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Let X be a tree and G a locally compact group acting on X by isometries with
respect to the natural metric on X. We construct the series of representations of G
parametrized by the complex unit disc associated canonically with the distance on
X via the matrix coefficients. We apply this series to prove that for any group G
acting on a tree in such a way that the stabilizer of a vertex is a compact subgroup
of G the Fourier algebra A(G) admits an approximate unit bounded in the multiplier
norm on A(G). For the special case of semihomogeneous trees and the full group
Aut(X) of isometries of X we decompose the constructed representations obtaining
finally an analytic continuation of the principal series of Aut(X). © 1991 Academic
Press, Inc.

INTRODUCTION

Let X be a tree and G be a group acting on X by automorphisms. One
of the typical examples is the free group F, on » generators which acts
naturally on its Cayley graph which is the homogeneous tree of degree 2n.
In the paper [9] a construction of analytic series of uniformly bounded
representations of F, was given. Here we generalize that construction to
any group acting on an arbitrary tree (not necessarily homogeneous). As
an application we prove that if a group G acts on a tree and the stabilizer
of a vertex is compact then the Fourier algebra A(G) admits an
approximate unit bounded in the multiplier norm on A(G) (even bounded
in completely bounded multiplier norm on A(G) (see [5])). In particular
we get the result of [3] which states that SL(2, Q,) over the p-adic number
field has the completely bounded approximation property. These results
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should be compared with a theorem of Julg and Valette [6] who proved
that any group G acting on a tree with amenable stabilizers of vertices
is so called K-amenable (see [7, 1.2. Definition]). Both notions of K-
amenability and the completely bounded approximation property are
generalizations of the amenability.

In Section 2 we discuss the problem of irreducibility of representations
7., |z| < 1, constructed in Section 1. We give the solution for the full group
Aut(X) of isometries of the semihomogeneous tree that is the tree with only
two possible degrees of vertices with the property that the vertices of any
edge have different degrees. In that case following the method of [11] we
decompose the representations m, into two subrepresentations, one
irreducible and another equivalent to the quasiregular representation of
Aut(X). Then as in [11] we realize all irreducible components of x_ on the
common Hilbert space which makes it possible to extend this series. The
final result is the following

THEOREM. Let X, be a semihomogeneous tree of degrees 1, 25, 1, <1,.

Put g = (2,2,)"?. There exists a series of uniformly bounded representations
II,,q ' <|z| <1, of the group Aut(X on the Hilbert space ', such that

11,42)

(iy The series II, is analytic in the domain Q={z:q '<|z| <1,
z#it te(—1, —2; PIU[ =2, 2 0, 2] [ A D))

(i) M,=I_,and II,=1II, where u=(qz) ', ze Q.

(iil) JT.(i)*=I.(i)"".

(iv) I,(i)— II,(i) has finite rank.

(v) Any representation IT,,z*# —+7', —25", is irreducible. The
representations I, and II, are equivalent if and only if z=z', z= —2', or
z=(gz')" L

(vi) 11, is a unitary representation if and only if |z| =q ' z€eR, or
z=it with te [—+] "2, —1; 210 [2Y% +1*]). Otherwise the representation
I1, cannot be made unitary by introducing another equivalent scalar product
in #.

1

It turns out also that if K denotes the subgroup of Aut(¥X, , ) which fixes
a vertex e in X, , then any representation I7,, ¢~ ' <|z| < 1, admits a non-

zero K-fixed vector in 4, which is unique up to scalar multiples. That is
why they are called spherical representations (see [1, 8]).

1. THE GENERAL CASE

The results of this section are adapted from [9, Sect. 27, where the case
of the free group was treated. Here we restate them in terms of an arbitrary
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tree and its group of all isometries. We also reprove some of them for the
sake of completeness.

By a tree we mean a connected graph without circuits. A chain in the
tree X is a sequence xg, .., x, such that x; and x,,, are adjacent and
X, #Xx;,,. For any two vertices x, yeX there exists a unique chain
X=1Xg, X1, . X, _1, X, =y connecting x and y. We denote this chain by
[x, ¥]. The natural distance d(x, y) between x and y is the length of the
chain [x, y], ie., d(x, y)=nif [x, y]= {xg, ., X, }.

Let X be an arbitrary tree. Fix a vertex e in X. For any vertex x # ¢ let
¢(x) denote the penultimate vertex of the chain [e, x] (when e and x are
adjacent then c(x) = e).

Let us fix for a while another vertex ¢ and as above we define the
operation ¢’ on X with respect to e'.

LEmMMA 1. Let x be a vertex of X such that x¢ [e, ¢’ ). Then ¢(x)=c'(x).

Proof. Let x not belong to [e, ¢']. Then if we go from x towards ¢ or
¢’ the first steps are the same. It means ¢(x) = ¢’(x). Moreover let [e, '] =
{e=xq, X, .., x,=¢€'}. Then ¢(x;)=x,_, for i=1,..,n and ¢'(x;)=x,,
for 0, 1, .., n— 1. Thus the operations ¢ and ¢’ act on the chain [e, ¢'] as
translations in opposite directions.

CoOROLLARY 1. Let i be an automorphism of X. Then we have
iocoi~Y(x)=c(x) for any vertex x € X such that x ¢ [e, i(e)].

Proof. Put e’ =i(e) and observe that ¢’=iocoi~'. The operation ¢ can
be lifted in a natural way to complex functions defined on X. Namely let
P be the linear operator defined on the space & (X) of finitely supported
complex functions on X by the rule

d. if x#e
PS, =4 1
* {0 if x=e, (1)

where 0, denotes as usual the function which admits the value 1 at x and
vanishes elsewhere.
The isometries of X act on the space #(X) by compositions:

o foi . (2)

The corresponding map is denoted by A(i). Now the preceding corollary
can be restated as follows.

