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Introduction.

Let {P, }n>0 be polynomials orthogonal with respect to a measure p on the real line. It is well

known that the non-negativity of the coefficients ¢(n, m, k) in the product formula
PoPp =Y c(n,m, k)P,

gives rise to a convolution structure on £*(N) (see [3], [5], [6], [8], [9], [10]) which makes ¢!(V)
the Banach algebra. At this point the study of the maximal ideal space M of this algebra seems
appropriate especially because M can be easily identified with the set {z € C : |P,(2)] < 1,n =
0,1,...} or {z € C : sup|P,(z)] < 4+o0}. It is always the case that supp p C M (Theorem
1). Our aim is to find S(;Lme reasonable conditions which give the opposite inclusion thus securing
supp u = M. This is done in Theorem 2.

In Chapter 2, Theorem 2 and its generalization (Proposition 2) are applied to derive a maximum
value principle for P, asserting that on any ellipse with foci at —1 and 1 the polynomial P,, attains
its absolute maximal value at the right end of the major axis.

Applications to the Jacobi polynomials are also given.

In the appendix we separated two proposition concerning the unilatelar shift operator on I?(IN).

These result are well-known. The proofs are given for the sake of self-containedness.

The convolution structure.

Let the polynomials P,, n =0,1,2,..., satisfy the recurrence formula
xPn :7nPn+1 +6nPn+OénPn—17 (1)
where o, v, >0forn=1,2,...,7 > 0 and oy = 0. By the Favard theorem there exists a measure

w such that the P,, are orthogonal with respect to .
We assume throughout the paper that

Qn 4+ Pn+9m =1 for n=0,1,2,.... (2)
The latter implies that the P,, are normalized at the point x =1 i.e.
P,(1)=1 for n=0,1,2,.... (3)

Besides this normalization, our other blanket assumption which we will adhere to is that in the

product formula
n+m

PoPp= > c(n,m k)P, (4)

k=|n—m|
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the coefficients ¢(n, m, k) are non-negative. By (3) and (4) we get

n+m

Z c(n,mk)=1. (5)

k=|n—m|
We refer to [1], [5], [6], [9], [10] for sufficient conditions under which c¢(n,m, k) are non-negative.
The formula (4) gives rise to a convolution structure on ¢!, the space of absolutely summable
sequences. More precisely, if §,, denotes the sequence which is zero except at the n-th coordinate
which is 1 then

n+m

Op * Oy = Z c(n,m, k)oy . (6)

k=|n—m|
Then * can be extended linearly to all sequences. The positivity of the coefficients ¢(n, m, k) and
(5) together imply
laxblly < [lafly - [Iblly ~ a,be £t (7)

Indeed:

lla*bl1 = | Z Z Anbm O * 6|, <

n=0m=0

Yo D lanllbmllldn * lli =D D lanllbml = llally + [1Blls -

n=0m=0 n=0m=0
Therefore (¢1,%) becomes a Banach algebra. The aim of this paper is to identify its maximal ideal
space.

Let ¢ be a linear multiplicative functional on (¢!,%). The algebra is generated by the single
element §; (cf. (6)), so ¢ is determined by ¢(d1). Since P is linear ¢(d1) = Pi(z) for a complex
number z. Next combining (4) and (6) leads to ¢(6,) = P, (z) for n =0,1,2,.... Now in a Banach
algebra every multiplicative functional is continuous and its norm does not exceed 1. Hence the
sequence {P,(2)},>0 is bounded; moreover sup | P,(z)| < 1. Thus the maximal ideal space of (¢!, %)

can be identified with
M={ze€C:sup|P,(z)| < +x} = {z € C:sup|P,(z)| < 1}. (8)

We intend to examine the relation between M and supp u, the support of the orthogonalizing

measure.

Let w, = ([ P2dp)~! for n =0,1,2,.... Then the quantity

c(n,m, k)w;, ' = / P, Py, Prdp (9)



is invariant under permutation of the variables n, m, k. In particular we have:

c(n,m, k)w; b = c(n, k,m)w,,* .

