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Introduction.

Let {Pn}n≥0 be polynomials orthogonal with respect to a measure µ on the real line. It is well

known that the non-negativity of the coefficients c(n, m, k) in the product formula

PnPm =
∑

c(n, m, k)Pk

gives rise to a convolution structure on `1(N) (see [3], [5], [6], [8], [9], [10]) which makes `1(N)

the Banach algebra. At this point the study of the maximal ideal space M of this algebra seems

appropriate especially because M can be easily identified with the set {z ∈ C : |Pn(z)| ≤ 1, n =

0, 1, . . .} or {z ∈ C : sup
n
|Pn(z)| < +∞}. It is always the case that supp µ ⊂ M (Theorem

1). Our aim is to find some reasonable conditions which give the opposite inclusion thus securing

supp µ = M. This is done in Theorem 2.

In Chapter 2, Theorem 2 and its generalization (Proposition 2) are applied to derive a maximum

value principle for Pn asserting that on any ellipse with foci at −1 and 1 the polynomial Pn attains

its absolute maximal value at the right end of the major axis.

Applications to the Jacobi polynomials are also given.

In the appendix we separated two proposition concerning the unilatelar shift operator on lp(N).

These result are well-known. The proofs are given for the sake of self-containedness.

The convolution structure.

Let the polynomials Pn, n = 0, 1, 2, . . ., satisfy the recurrence formula

xPn = γnPn+1 + βnPn + αnPn−1, (1)

where αn, γn > 0 for n = 1, 2, . . . , γ0 > 0 and α0 = 0. By the Favard theorem there exists a measure

µ such that the Pn are orthogonal with respect to µ.

We assume throughout the paper that

αn + βn + γn = 1 for n = 0, 1, 2, . . . . (2)

The latter implies that the Pn are normalized at the point x = 1 i.e.

Pn(1) = 1 for n = 0, 1, 2, . . . . (3)

Besides this normalization, our other blanket assumption which we will adhere to is that in the

product formula

PnPm =
n+m∑

k=|n−m|

c(n, m, k)Pk (4)
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the coefficients c(n, m, k) are non-negative. By (3) and (4) we get

n+m∑
k=|n−m|

c(n, m, k) = 1 . (5)

We refer to [1], [5], [6], [9], [10] for sufficient conditions under which c(n, m, k) are non-negative.

The formula (4) gives rise to a convolution structure on `1, the space of absolutely summable

sequences. More precisely, if δn denotes the sequence which is zero except at the n-th coordinate

which is 1 then

δn ∗ δm =
n+m∑

k=|n−m|

c(n, m, k)δk . (6)

Then ∗ can be extended linearly to all sequences. The positivity of the coefficients c(n, m, k) and

(5) together imply

‖a ∗ b‖1 ≤ ‖a‖1 · ‖b‖1 a, b ∈ `1 . (7)

Indeed:

‖a ∗ b‖1 =
∥∥ ∞∑

n=0

∞∑
m=0

anbmδn ∗ δm

∥∥
1
≤

∞∑
n=0

∞∑
m=0

|an||bm|‖δn ∗ δm‖1 =
∞∑

n=0

∞∑
m=0

|an||bm| = ‖a‖1 + ‖b‖1 .

Therefore (`1, ∗) becomes a Banach algebra. The aim of this paper is to identify its maximal ideal

space.

Let ϕ be a linear multiplicative functional on (`1, ∗). The algebra is generated by the single

element δ1 (cf. (6)), so ϕ is determined by ϕ(δ1). Since P1 is linear ϕ(δ1) = P1(z) for a complex

number z. Next combining (4) and (6) leads to ϕ(δn) = Pn(z) for n = 0, 1, 2, . . . . Now in a Banach

algebra every multiplicative functional is continuous and its norm does not exceed 1. Hence the

sequence {Pn(z)}n≥0 is bounded; moreover sup
n
|Pn(z)| ≤ 1. Thus the maximal ideal space of (`1, ∗)

can be identified with

M = {z ∈ C : sup
n
|Pn(z)| < +∞} = {z ∈ C : sup

n
|Pn(z)| ≤ 1}. (8)

We intend to examine the relation between M and supp µ, the support of the orthogonalizing

measure.