COROLLARY 2. For any isometry i € Aut(X) the operator A({)PA(i) ™' — P
has finite rank. Moreover the operators P and A(i) PA(i) ™" coincide on the
functions vanishing on [e, i(e)].
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For any complex number z the operator /— zP is invertible on the space
Z (X). This is because if f € # (X) then P"f =0 for n sufficiently large so the
series Y z"P"f has only finitely many non-zero terms.

For any z e C define the representation n° of Aut(X) on the space #(X)
setting

7°(i) = (I — zP)~ " A(i)(I — zP). (3)

LEMMA 2. Let zeC. Then n¥ extends by continuity to a bounded
representation of Aut(¥) on the Hilbert space 1*(X). Moreover:
(i) The correspondence z v n(i) is an analytic function.
(i) Ir2() < (1 + |z =2 |z|* 1D +2) (1 —|2)).
(iti) 7=%i)— A(i) has finite rank for any ie Aut(%).
(iv) (i) S, 0, )=z,
Proof. Let ie Aut(¥X). Then
@) A) P —I=(I—-zP) ' M) I —zP) A(i) ' =1
=(I—zP) ' [AQ)I - zP) A(i) ' — (I—2zP)]
=z(I—zP)~' [P — A(i) PA()) 1]

=Y X IPRLP - A(i) PA(I) '],

Hence the difference n2(i) A(i)~' — I vanishes on the orthogonal comple-
ment {d,,.., 0, }" where [e, i(e)]= {xq, ... X,}. In particular it implies
(iii). Furthermore on the subspace span {d,,..0,} the operators
A(i) PA(i)~' and P are contractions in virtue of Lemma 1. Thus
1m9) AG) " =11 <257 _o |24 1 and [a2()) <1+257_, 121+ which
gives (ii). At the same time we have proved (i) because the function
2 (@)= A+ X2, 2 Y I PF[PA(i) — (i) P] is a polynomial of degree
d(e, i(e))+ 1. Finally

<7I(Z)(l) 5e’ 6e> = <(1—ZP)_1 51’(9)’ 5e>
= Z Z*(P* Oieys 00 = 744,
k=0

Let T denote the orthogonal projection onto the one-dimensional sub-
space C 4.. For any complex z with |z] < 1 we define the linear operator 7,

as
T,=/1-22T+I-T),

where ./1—z? denotes the principal branch of the square root. The
operator T, is invertible on /%(X) whatever z, |z| < 1.
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For any complex z, |z| < 1, define the representation n. of Aut(¥) by
n(i)y= T 'n%i)T.. 4)

THEOREM 1. The representations n_, z € {|z| <1}, form an analytic series
of uniformly bounded representations of Aut(X) on the Hilbert space 1*(X).
Moreover:

(i) I <2(11—2%/(1—|21)).
(i) m,())*=mn.())"". In particular the representations «,, te(—1, 1),
are unitary.
(iii) =,({) — A(d) is a finite rank operator.
(iv) @)= (n.(1) d,, 8. > =z,

Proof. The first part of the theorem together with (iii) and (iv) are
straightforward consequences of Lemma 2. The proof of the estimate in (i)
can be simply copied from [9, Theorem 1], so we will omit it. What is left
is to prove (ii) only. But before doing so, we derive some auxiliary facts
which we will need in the sequel.

For any vertex xe X let (n,+ 1) denote the number of edges to which x
belongs. The number #, is called the degree of the vertex x. Assume that
the degrees of X are uniformly bounded or equivalently there are only
finitely many possible degrees. In this case P becomes an invertible
operator on /*(X). Moreover its adjoint operator P* is given by

P*s.= Y 4, (5)

oy)=x

Consider the sum P+ P*. It acts as (P+ P*)6,=3% 4. ,,_, 9,. Hence the
operator P+ P* commutes with all isometries of the tree because any
isometry i maps the circle {yeX:d(x, y)=1} onto the circle {yeX:

d(i(x), y)=1}.
LeMMA 3. For any zeC the operator (I—zP) T*(I—zP*) commutes
with all isometries of X.

Proof. Define the linear operator N on /*(X) as N&,=n, 4, for xe X.
Clearly N commutes with isometries of X because the degree of vertices is
invariant under isometries. Then observe that PP*=N+ T (cf. [11, (5)]).
Hence

(I—zP) TXHI—zP¥*)
— (= zP)(I - 22T)(I— zP¥)
== 2T+ 22PP*— z(P+ P*)=I+ 22 N—z(P+ P*).  (6)
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This gives the desired result as we have seen before that N and P+ P*
commute with all A(i), i€ Aut(X).

Proof of Theorem 1(iii). Using (ii) we can restrict our attention to the
case when the degrees of vertices of X are uniformly bounded. As P and P*
are bounded on /?(X) so the operators 1 — zP and I — zP* are invertible for
|z| small enough. Therefore by Lemma 3 and by A(i)* = A({) "' we obtain

(i) moi)* = T V(I — zP) =" AG)I — zP) T*(I — zP*)
< Mi) I —zP*) ' T =1

Thus we have proved the identity n.(i)* ==,(i)~" for small values of |z|.
But both sides of this identity are analytic functions of z. It implies that (ii)
holds for any z, |z| < 1.

Remark 1. The estimate in (i) is not sharp. It can be proved that the
optimal estimate is (|1 — z?| + 2 |Imz|)/(1 — |z|?). This unpublished result is
due to Uffe Haagerup.

Remark 2. Consider the case when there are finitely many possible
degrees of vertices. Then as we saw before the operators P and P* are
bounded. It turns out that the subspaces Ker({/ —zP) T, and Im 7,(I — zP*)
are invariant under the representation =,. Indeed, it follows from the
formulas below

(I—=zP)T.m()=A()I—zP)T,

(i) T ,(I—zP*)=T,(I—zP*) A(i). ™
The first identity is a simple transformation of (4) while the second relies
on Lemma 3. The subspace Ker(/—zP)T, is closed for any z in contrast
to the second subspace Im T.(I—zP*). For real z these subspaces are
orthogonal to each other and /*(X) is a direct sum of Ker(/—zP)T, and
the closure of Im T,(/—zP*). In the next section we examine when
Im T,(I—zP*) is closed and when the whole space can be split into the
direct sum of these two invariant subspaces. All this will be done for the
case of semihomogeneous trees.

