c. Therefore U = cA*A. The 
last is possible only if U= AZ with 111 = 1. 

What is left is to prove (vi). For z, q-’ < IzJ < 1, let 9f=fKZ7,(k)dk 
where (cf. the proof of Theorem 3) K is a stabilizer of the vertex e. Observe 
that for any k E K and any z, q- ‘I2 < IzI < 1, we have 17,(k) =1(k). Indeed, 
if ke K then ;l(k) commutes with P, P*, T,, A,, and A,. Thus by (23) and 
(24) it commutes with V,. Therefore 

17,(k) = V;‘z,(k) ?‘, = V,‘l(k) I’, = A(k). 

By analycity we have n,(k) = I(k) for any z, q-l’* < Jz( < 1. Furthermore 
5$ = SK I(k) dk is the orthogonal projection onto radial functions in Xm = 
Ker P, i.e., onto @ 6,. 

Let i be an isometry of X,,, t2 such that d(i(e), e) = 2. Let q-’ < Izj < 1. 
Then by (31) (cf. the proof of Theorem 3) we obtain 9KZ7z(i)9K=d,(i)9+K. 
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It implies that two representations Ii’, and 17,. are equivalent if and only 
if d,(i) = 4=,(i). By (17) it is equivalent to z* = z’* or z = l/q?. 

Now we turn to the irreducibility. By Theorem 3 and by (ii), (iii) we 
have to prove the irreducibility only for Izl = q-li2. Fix z, 1.~1 = q-l’*. 
Let .M =m(Z7,(i) 6, : ie Aut(X,,, ,,)}. & is a closed subspace of Za 
invariant for Z7,. We show that A does not contain a proper closed sub- 
space invariant for n,. Assume that J&, E JZ is a closed subspace invariant 
for l7=. Thus PKjle, E J&. If P&M0 # (0) then gKJll = @ 6, E JltO, which by 
the definition of &? implies JkG = M. Let PK&,, = (0). Then the subspace 
4; = &gjac, is also a closed invariant subspace of JZ and P&&b # (0) 
(recall that 17, is unitary by (vii)). Thus J& = JZ which yields J&, = (0). To 
complete the proof of irreducibility we need only to show that &! = Y&, 
i.e., that 6, is a cyclic vector for Z7,. On the contrary assume that f~ .%& 
is orthogonal to &?. In particular (f, S,) = f (e) = 0. Next, as in the proof 
of Theorem 3, it is not hard to show by induction on d(x, e) that f(x) = 0 
for any x. This completes the proof of Theorem 5. 

4. APPROXIMATE UNITS OF THE FOURIER ALGEBRA 

In this section we apply the series of representations defined in Section 1 
to derive approximation properties for groups acting on trees. 

Let G be a locally compact group and A(G) its Fourier algebra. It is 
known that if G is an amenable group then there exists a net 4, of 
functions in A(G) such that: 

(i) 4, has compact support for any cc; 

(ii) IId, - $11 AcGj +O for any SEA; 

(iii) Il~allA~G~ G 1. 

A net 4, which satisfies (i) and (ii) we call an approximate unit of A(G). 
If G is nonamenable then there is no approximate unit bounded in A(G)- 
norm. However, in many cases it is possible to construct an approximate 
unit unbounded in A(G)-norm but bounded in the multiplier norm on 
A(G), i.e., such that 

Any function 4 in A(G) defines a linear multiplier operator m, on ,4(G) 
by A(G) 3 $ H d$ E A(G). Its transposed operator M, is a a-weakly 
continuous operator on the von Neumann algebra %X(G) of G which is 
determined uniquely by M&(x) = 4(x) n(x) where 2(x) is the left transla- 
tion by the element x in G. Following de Canniere and Haagerup if M, is 
a completely bounded map of W(G) then we say that 4 is a completely 
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bounded multiplier of A(G). The space of completely bounded multipliers 
is denoted by M,A(G). It is a Banach algebra with norm [IdIIM,,(G)= 
I/M, I( cB where 1) II cB denotes the completely bounded norm of the operator 
M,. We refer the reader to the work by de Canniere and Haagerup where 
a detailed exposition of this subject is given. 

We say that a locally compact group G has the completely bounded 
approximation property if there exists an approximate unit 4, in ,4(G) such 
that IId, II MoAcGj < 1. There are many equivalent ways to define M,A( G). 
We refer to the work by Boiejko and Fendler [2] concerning this subject 
and also to the work of de Canniere and Haagerup [S] who proved 
approximation properties for various simple Lie groups like SO,(n, 1) and 
its discrete subgroups. Finally Cowling and Haagerup [4] proved that all 
simple Lie groups of real rank one admit completely bounded approximate 
units in the Fourier algebra. We will need the following fact concerning 
multipliers 

PROPOSITION 6 (Boiejko, Fendler, Gilbert). Let $ be a complex function 
on a locally compact group G. Assume there exist a Hilbert space s$? and two 
continuous bounded maps u, v: G H SF such that 

4w4= (u(x), V(Y)>Y x, LEG. 