Let ωn = (
∫

P 2
ndµ)−1 for n = 0, 1, 2, . . . . Then the quantity

c(n, m, k)ω−1
k =

∫
PnPmPkdµ (9)
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is invariant under permutation of the variables n, m, k. In particular we have:

c(n, m, k)ω−1
k = c(n, k,m)ω−1

m . (10)

Define linear operators Tn acting on sequences {ak}k≥0 by

(Tna)(m) =
∑

k

c(n, m, k)ak . (11)

We will examine the operators Tn on the weight spaces `p(ω) = {a = {an}n≥0 :
∞∑

n=0

|an|2ωn < +∞}.

We rewrite (11) as follows

(Tna)(m) =
∑

k

c(n, m, k)ω−1
k akωk .

Therefore the matrix of Tn with respect to the weight ω is

tn(m, k) = c(n, m, k)ω−1
k . (12)

This matrix is symmetric so Tn is selfadjoint on `2(ω).

Proposition 1. The operators Tn, n = 0, 1, 2, . . . , are contractions on `p(ω).

Proof. Combining (5), (10) and (12) gives∑
k

tn(m, k)ωk =
∑

k

c(n, m, k) = 1

∑
m

tn(m, k)ωm =
∑
m

c(n, k,m) = 1 .

The conclusion follows now from the Schur theorem which is stated below.

Theorem (Schur, [7] Thm. 5.2, p. 22). Let A be a linear operator acting on `p(ω) by

(Aa)(m) =
∞∑

k=0

a(m, k)akωk .

Assume
∞∑

k=0

|a(m, k)|ωk ≤ 1

∞∑
m=0

|a(m, k)|ωm ≤ 1 .
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Then A is a contraction on `p(ω) for 1 ≤ p ≤ +∞.

Let us introduce a transform from the space of all sequences {an}n≥0 into the space of functions

on the real line by

ˆ: a = {an}n≥0 7→
∞∑

n=0

anωnPn . (13)

We will also write â =
∞∑

n=0

anωnPn. This transform is an isometry from `2(ω) onto L2(µ). Indeed,

by the definition of ω we have

‖{an}‖2`2(ω) =
∞∑

n=0

|an|2ωn

=
∥∥ ∞∑

n=0

anωnPn

∥∥2

L2(µ)
= ‖â‖2L2(µ) .

Let T̂n denote the operator associated with Tn acting on the transforms of sequences. Then by (4)

and (9)

T̂na =
∑

k

(Ta)(k)ωkPk =
∑

k

∑
m

c(n, k,m)amωkPk

=
∑
m

am

∑
k

c(n, k,m)ωkPk =
∑
m

amωm

∑
k

c(n, m, k)Pk

=
∑
m

amωmPmPn = Pn · â . (14)

We are now in a position to derive the following.

Theorem 1. If x ∈ supp µ then |Pn(x)| ≤ 1 for n = 0, 1, 2, . . . .

Proof. Let a ∈ `2(ω). Then

‖Tna‖`2(ω) = ‖T̂na‖L2(µ) = ‖Pnâ‖L2(µ) .

On the other hand by the earlier Proposition the following holds

‖Tna‖`2(ω) ≤ ‖a‖`2(ω) = ‖â‖L2(µ) .

Thus we have ‖Pnâ‖L2(µ) ≤ ‖â‖L2(µ), i.e. the linear operator MPn
: L2(µ) → L2(µ) whose action

is to multiply by Pn is a contraction. It is well known that ‖MPn
‖ = sup{|Pn(x)| : x ∈ supp µ}.

Therefore sup{|Pn(x)| : x ∈ supp µ} ≤ 1.
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Consider the linear operator L acting on sequences as

(La)(n) = γnan+1 + βnan + αnan−1 . (15)

The coefficients γn, αn and ωn are interdependent. By (1) we have 〈xPn, Pn+1〉L2(µ) = γnω−1
n+1. On

the other hand 〈xPn, Pn+1〉L2(µ) = 〈Pn, xPn〉L2(µ) = αn+1ω
−1
n . Therefore

ωn+1

ωn
=

γn

αn+1
. (16)

Using (1) and (15) gives

L̂a = xâ . (17)

Comparing (14) and (17) we conclude

Tn = Pn(L) . (18)

The formula (17) has one important consequence. The spectrum of the operator L on `2(ω) coincides

with that of multiplication by x on L2(µ). The latter is nothing other than supp µ.