Remark 3. Let G be a group acting on the tree X. It means any element
g of G defines an automorphism i, of X and the correspondence g i, is
a homomorphism. Thus we can define the representations 7, for G acting
on X by g m.(i,).

580/95/2-7
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2. SEMIHOMOGENEOQUS TREES

Let 2; and 2, be two different natural numbers. Let X, . denote a tree
such that in any vertex there meet ¢, + 1 or 2, + 1 edges and moreover the
vertices of any edge have different degrees. Trees of this type are called
semihomogeneous. They are the only trees which have the property that for
any vertex x all its neighbors, i.e., {y:d(x, y)=1}, have the same degree.

We divide vertices of X,  into two disjoint subsets X, and X, with
respect to the degree. Let /, and /,, denote the orthogonal projections onto
lz(fn) and lz(f,z), respectively. Fix a vertex e in X, and define the
operator P associated with e. We are going to identify the spectrum of P
and its spectral properties. Denote g = (z,2,)"? and » =min(z,, z,). Clearly

we have
Prp*g =g™s,., for x#e
PZnP*Zn 592 (1 +}£]~ l)qzn 5‘”

Thus ||P?|| 2" = (1+4+;")"*" ¢"/* and the spectral radius of P amounts to
q'% Actually o(P)={zeC :|z| <q"*}, because the interior of the disc
consists of eigenvalues of P. In fact, set y,(x) to be the function on X
which admits the value 1 when d(e, x) =#n and 0 otherwise. Put

2, 22

ho=(e;+1) 226, + Z g7 241 o+ 23 M 2n 1) (8)
n=1
Then h.el*(X, ,,

for any z from the circle |z|=g¢
(cf. [11, Corollary 17]).

) for |z| < ¢"* and Ph_=zh,. It can be shown also that
~Y2 the operator z/— P is a bijection

PROPOSITION 1. Let |z|#q '? and z*# —1~'. Then the operator
(I—zP) TX(I—zP*) is invertible on the space I*(¥X, ).

Proof. First observe that the case |z|] <g~'? is trivial because both
I—:zP and I—zP* are invertible. Let us introduce a notation which we
apply throughout the paper:

u=(qz)"", a(z)=12,z>+ 1. )]

Define the linear operators 4, and F, as

1
4=y By R lu—yTu—zpy. (10)
u z z
We assert that

F.A.=A,F,. (11)
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Indeed, by (6) we have
1 1
F,= <—+zz1) I, + <;+z¢2> I,,—(P+P*)
z

1/2
_a2) +<3> au); _(psp¥)
z 2, u
Now we can easily get (11) using the above formula and the obvious iden-
tities PI, =1, P and P*I, =1, P*. Assume that |z[>¢ " and 22# —~".
Then by (9), |u| <g~'? a(z)#0, and a(u) #0. It implies that 4., 4,, and
F, are invertible thus by (11) it regards the operator F, as well.
For zeC, ¢~ '?<|z| < 1, define the operator U, by

U,=T;'(I-uP) ' 4,(I-zP)T.. (12)
Then we have (cf. [11, Proposition 1]).

PROPOSITION 2. Let ¢ ' <|z| <1 and z*# —+"'. Then
(i) U.U:=(a(z) au)u®)1;
(ii) R,=I—(u*/a(z)a(u)) UXU., is a projection and R¥ = R;
(i) U.m.())=n,()U. and n_(i) U¥ = U¥n,(i);
(iv) Ker U,=Ker(I—zP)T, and Im U} =Im T (I —zP*);
(v) R.m(i)=m.(i)R..

The proof is rather easy and we omit it. Anyway we can refer to [11,
Proposition 1].

THEOREM 2. Let q ' <|z| <1 and z*# —+~'. Then Im T, (I—zP¥*)
and Ker(I—zP)T, are invariant subspaces for the representation m,.
Moreover they give a decomposition of the entire space | 2(Iimz) into the
direct sum, ie., I*(X, ,)=1Im T,(I—zP*)@®Ker(I—zP)T,. The representa-
tion m_ restricted to the invariant subspace Im T.(I—zP¥) is equivalent to
the representation A.

As in [11, Theorems 3 and 4], the proof relies on Proposition 2 and the
lemma below

LemMMA 4 [11, Lemma 1]. Let A and B be bounded linear operators on
a Hilbert space # such that their composition AB is an invertible operator.
Then we have

(i) The subspace Im B is closed and # is a direct sum of the
subspaces Ker A and Im B.
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(ii) The operator B(ABYA™' is a projection (not necessarily
orthogonal) onto the subspace Im B along Ker A.

(iii) A linear operator C on the space # leaves the subspaces Im B
and Ker A invariant if and only if C commutes with the projection
B(AB) A~

(iv) Let M be a subspace of Ker A. Then # is dense in Ker 4 if and
only if for any ve Ker B* the condition v L # implies v=0 (in other words
M is a separable space for Ker B*).

Proof of Theorem 2. By Proposition 1 we can apply Lemma 4 to the
operators A=U, and B=U}¥. Hence the first part of the theorem
follows from Lemma 4, Proposition 2, and Remark 2 of the first section.
Concerning the last statement of the theorem, by Proposition 2(i), (iv) the
operator UX maps / 2(£“, ,,) onto Im T_({— zP*) isomorphically. Moreover
by Proposition 2(iii) the operator UZ intertwines the representation
T |tm .z -p+) With the representation n,. But =, is equivalent to the
representation A because |uj < g '~

From now on we discuss only the representation 7, restricted to
Ker(/—zP)T,. In particular we are going to show the irreducibility of =,
on this subspace. Before doing so we introduce some new notation.