Then I$ is a completely bounded multiplier of A(G) and 

II411 Mea(G) G sup IMXH sup IMY)II. 
XE G YCG 

EXAMPLE. Let G be a group acting on a tree X. Fix a vertex e in X and 
define the representations n, with respect to e. Let 4,(g) = ~~(~~9~). By 
Proposition 6 the function #= belongs to M,A(G) because 

M-k) = (dg) de, ni(h) Se>. 

Moreover by the formula (15) we have 

sup lIrr,(g) 6,]1 =sup l/q(h) cp,(I = (1 -z211’* (l- l~~~)-“* (33) 
geG heG 

hence 

The main result of this section is the following. 
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THEOREM 6. Let G be a locally compact group acting on a tree X. 
Assume that there exists a vertex eE X such that the stability subgroup 
G, E {g E G : ge = e} is compact. Then the Fourier algebra A(G) of G admits 
an approximate unit {q5,,}FZ0 bounded in M,A(G)-norm. 

Before the proof we derive two immediate corollaries. 

COROLLARY 3. For any closed subgroup G of Aut(X) the Fourier algebra 
A(G) has the completely bounded approximation property. 

For a prime number p let Q, denote the field of p-adic numbers. By 
Serre [lo] we know that the group SL(2, QDp) acts on the homogeneous 
tree of degree p + 1, and it has compact stabilizers of any vertex of the tree. 

COROLLARY 4 (Boiejko and Picardello [3]). For any prime number p 
the group SL(2, CD,) has the completely bounded approximation property. 

In the proof of Theorem 6 we will follow the method developed in [9]. 
Let y be a piecewise smooth curve contained in the unit disc. For a group 
G acting on a tree X consider the representation 7ty of G defined as 

7cy= @ ?I, ldzl 
s Y 

which acts on the Hilbert space XY = 0 j, 12(X) (dzl. It is again a uniformly 
bounded representation with 

The following proposition is just a reformulation of Proposition 2 from 
c91. 

PROPOSITION 7. Let f be a function holomorphic in a neighbourhood of y. 
Then the complex function q5 on G defined by 

d(ge+‘tf(~) dz 

is a matrix coefficient of the representation 71,. In particular 4 belongs to 
M,A(G) and 

580/95.!2-8 
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EXAMPLE. Keeping the same notation let x,,, n =O, 1,2, . . . . denote the 
functions on G defined as 

when d(ge, e) = n 
otherwise. 

We can express x,, as 

Thus applying Proposition 7 the function x,, belongs to M,A(G) and 

IlXn 
1 

d s 2n 
II ( 

1 - 
r2e2ifl - MoA(G) 

2rl 1 -r2 
rp”dt< 

2 
0 rn(l -r2)’ 

A simple computation of the minimum of the right hand side gives 

Proof of Theorem 6. Let G be a group acting on a tree X. Let e be a 
vertex of X such that G, = {g E G : ge = e} is a compact subgroup of G. 
Then the functions xn, n = 0, 1, 2, . . . (see Example above) have compact 
support. Indeed, let E, = { ge : g E G, d( ge, e) = n}. For any x in En choose 
an element g, in G such that g,e = x. Therefore 

~~PP(x,)E u g,G,. 
XEE” 

Consider the set of functions d,(g) = tdcgce), 0 < t < 1. By Theorem l(ii), 
(iv) the functions 4, are positive definite. In particular by Proposition 6 the 
functions 4, belong to M,A(G) and Ild,I) Moa(cJ < 1. Moreover when t tends 
to 1 then 4, tends to the function constantly 1 on G uniformly on compact 
sets (by compactness of G,). Thus we can apply the theorem by Nielson 
(see [ 5, Appendix]) and we get 

IlO - @ll,4(G) t-+ 0 when t H l- for any 4 E ,4(G). 

In order to complete the proof it suBices to show that the multiplier 
operators m,, on A(G) lie in the M&(G)-norm closure of multiplier 
operators associated with compactly supported functions. For a fixed t < 1 
and n = 0, 1, 2, . . . . let 

when d(ge, e) <n 
otherwise. 
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The functions q5,,, have compact SUppOrt because d,,, = cg =,, tkXk. 
Furthermore by (9) we have 

ll4,,“4&4,A(G,~~ c tk(k+2)-+0 when n-ax 
k=n+l 

This completes the proof. 

Remark 6. If X is a nonhomogeneous tree then clearly there is no 
group which acts transitively on X. It means that the stabilizers of vertices 
are not all conjugate to each other. However, in the proof of Theorem 6 we 
need only the compactness of one of the stabilizers. We conjecture that as 
in the theorem of Julg and Valette amenability of a stabilizer should suffice. 

Remark 7. In the paper [6] it is proved that if a locally compact group 
G acts on a tree such that the stabilizers of the vertices are amenable then 
the group G is so-called K-amenable. In particular the group SL(2, Cl,) 
shares this property. 
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