Lemma. Let βn → 0, αn → 1
2 , γn → 1

2 as n tends to infinity. Then

supp µ ⊂ [2β0 − 1, 1] and [−1, 1] ⊂ supp µ .

Proof. P1 = γ−1
0 (x − β0) by (1); thus T1 = γ−1

0 (L − β0I). Hence

L = γ0T1 + β0I. By the earlier Proposition T1 is a contraction on `2(ω) so σ(T1) ⊂ [−1, 1].

Therefore, since γ0 + β0 + α0 = 1 and α0 = 0

σ(L) ⊂ [−γ0 + β0, γ0 + β0] = [−1 + 2β0, 1].

This proves the first part of the conclusion.

The second part of the conclusion follows from the Blumenthal theorem (see [4], Ch.IV.4). For

readers convenience we give a proof of it based on the Fredholm theory.

It is rather inconvenient to deal with operators acting on the weight space `2(ω). We therefore

find a similar operator acting on the usual `2(N) space and examine its spectrum.

Let L̃ be a linear operator acting on `2(N) as

(L̃a)(n) = λnan+1 + βnan + λn−1an−1 (19)

where λn = (αn+1γn)1/2 . Then L̃ is similar to L. The isometry Φ

`2(ω) 3 δn
Φ7→ω1/2

n δn ∈ `2
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intertwines L and L̃, i.e. Φ◦L = L̃◦Φ. Hence their spectra coincide. Observe that by the assumptions

λn = (αn+1γn)1/2 → 1
2 as n tends to infinity.

Let U be the operator given by

(Ua)(n) =
1
2
an+1 +

1
2
an−1 . (20)

It is well known that the spectrum of U on `2 coincides with [−1, 1] (see Appendix). Moreover the

difference

(L̃− U)a(n) = (λn −
1
2

)an+1 + βnan + (λn−1 −
1
2

)an−1

is a compact operator because λn → 1
2 and βn → 0. Hence by the Weyl theorem the continuous

spectra of L̃ and U coincide. Thus [−1, 1] ⊂ σ`2(L̃) = σ`2(ω)(L) = supp µ. Furthermore by this

same theorem any number x in supp µ\[−1, 1] is an eigenvalue of the operator L.

Now we can state the main result of the paper.

Theorem 2 Let {Pn}n≥0 be polynomials orthogonal with respect to a measure µ on the real

line. Assume that (1), (2) hold and the linearization coefficients in (4) are non-negative. If αn →
1
2 , γn → 1

2 and βn → 0 as n → +∞ then the following condition are equivalent for every z ∈ C:

(i) supn≥0 |Pn(z)| < +∞,

(ii) supn≥0 |Pn(z)| = 1,

(iii) z ∈ supp µ.

Proof. Let L be a linear operator acting on `1 by

Lδn = γnδn+1 + βnδn + αnδn−1. (21)

By (1) and (6) we have

P1(L)δn = δ1 ∗ δn.

Thus the operator L belongs to the convolution algebra generated by δ1, namely L = γ0δ1 + β0δ0.

Moreover, if ϕ is a multiplicative functional such that ϕ(δ1) = P1(z), then ϕ(L) = z. This means

that the set {z ∈ C : |Pn(z)| ≤ 1, n = 0, 1, 2, · · ·} coincides with the spectrum of the operator L

on the space `1. Let U be the operator acting on `1 defined by (20). Then σ`1(U) = [−1, 1] (see

Appendix). Again as in the proof of our Lemma the difference L− U is a compact operator on `1.

By the Weyl theorem σ`1(L) = [−1, 1]∪̇D, where D is a countable set consisting of the eigenvalues

of L. We already know that [−1, 1] is contained in supp µ. It remains to show that D ⊂ supp µ as

well.
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Let z ∈ D. Then La = za for a nonzero sequence a ∈ `1. By (21)

(La)(n) = αn+1an+1 + βnan + γn−1an−1 = zan.

Applying (16) gives

γn(ω−1
n+1an+1) + βn(ω−1

n an) + αn(ω−1
n−1an−1) = z(ω−1

n an).