Let K denote the set of all automorphisms which leave the vertex e fixed.
K turns out to be a compact open subgroup of Aut(X, ) (see [10]). The
function fon X, , is called radial if it is K-invariant; that is, A({) f = f for
any ie K. The radial functions have the property that f(x)= f(y) for any
x, yeX, , such that d(x, e)=d(y, e). Indeed, it suffices to observe that if
d(x, e)=d(y, e) then there exists i€ K for which i(x)= y. Thus the values
f(x) of the radial function depend only on d(x, ¢). Moreover any radial
function admits the unique representation of the form ), _,a,y, with
complex coefficients a,,n = 0, 1, ... Clearly all the operators I,,1,,,
P, P* T_, R, leave invariant the space of radial functions, as well as its
orthogonal complement.

LEMMA 5. Let q "2 <|z| <1. Then the subspace of radial function in
Ker(I—zP) T, is one-dimensional.

Proof. I f=3,_,a,x, then this leads to a recurrent formula for the
sequence {a,} which for given a, has the unique solution.

By (8) the unique, up to a constant multiple, function in Ker(/—zP)T.
is

Z ‘IZ)HI [12n+q12n71]' (13)

n=1

T

1—22
2 +1

fi=0.+
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We can express f, in terms of R, as well. In fact, observe that R.d, is
also a radial function which belongs to Ker(/—zP)T,. By (12) and by
Proposition 2(ii) we can compute

2

u
<Rz 587 59) =1 _m <Uz 6e! UE 6e>
B w  1—z%a(u)?
Caz)a(u) 11— W’
_1 (1—z)a(u) (1, +1)(z"—u?)

T (-w)a (1—-u)a(z)

Thus R, é,#0. Hence by Lemma 5

1

S =R5. 8.5

R, 3.. (14)

Let k€ K. Since A(k) commutes with P and with 7, then n_ (k)= A(k) for
any |z| < 1. Let 2 denote the operator defined as & = |, A(k) dk where dk
is a normalized Haar measure on K. Then £ is the orthogonal projection
onto the radial functions in /*(X, ). Furthermore # commutes with P

21, 22

and with T, so £ leaves Ker(/—zP)T, and Im T (I —zP*) invariant.

THEOREM 3. Let g2 <|z| <1 and z22# —+ . Then the representation
7, restricted to the invariant subspace #,=XKer(I—zP)T, is irreducible.

Moreover representations n.|,. and m.|,, are equivalent if and only if
22=2"2. For z¢ RUIR the representation n, is not unitarizable.

Proof. First we prove that f, or R, J, is a cyclic vector of . | ... We will
base this on the formula below which can be easily derived from the
definition of =, :

d(i{e),e)— 1
n (i) 8,=z% S, + /1 =2 Y 2" 8- (15)
n=0

Assume on the contrary that . =span{n.(i)R,J,:icAut(X, )} is
not dense in . By Lemma 4(iv) applied to A=(I—zP)T, and B=
T.(I—zP*) there exists a function feKer(/—zP)T, such that for any
ieAut(%,m)
0={m.(i)R.0,, f>=(R.n.(i)b,, f>=(m.(i) 6., R. [}

= <nz(l) ae’ f> = <6e’ nf(iil)f>~

In particular f(e)=0. Let x be a vertex belonging to the support of f for
which the distance d(x, e) is minimal. We consider two cases:
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(a) xeX,. Then there exists ie Aut(X, ) with i(e)=x. Hence by
(15) we have 0={(6,,n.(i "V f>=<(n(i)é,, f>=1—z*f(x). Thus

f(x)=0 which gives a contradiction.
(b) xeX,. Let yeX, be such that ¢(y)=x. Then there exists ie
Aut(X, ) with i(e)= y. Again by (15),

(2%

0=C0,, m:i™ 1) [ ) = {m.i) 8., /> =/ 1 =2 [f(y) + 2f(x)].

It means that f(y)= —Zf(x) for any y satisfying c¢(y)=x. On the other
hand the condition (/—:ZP)f(x)=0 implies f(x)=z3%,,, .. f(y)=
—z%, f(x). Therefore (1 +2%2,) f(x)=0 which contradicts f(x)+#0.

In order to prove irreducibility let .# be an invariant subspace of =,
contained in #,. Then .4 <.#. By Lemma 5 there are two possible
cases:

(a) P4 =Cf,. Then #, < .# because [, is a cyclic vector of .| ..

(b) 2.4 =(0). Hence .# consists of functions orthogonal to all
radial functions. In particular for any ieAut(X, ,) and any fe.#,
0=<n(i) f, f:>=<fim:(i" ") f->. This implies that f is orthogonal to
Ker(/—zP)T;. Hence by Lemma 4(iv) applied to A=(/—-ZP)T;, B=
T.(I—zP*), and .# =Ker A we get f=0. Because / was an arbitrary
function in .# thus we have proved .# =0.

Let ¢, be the matrix coefficient of the representation =], associated
with the unique K-fixed function R, J,, ie.,

¢.(i)= (mAi)R.0,,0.). (16)

1
(R.6,,0.>

Applying the explicit formula expressing R, we get

I (22 + D0 =) e
¢z(l):¢1+1|: 1 22 —u? e
2 2
_(2u tl)(lz*z )u‘“’"”'”]. (17)
Z"—u

Next observe that since 2 restricted to J# is the orthogonal projection
onto R, d, then

Pr()P=¢.()P  on XK.

Fix any automorphism i of X, , such that d(i(e),e)=2 and i*=/1d. If
two representations n,| ,, and 7|, are equivalent then the spectra of the
operators #n.(i) #1 ,, and Pr.(i) #| . should coincide (because 2 can be
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expressed as 2 = {,n_(k)dk). But by (17), ¢.(i)=¢.(i) if and only if
z*=z"2. Moreover because i=i"' then if n.| , is equivalent to a unitary
representation then the spectrum of the operator #n,(i) 2|, must be real.
But ¢.(i) is a real number if and only if z*€ R.

To complete the proof assume that z= —z" and check that the operator

I, —1,, intertwines the representations 7| ,, and 7| . .

11

Remark 4. The functions ¢, defined in (16) are the spherical functions

corresponding to the compact subgroup K of Aut(X, ). Indeed
| #.) a
X
= 1 (Prj)R. S, n(i"")d,>
TURG,, 0 T TS AL O
———-1 / . — . .
=R, 0.5 (Tl Rede 0D (R 3o, mli™1) 8. = 4:0)) 9:(0).

Remark 5. We have shown that for z unreal and non-purely imaginary
the representation .|, cannot be made unitary. In the sequel we prove
that also for z=it with re(—1, —2 Y?)u (2 "% 1) it is nonunitarizable
while for re[—27'2, —g "*)u(q "% 2+ ¥?] the representations are
equivalent to unitary ones.

3. ANALYTIC CONTINUATION OF THE PRINCIPAL SERIES

In the previous section we have constructed the series of representations
parametrized by the annulus ¢ "> < |z| <1, z2# —2 ', having the spheri-
cal functions ¢, as its unique bi — K-invariant matrix coefficients. On the
other hand the formula (17) which expresses explicitly ¢, can be extended
by analycity to the annulus ¢ ! < |z| < 1. In this way we obtain the family
of functions ¢, with property ¢, = ¢, for ¢! < |z| < 1. Moreover by [1] we
know that the series |z| = ¢~ '/ consists of positive definite functions which
to/gether with ¢.,zo= —+""', give the decomposition of the regular
representation of Aut(X, ,) into irreducible ones. That is why it is called
the principal series. In this section we are going to extend the series of
representations 7.| g~ "> <|z| <1, to the annulus ¢~ ' <|z| <1 to get
the analytic continuation of the principal series. But before doing so we will
realize all representations on a common Hilbert space. Our method is
analogous to that of [11].

Let s, =Ker P. Notice that 4, is the unique K-fixed vector in H#,,. We
are going to map the subspaces # onto £, . This mapping will be defined
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separately between the radial one-dimensional subspaces and between the
nonradial parts of 3, and #,..

For a linear subspace .# of /*(X, ) let .#° denote the subspace of .#
consisting of all functions orthogonal to radial functions, ie, .#°=
{fe#:Pf=0}. We also introduce two linear operators

2 1/2 7 172
Aooz(—) I, +1,, AO:I”+<—> I,,.

LEMMA 6. Let z#0. Then (A, — (ujz) A.) A, = q((z*> —u?)/z) 1.
Proof.

(4.-24.) 1.
z
()" (e fa_vai),
p u z z 2
2 2 g(z) — a(u 22a(u) — ua(z)
= I, 2 I,
(2 Z°U
w2 22 22
=<—2) . SISl Ly
(2 V4 Z
PROPOSITION 3. Let |z|>q ' and z*# —»~'. Then the operator

AZNI—uP*)~ ' A" maps #°, onto #° isomorphically; u=(qz) "
Proof. The claim follows from the formulas
1
PAI~uP*)d.,= —~ Ao (I~ zP) (18)
(I—2P) AZ'(I—uP*)' A = —zA5 AP (19)

valid on I*(¥, )"
Concerning the first identity

PA(I—uP*)A_=A,P(I—uP*)A,, = A(PA, —uPP*A_)
= A,(AgP—uPP*A )= A, Ay(P—ud; 'PP*A_)

1
= A.Ao(P—ugl) = —~ A, Ao(—zP).

The second identity is just a simple transformation of the first one.
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LemMma 7. Let |z|>q 2 and z*# —+~'. Then uR A, (I—uP*)A =
((z2—=u?)/z*)R,. Moreover if f, ge H°_ then

2

(R R.gY="— (A uA,) " £, 8. (20)

Proof. Observe that in all computations we may omit the operator 7,
because it coincides with the identity on /*(X, . )°. By Proposition 2(ii),

(iv) and Lemma 4(ii) we have R,(I —zP*)=0. Thus R,P*=(1/z)R,. Then
by virtue of Lemma 6
uR, A, (I-uP*)A,,=uR,A, A, —u'R,A,P*4
2

~uR,A A, —5‘2— R,A.A_ =uR, <A,,—g Az> A,
z

2,2

=~ 2R, =22 R,
z 4

The above implies that uR, A, (I —uP*)A_ = ((z* — u*)/z%)] on H#°. Thus
by Proposition 3 we obtain R, = ((z* —u )/z YA (I—uP*)~" (ud,) ' on
the space #°% . Thus if f, ge #°, then

2

2_
(R.fiR.g>=(R, [, gy =——— CAZM(I—uP*)"" (ud,)"" f, g

22— u?

= (ud,) ', (I-uP)" A g

L (ud) A gy = (AL (ud,) " g

From now on we restrict ourselves to the case #, <+,. The case 4, > 2,
can be treated in a similar way. Consider two functions z > a(z) =2,z° + 1
and z+> a(u) = (2,z%)" ' + 1. The first function admits the analytic square
root in the domain {z: {z| <2; /?} while the second in the domain {z: |z{ >
1, '2}. Both square roots can be continued analytically to the common
domain

Q={zeC:z#it,te(—o0, —27 IU e 0)U [—25 2 2,21}

[ 12

/52—1/2
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Moreover a(z)"? a(u)'? are even functions symmetric with respect to the
real line, i.e.,

a(z)?=a(~2)"?,  aw)=a(-w)"”

a(z)'?=a(z)"?, a(i)'? = a(u)'.