The above formula can be rewritten as (cf (1))

γnbn+1 + βnbn + αnbn−1 = zbn, (22)

where bn = ω−1
n an. Moreover the sequence b = {bn}n≥0 belongs to `1(ω) since a = {an}n≥0 is in `1.

Furthermore, by virtue of (1) and (22) we have bn = Pn(z)b0. Since z ∈ D the sequence Pn(z) is

bounded by 1. Thus |bn| ≤ |b0| and {bn}n≥0 is a bounded sequence from `1(ω). This implies that

{bn}n≥0 belongs also to `2(ω). Now (22) is equivalent to Lb = zb (see (15)), so z is an eigenvalue of

the operator L with an eigenvector from `2(ω). Thus z ∈ σ`2(L) = supp µ. This completes the proof

of Theorem 2.

Example Consider the Jacobi polynomials R
(α,β)
n , α, β > −1. They are orthogonal with respect

to the measure dµ(x) = (1 − x)α
+(1 + x)β

+dx. When normalized at the point x = 1 they satisfy the

recurrence formula (1) with

γn =
2(n + α + β + 1)(n + α + 1)

(2n + α + β + 1)(2n + α + β + 2)
,

βn =
β2 − α2

(2n + α + β)(2n + α + β + 2)
, (23)

αn =
2n(n + β)

(2n + α + β + 1)(2n + α + β)
.

We have αn + βn + γn = 1 (as R
(α,β)
n are normalized at x = 1); also αn → 1

2 , γn → 1
2 and βn → 0.

If α ≥ β and α + β + 1 ≥ 0 then by Gasper’s theorem ([5], [6], [10]) the linearization coefficients

are non-negative. Hence all the assumptions of Theorem 2 hold. Therefore the maximal ideal space

of the convolution algebra associated with R
(α,β)
n can be identified with [−1, 1]. The multiplicative

functionals on (`1, ∗) are then given by

`1 3 {an}n≥0 7→
∞∑

n=0

anRn(x) x ∈ [−1, 1].
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Applying Gelfand’s theorem gives the following.

Proposition 1. Let α ≥ β > −1 and α+β +1 ≥ 0. If
∞∑

n=0

|an| < +∞ and
∞∑

n=0

anRn(x) 6= 0 for

x ∈ [−1, 1], then (
∞∑

n=0

anRn)−1 =
∞∑

n=0

bnRn, where

∞∑
n=0

|bn| < +∞.

A maximum value principle.

Let us examine the set {z ∈ C : |Pn(z)| ≤ 1, n = 0, 1, 2, · · ·} with the same assumptions as in

Theorem 2 except that we assume αn → α, γn → γ, βn → β as n tends to infinity and α 6= γ. First

of all analyzing the proof of Theorem 1 gives

supp µ = [−(αγ)1/2, (αγ)1/2] ∪D,

where D is a countable set contained in (−∞, 1] consisting of the eigenvalues of L̃ on the space `2.

Next, if U is the linear operator on `1 defined by

Uδm = γδn+1 + αδn−1,

then L−U (see (21)) is a compact operator. Thus the continuous spectra of L and U coincide, the

latter being the ellipse E = {z ∈ C : |z − 2(αγ)1/2| + |z + 2(αγ)1/2| ≤ 2} (see Appendix). Hence

σ`1(L) = E∪D′, where D′ is a countable set consisting of the eigenvalues of L on `1. As in the proof

of Theorem 2 we can show that D′ ⊂ supp µ. In particular the following holds.

Proposition 2. Let the polynomials {Pn}n≥0 satisfy all the assumptions of Theorem 2 except

that αn → α, γn → γ, βn → 0 as n tends to infinity. Then for each n = 0, 1, 2, · · · the maximal

absolute value of Pn on the ellipse

E = {z ∈ C : |z − 2(αγ)1/2|+ |z + 2(αγ)1/2| ≤ 2}

is attained at z = 1 and is equal to 1.

Proposition 2 implies a maximum value principle for orthogonal polynomials satisfying the

assumptions of Theorem 2.