Let us define the square root of the operator uA, as

(wA,) P =a(u)'? I, +q 'z 'a(z)'? I,,. 1)
Observe that due to this definition we have
(—ud_ )" =AU, —1,). (22)

For any complex number z, |z| >¢q "? and 2z’ # —+, !, define the operator
V? as

Vi=(l—q %z %) " R.AL(ud,)'"” (23)

Then by Lemma 7 and Proposition 3 we have

PROPOSITION 4. Let q ' <|z| and z°# —+;'. Then the operator V°
maps H#°_ onto #° isomorphically. For real z this mapping is an isometry.

What is left is to extend the operator V0 to the one-dimensional radial
part of #,,. For ¢7'? < |z| <1 and z*# —2, ' let us define the operator ¥,
on . as

V.f=VOf i fedt,

24
V.5, =1 —u?) 2 V05, (24

The constant by ¥4, is chosen to satisfy <V.d,, V.d,> = 1.
THEOREM 4. Let ¢~ Y?<|z| <1 and z*# —+;". Then the operator V.
maps the space ., onto the space H. isomorphically. If z is real then V_ is
an isometry. Moreover

KV LVg)=Xt 8 [fgeH. (25)

Proof. The only thing we should prove is (25). But it holds for real :
by Proposition 4. Then by analycity of the function z+— {V_f, V:g> it
holds also for other z.

The isomorphisms ¥, allow us to settle all the representations =n.| ,. on
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the common Hilbert space 4. To see how they act on the new space we
are going to compute the matrix coefficients. To simplify the notation set

B,=A[(ud,)"". (26)

Due to the definition of (ud,)"? the function z+— B, is analytic in the
domain 2= {zeC:z#it,te(—o0, ~2}/*Ju[—2y% y*1u /A +0]}
Moreover

B*=B, B_,=B,(I, -1, for ze2, (27)

lim Be+it=(111‘112) lim B\£+it?
e—>0t

g—-0*
te(—oo, —2/2JU[—2¥% 2 Tu [2)% + 0]} (28)
Assume f, ge #° . Then applying (25), Proposition 2(ii), and (12) gives

V'm0 V.S &>

2

= (R V. fi Vig) = 3 (mli) R.B.f, R B g)
22 2
= 2 2<Rznz(i) B:f; Bfg>= 2 2 <nz(l) Bzf; Bfg>
z u zZ —u
ZZ 2

TP ) ) UMU.n (i) B.f, B:g>

22

=73 2 <nz(l) Bzf; Bfg>
Z"—U

ZZ u2

TP a) a) (n(i)U.B.f,U:B:g).

Since U,f=A,fand U.g=A.g for f, ge #° , then

Z2

V') V.1 8> =

<nz(i) Bzf; Big>

JE R

22 u?

T2 a(2) ) {m.(i)A.B.f, A;B; g).

Now observing that (a(z) a(u))~"/*(z4,) B,= B, gives

Voln() V.S, g>=

<[Zsz7zz(l) Bz—uzBunu(i) Bu]f; g> (29)

22—u?
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In a similar way we can compute the remaining formulas:

_ . . =10\ 1 2 .
Vo) V. > = (M) s (L0 =) BB,

/7,1 o7 —

—uX(1—=2)"" B,n,(i) B, d.. &> (30)

(V2 l0) V28000 =Mt s (L0 =) B () B,
—u?(1-2%) Bn(i) B,] 5., 6.). (31)
THEOREM 5. Ler X be a semihomogeneous tree of degrees

21, 22
11, 2, 2 <12y. Put q=(2,2,)"2. There exists a series of uniformly bounded

representations I1.,q~ ' <|z| <1, of the group Aut(X, ) on the Hilbert
space K., = Ker P, such that

(i) The series I1. is analytic in the domain Q= {z;q ' <|z| <1, z #
it, te(—1, =272 Ju [ =2y 30520 [, V2 1))

(it) If g~ <lzl <1, z># —o[ ", then 11, is equivalent to m_| .

(i) H,=1_,and I,=11, where u=(qz) "', ze Q.

(iv) IL()*=Mi)~".

(v) H.(iy— II.{i) has finite rank.

(vi) Any representation II.,z*# —u', —25", is irreducible. The
representations I, and I1.. are equivalent if and only if z=2', z= —Z', or
z=(qz')" L

(vil) I, is a unitary representation if and only if |z| =q~ ' zeR, or
z=it with te[—27 "2 —257 2T U [2y?, 2}*]. Otherwise the representation
Il cannot be made unitary by introducing another equivalent scalar product
in ¥, .

Proof. By the formulas (28), (29), (30) the family V 'n.(i) V,, ¢ '<
|zl <1, z?# —2;', extends to the analytic series of representations
11, ze Q, satisfying (i), (ii), and the second part of (iii).

For z=it with te [ —2; % —q ')u [+, 2 1) we define 1T, by

1

Hir(i) = lim ”5+il(i)9
e—0+

and for z =it with te (—1, —2; "*]Ju (g, 25 /*] we put

Hit(i): lim H;gju‘t(i)'
e—>07*

In this way we obtain the series of representations 17, ¢ ' < |z| <1, still
satisfying (i), (ii), and the second part of (iii).
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We turn now to the proof of (v). Let ze Q, then

= (28,70 B, B, () B,]
e Pt
1
b LB (1)~ A0) B. — 1B, (1)~ () B,

The second term, now denoted by K,, is a finite-dimensional operator by
Theorem 3(iii). On the other hand by the definition of B, and by Lemma 6
it is easy to check that

1
S 2B -wBl)=1.

Thus

1
JE S [2*B.n.(i)B.— u*B,n,(i)B,] = A(i) + K.,

where K, is a finite-dimensional operator. Combined with (28) it implies
(v).

In order to prove the first part of (iii) note that for any z, |zl <1, we
have

7"lfz(i) = (111 - Iiz) nz(i)(lzl - Izz)

(see the last part of the proof of Theorem 3). Then by (27) we get
B,n,(YB,=B_,n_,(i)B_, for any z, ¢~ ! <|z| < 1. Now the claim in (iii)
follows easily from the formulas (29), (30), (31).

As regards to (iv) for real z in @ the representation 71, is unitary because
in this case n.|,, is a unitary representation and V, is an isometry
(Theorem 4). Then by the Riemann-Schwarz Reflection Principle, (iv)
holds for all ze Q. Furthermore if |z| = ¢~/ then u = Z. Hence by (iii) and
(iv) we have

n(*=1.0)"'=1,) "' =1.()~".

It means II, is unitary for |zl =¢ Y2 Assume now z=it where ze€
y q

(=272 —2; 21U [e7 2 ¢ Y], Then = —z. Hence by (iii) and (iv) we

derive

I(iy*=11,(i)"' =1T__(i))~' = IT,(i)~".
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To complete the proof of (vii) in view of (i) and Theorem 3 it suffices to
show that /7. is not unitarizable only for z =it where te(—1, —2; '?)u
(=2 Y% —g Hu(g ! o5 ) u (2] Y3 1), Because of (iii) it is enough to
con51der te (2, 1) We claim that for such ¢ there holds

m(i)*=(

— 1) () ' (1, —1,,). (32)

r 7]

Indeed, it follows directly from the definition of 7, (recall I7,(i)=
lim, _, o+ 11, ,(i)) and the formulas (28), (29), (30), (31). Now the fact that
IT, cannot be made unitary relies on the following

PROPOSITION 5. Let m be a bounded irreducible representation of a
locally compact group G in a Hilbert space #. Assume there exists a unitary
operator U such that

n(g)*=Un(g)"' U

Then 7 is equivalent to a unitary representation if and only if U is a constant
multiple of the identity operator.

Proof. Assume that there exists an invertible linear operator 4 on #
and a unitary representation ¢ of G in the space # such that =n(g)=
A 'a(g)A. Thus

A*O’( ) (A*) ( )*_Uﬂf(g) lU 1 UA71 (g)” U—IA.
It implies
(4%)7' U~ "o(g) ' =a(g) ' (4*) "' UA™"

Since o is also an irreducible representation of G then by the Schur lemma
(A4*)~' U4~ = cI for some complex constant ¢. Therefore U=cA*A. The
last is possible only if U= AI with |[A| = 1.

What is left is to prove (vi). For z,¢ ' <|z| <1, let &=, I (k)dk
where (cf. the proof of Theorem 3) K is a stabilizer of the vertex e. Observe
that for any ke K and any z, ¢~ ? < |z| < 1, we have IT (k) = A(k). Indeed,
if k € K then A(k) commutes with P, P*, T,, A,, and A _,. Thus by (23) and
(24) it commutes with V.. Therefore

(k) =V, 'n (k) V.=V, k) V.= Ak).

By analycity we have I7,(k) = A(k) for any z, ¢~ '*<|z| < 1. Furthermore

P = [ x Mk) dk is the orthogonal projection onto radial functions in J#, =
Ker P, 1e., onto C é,.

Let i be an isometry of X, , such that d(i(e),e)=2. Let ¢~ ' <|z| < 1.
Then by (31) (cf. the proof of Theorem 3) we obtain % I1,(i) P = ¢,(i) %%.
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It implies that two representations 7. and I7,. are equivalent if and only
if ¢,(i)=¢,(i). By (17) it is equivalent to z>=2z"? or z= 1/gz".

Now we turn to the irreducibility. By Theorem 3 and by (ii), (iii) we
have to prove the irreducibility only for |z| =¢~'2 Fix z, |z|=¢ '~
Let ./# =span{l1(i)J,:ieAut(¥X, ,)}. # is a closed subspace of ¥,
invariant for I7,. We show that .# does not contain a proper closed sub-
space invariant for /7,. Assume that .#, < .# is a closed subspace invariant
for I1,. Thus P My S My. If P My # (0) then Py My = C 6, < #,, which by
the definition of .# implies .#, = .#. Let #c.4,=(0). Then the subspace
My= MM, is also a closed invariant subspace of # and #.#;# (0)
(recall that 77, is unitary by (vii)). Thus .# = .# which yields .4, = (0). To
complete the proof of irreducibility we need only to show that .# =, ,
i.., that 4, is a cyclic vector for IT,. On the contrary assume that fe #,
is orthogonal to .#. In particular {f, 8.)> = f(e) =0. Next, as in the proof
of Theorem 3, it is not hard to show by induction on d(x, ¢) that f(x)=0
for any x. This completes the proof of Theorem 5.

4. APPROXIMATE UNITS OF THE FOURIER ALGEBRA

In this section we apply the series of representations defined in Section 1
to derive approximation properties for groups acting on trees.

Let G be a locally compact group and A(G) its Fourier algebra. It is
known that if G is an amenable group then there exists a net ¢, of
functions in A4(G) such that:

(i) ¢, has compact support for any «;
(ii) ¢.¢— ¢l 4c)— 0 for any ¢ e A(G);
(iii) (.l g <1

A net ¢, which satisfies (i) and (ii) we call an approximate unit of A(G).
If G is nonamenable then there is no approximate unit bounded in A(G)-
norm. However, in many cases it is possible to construct an approximate
unit unbounded in A(G)-norm but bounded in the multiplier norm on
A(G), ie., such that

el MAG)= Sup{|l¢a¢|| AG) - ||¢”A(G) < 1} <l

Any function ¢ in A(G) defines a linear multiplier operator m, on A(G)
by A(G)aY > ¢y € A(G). Its transposed operator M, is a o-weakly
continuous operator on the von Neumann algebra M(G) of G which is
determined uniquely by M A(x) = ¢(x) A(x) where A(x) is the left transia-
tion by the element x in G. Following de Canniere and Haagerup if M, is
a completely bounded map of M(G) then we say that ¢ is a completely
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bounded multiplier of A(G). The space of completely bounded multipliers
is denoted by M,A(G). It is a Banach algebra with norm (¢l )=
| M4l -5 where || || -5 denotes the completely bounded norm of the operator
M. We refer the reader to the work by de Canniere and Haagerup where
a detailed exposition of this subject is given.