Suppose that {Pn}n≥0 satisfy the assumptions of Theorem 2. Assume also that the sequences

{γn} and {γn − αn} are decreasing. Fix a number a > 1. We are going to show that the sequence
Pn+1(a)
Pn(a) is increasing and converges to a +

√
a2 − 1. Let cn = Pn+1(a)

Pn(a) . Then

c0 = P1(a) =
a− β0

γ0
>

1− β0

γ0
= 1.

9



Assume that cn ≥ cn−1 > 1. We will show cn+1 ≥ cn. For a contradiction suppose that cn+1 < cn.

Then by substituting a in (1) and dividing by Pn(a) we obtain

a = γncn + βn
αn

cn−1
≥ γncn + βn +

αn

cn

and

a = γn+1cn+1 + βn+1 +
αn+1

cn
< γn+1cn + βn+1 +

αn+1

cn
.

Therefore

γn+1cn + βn+1 +
αn+1

cn
> γncn + βn +

αn

cn
.

Multiplying both sides by cn and using (2) yields

(γn+1 − γn)(c2
n − cn)− (αn+1 − αn)(cn − 1) > 0

Since by assumption cn − 1 > 0

(γn+1 − γn)cn − (αn+1 − αn) > 0.

As {γn} is decreasing and cn > 1 we have

(γn+1 − αn+1) = (γn − αn)− (γn+1 − γn)− (αn+1 − αn) ≥ (γn+1 − γn)cn − (αn+1 − αn) > 0.

This gives a contradiction since {γn − αn} is decreasing. Hence the sequence

cn = Pn+1(a)
Pn(a) must be increasing.

The formula

a = γncn + βn +
αn

cn−1

implies that {cn} is bounded because γn ↘ 1
2 and βn → 0. Thus {cn} converges to a limit c > 1.

Taking the limits on the right hand side we obtain

a =
1
2

(c +
1
c

).

Hence c = a +
√

a2 − 1.

Let us introduce the renormalized polynomials P
(a)
n by the formula

P (a)
n (x) =

1
Pn(a)

Pn(ax). (24)
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Then the P
(a)
n satisfy the recurrence relation

xP (a)
n = γ(a)

n P
(a)
n+1 + β(a)

n P (a)
n + α(a)

n P
(x)
n−1,

where

γ(u)
n = a−1γncn, β(a)

n = a−1βn, α(a)
n = a−1αnc−1

n−1.

Observe that by (24), P
(a)
n (1) = 1. Thus γ

(a)
n + β

(a)
n + α

(a)
n = 1 for n = 0, 1, 2, · · · . Hence {P (a)

n }

satisfy all the assumptions of Proposition 2. In particular α
(a)
n → a−

√
a2−1

2a and γ
(a)
n → a+

√
a2−1

2a . By

Proposition 2 the maximal absolute value of P
(a)
n on the ellipse {z ∈ C : |z − a−1|+ |z + a−1| ≤ 2}

is 1 and it is attained at z = 1. Using (24) and rescaling P
(a)
n yields that the maximal value of Pn

on the ellipse {z ∈ C|z − 1| + |z + 1| ≤ 2a} is attained at z = a. Collecting all the above we have

the following.

Theorem 3. Let the orthogonal polynomials {Pn}n≥0 satisfy the assumptions of Theorem 2.

Let the sequences {γn}n≥0 and {γn −αn}n≥0 be decreasing. Thus on any ellipse with the foci at −1

and 1 the maximum absolute value of Pn, n = 0, 1, 2, · · · , is attained on the right end of the major

half-axis.

Example. Consider again the Jacobi polynomials R
(α,β)
n normalized at x = 1. If α ≥ β and

α + β + 1 ≥ 0 then by (23) {γn} is a decreasing sequence, while {αn} is increasing. Thus the

assumptions of Theorem 3 are fulfilled. So the conclusion of Theorem 3 holds in this case.

Remark. Let {Tn}n≥0 be the Tchebyshev polynomials of the first kind. They are the special

case of the Jacobi polynomials (α = β = − 1
2 ). In particular the Tchebyshev polynomials satisfy

the conclusion of Theorem 3. This can be verified directly using the formula Tn( 1
2 (z + z−1)) =

1
2 (zn + z−n) or by applying Theorem 3. Furthermore, if the polynomials Pn can be expressed as

linear combinations of the Tns with non-negative coefficients then the Pns satisfy the maximum

principle introduced in Theorem 3. In a forthcoming paper we will show that if the polynomials Pn

satisfy xPn = γnPn+1 + βnPn + αnPn−1, αn + γn ≤ 1, αn ≤ 1
2 and βn ≤ 0 then the coefficients

a(n, m) in Pn =
n∑

m=0

a(n, m)Tm are non-negative.