We say that a locally compact group G has the completely bounded
approximation property if there exists an approximate unit ¢, in A(G) such
that |¢, || a,.46)< 1. There are many equivalent ways to define M,A(G).
We refer to the work by Bozejko and Fendler [2] concerning this subject
and also to the work of de Canniere and Haagerup [5] who proved
approximation properties for various simple Lie groups like SOy(n, 1) and
its discrete subgroups. Finally Cowling and Haagerup [4] proved that all
simple Lie groups of real rank one admit completely bounded approximate
units in the Fourier algebra. We will need the following fact concerning
multipliers

ProrosiTION 6 (Bozejko, Fendler, Gilbert). Let ¢ be a complex function
on a locally compact group G. Assume there exist a Hilbert space # and two
continuous bounded maps u, v: G ¥ such that

#(y 'x)=(ulx), v(y)>,  x yeG.
Then ¢ is a completely bounded multiplier of A(G) and

181l rt5.4(6) < sup llu(x) sup flo(y)].

xeG yeG

ExaMpLE. Let G be a group acting on a tree X. Fix a vertex e in X and
define the representations =, with respect to e. Let ¢,(g)=z¥#>%. By
Proposition 6 the function ¢, belongs to M, A(G) because

¢.(h~'g)=(n.(g)d,, m:(h) 3. ).
Moreover by the formula (15) we have

sup [|m.(g) 8.1l =sup [in:(h) ¢ | =122 (1 - [2*)~'*  (33)

geG heG

hence
11-27
”¢z|lM0A(G) = W

The main result of this section is the following.
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THEOREM 6. Let G be a locally compact group acting on a tree X.
Assume that there exists a vertex ec€ X such that the stability subgroup
G.e{geG:ge=e} is compact. Then the Fourier algebra A(G) of G admits
an approximate unit {¢,}>_, bounded in MyA(G)-norm.

Before the proof we derive two immediate corollaries.

COROLLARY 3. For any closed subgroup G of Aut(X) the Fourier algebra
A(G) has the completely bounded approximation property.

For a prime number p let @, denote the field of p-adic numbers. By
Serre [10] we know that the group SL(2, Q,) acts on the homogeneous
tree of degree p + 1, and it has compact stabilizers of any vertex of the tree.

CoroLLARY 4 (Bozejko and Picardello [3]). For any prime number p
the group SL(2, Q,) has the completely bounded approximation property.

In the proof of Theorem 6 we will follow the method developed in [9].
Let y be a piecewise smooth curve contained in the unit disc. For a group
G acting on a tree X consider the representation 7, of G defined as

n,= G—)L 7, |dz|

which acts on the Hilbert space #, = @ |, 1*(¥) |dz|. It is again a uniformly
bounded representation with

It —27

sup |7,(g)ll <2 max
geG zey l—|Z|

The following proposition is just a reformulation of Proposition 2 from

[91.

PROPOSITION 7. Let f be a function holomorphic in a neighbourhood of 7.
Then the complex function ¢ on G defined by

#(g)=| 2% () dz

is a matrix coefficient of the representation w.,. In particular ¢ belongs to
M,A(G) and

|1 —27

19 toaicr < | 1/ {1l

580/95/2-8
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ExaMPLE. Keeping the same notation let y,, n=0, 1, 2, ..., denote the
functions on G defined as

1 when d(ge,e)=n
xn(g)={

0 otherwise.

We can express y,, as

X (g)=—1~f pdlgee),—(n+ 1) g
" 2717i |zl =r

Thus applying Proposition 7 the function y,, belongs to M, A(G) and

J.z,, Il _ r2€2i1|

1 —n
”Xn”MoA(G)Sﬂ rdr <

o 1—r? (1 —r?)

A simple computation of the minimum of the right hand side gives

e
20l atg a6 <§ (n+2).

Proof of Theorem 6. Let G be a group acting on a tree X. Let ¢ be a
vertex of X such that G,={geG:ge=e} is a compact subgroup of G.
Then the functions x,, n=0, 1, 2, .. (see Example above) have compact
support. Indeed, let E, = {ge: g€ G, d(ge, e)=n}. For any x in E, choose
an element g, in G such that g, e = x. Therefore

supp(x.) € U £:G..
xe Ey
Consider the set of functions ¢,(g)=r"#>¢), 0<t< 1. By Theorem 1(ii),
(iv) the functions ¢, are positive definite. In particular by Proposition 6 the
functions ¢, belong to M, A(G) and (@, || 1,.46) < 1. Moreover when ¢ tends
to 1 then ¢, tends to the function constantly 1 on G uniformly on compact
sets (by compactness of G,). Thus we can apply the theorem by Nielson
(see [5, Appendix]) and we get

¢ ¢ — bl 4)>0  when 11" for any e A(G).

In order to complete the proof it suffices to show that the multiplier
operators my, on A(G) lie in the MyA(G)-norm closure of multiplier
operators associated with compactly supported functions. For a fixed 1< 1
and n=0,1,2,.., let

#.(g)  when d(ge e)<n
0 otherwise.

bunl)={
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The functions ¢,, have compact support because ¢,, = 2;_, t*v,.
Furthermore by (9) we have

“¢r,n_¢r”MoA(G)< tk(k+2)—>0 when n - oo.
1

i
2 k=n+
This completes the proof.

Remark 6. If X is a nonhomogeneous tree then clearly there is no
group which acts transitively on X. It means that the stabilizers of vertices
are not all conjugate to each other. However, in the proof of Theorem 6 we
need only the compactness of one of the stabilizers. We conjecture that as
in the theorem of Julg and Valette amenability of a stabilizer should suffice.

Remark 7. In the paper [6] it is proved that if a locally compact group
G acts on a tree such that the stabilizers of the vertices are amenable then
the group G is so-called K-amenable. In particular the group SL(2,Q,)
shares this property.
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