Appendix.

Proposition A. Let U be a linear operator acting on `p(N), 1 ≤ p ≤ ∞, by

Uδn =
1
2

(δn−1 + δn+1).
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Then the spectrum σ(U) can be identified with the closed interval [−1, 1].

Proof. Let S be the unilateral shift defined by Sδn = δn+1. Then S∗ is given by S∗δn = δn−1

for n ≥ 1 and S∗δ0 = 0. Moreover U = 1
2 (S + S∗) and S∗S = I. Both S and S∗ are contractions

on `p, so their spectra are contained in the closed unit disc {z ∈ C : |z| ≤ 1}. On the other hand,

any sequence {zn}n≥0 is an eigenvector for S∗ corresponding to the eigenvalue z if |z| < 1. Thus

σ`p(S∗) = {z ∈ C : |z| ≤ 1}.

Let α be complex number outside the interval [= 1, 1]. There exists a unique complex number

z such that |z| < 1 and α = 1
2 (z + z−1). Therefore

αI − U =
1
2

(z + z−1)I − 1
2

(S + S∗) =
1
2z

(I − zS∗)(I − zS). (A1)

The operator on the right hand side is invertible because the operator norms of zS and zS∗ are

strictly less than 1. This means that αI − U is an invertible operator. Hence α does not belong to

the spectrum of U , i.e. σ`p(U) ⊂ [−1, 1].

In order to complete the proof we will show that the interval [−1, 1] is contained in the spectrum

of U. Let α ∈ [−1, 1]. Then α = 1
2 (e−it+eit) for some t ∈ R. By (A1) it suffices to show that I−eitS∗

is not surjective. First note that I − eitS∗ is injective. Indeed, let (I − eitS∗)a = 0 for a ∈ `p. Then

an−eitan+1 = 0 for n = 0, 1, 2, · · · . This implies that |an+1| = |an| for n = 0, 1, 2, · · · . Thus {an} ∈ `p

only if an = 0 for all n. So I − eitS∗ is injective and non-invertible, as σ`p(S∗) = {z ∈ C : |z| ≤ 1}.

Thus it cannot be surjective.

Proposition B. Let U be a linear operator acting on `1(N) by

Uδn = αδn+1 + γδn−1,

where α, γ > 0, α 6= γ and α + γ = 1. Then the spectrum σ(U) coincides with the elipse E

E = {z ∈ C : |z − 2
√

αγ|+ |z + 2
√

αγ| ≤ 2}.

Proof. We adopt the notation from the proof of Proposition A. Thus we have U = αS + γS∗.

We consider the case γ > α. The complementary case can be treated similarly. One can observe

that the ellipse E is the holomorphic image of the annulus {w ∈ C : γ−1 ≤ |w| ≤ (αγ)−1/2} under

the mapping w 7→ w−1 + αγw, while the punctured disc {w ∈ C : 0 < |w| < γ−1} is mapped onto

C\E.
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Let 0 6= z ∈ C. Then z = w−1 + αγw for some w satisfying |w| ≤ (αγ)−1/2. We have

zI − U = (w−1 + αγw)I − (αS + γS∗) = w−1(I − γwS∗)(I − αwS). (A2)

If z 6∈ E then |w| < γ−1. Thus ‖γwS∗‖ = γ|w| < 1 and

‖αwS‖ = α|w| < αγ−1 < 1. Therefore by (A2) zI − U is invertible, so z 6∈ σ(U). In case that

z ∈ E we have γ−1 ≤ |w| ≤ (αγ)−1/2. Hence ‖αwS‖ = α|w| < (αγ−1)1/2 < 1. Consequently

I − αwS is invertible. But I − γwS∗ is non-invertible as (γw)−1 is in the unit disc which coincides

with σ(S∗). Thus by (A2) zI − U is non-invertible, i.e. z ∈ σ(U). This completes the proof.
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