Define linear operators T}, acting on sequences {ay }x>0 by

(Tha)(m) = Z c(n,m, k)ag

k

o0

(11)

We will examine the operators T}, on the weight spaces 7 (w) = {a = {an}n>0: Z |an 2w, < +oo}.

n=0
We rewrite (11) as follows

(Tha)(m) = Z c(n,m, k)w;, tagwy, -
k

Therefore the matrix of T,, with respect to the weight w is
tn(m, k) = c(n,m, k)w; *.

This matrix is symmetric so Tj, is selfadjoint on £2(w).
Proposition 1. The operators T,,, n =0,1,2,..., are contractions on (P(w).

Proof. Combining (5), (10) and (12) gives

Zt (m, k)w chmk
k

Zt (m, k)w chkm

m

The conclusion follows now from the Schur theorem which is stated below.

Theorem (Schur, [7] Thm. 5.2, p. 22). Let A be a linear operator acting on (P(w) by

oo
E a(m, k)agwy .
k=0

Assume

Z la(m, k)|w, <1

k=0

> la(m, k)jwm < 1.

m=0



Then A is a contraction on (P(w) for 1 <p < +oo.

Let us introduce a transform from the space of all sequences {ay, }»>0 into the space of functions

on the real line by

“ra={antn>o0 — Z Anwn Py, . (13)
n=0
We will also write a = Z apwn Py. This transform is an isometry from ¢?(w) onto L?(p). Indeed,
n=0
by the definition of w we have
Han} ey = D lanf?on
n=0

= || ZanwnPnHiz(u) = ||&H%2(M) :
n=0

Let T; denote the operator associated with T,, acting on the transforms of sequences. Then by (4)

and (9)

Tha = Z(Ta)(k)kak = Z Z c(n, k,m)a,wg P

I
M =
B

=[]
o
5
>
3
kS
¥
I
™
[~
3
€
3
]
o
B
3
=
a

= pwm PP, =P, - a. (14)

We are now in a position to derive the following.
Theorem 1. If x € supp u then |Pp(z)] <1 for n=0,1,2,....

Proof. Let a € £2(w). Then
ITaallee) = [ Tnallzegn = 1Padlza -
On the other hand by the earlier Proposition the following holds
|Tnallezw) < llallezwy = llallzz() -

Thus we have ||Ppallr2(.) < [lallz2), i-e. the linear operator Mp, : L?(u) — L?(p) whose action
is to multiply by P, is a contraction. It is well known that ||[Mp, || = sup{|P,(z)| : © € supp u}.

Therefore sup{|P,(z)| : z € supp pu} < 1.



Consider the linear operator L acting on sequences as
(La)(n) = ynan+1 + Bnan + anap_1 . (15)

The coefficients v,, a,, and w,, are interdependent. By (1) we have (2P, Ppy1)r2(u) = 'ynw;il. On

the other hand (2 Py, Pri1)r2(y) = (P @Pp) 12(4) = Qngawy, . Therefore

Wn+1 Tn

= . 16
Wn Qp41 ( )
Using (1) and (15) gives
La = za. (17)
Comparing (14) and (17) we conclude
T, =P,(L). (18)

The formula (17) has one important consequence. The spectrum of the operator L on ¢?(w) coincides

with that of multiplication by = on L?(p). The latter is nothing other than supp p.

Lemma. Let 6, — 0, ap — %, Yo — % as n tends to infinity. Then

supp u C [200 — 1,1] and [—1,1] C supp 1 .
Proof. P = e — Bo) by (1); thus Ty = 7, (L — Bol). Hence
L = 4T + Bol. By the earlier Proposition 73 is a contraction on £%(w) so o(Ty) C [-1,1].

Therefore, since vy + By + ag =1 and ag =0

(L) C [=v0 + Bo,v0 + Bo] = [-1+ 20, 1].

This proves the first part of the conclusion.

The second part of the conclusion follows from the Blumenthal theorem (see [4], Ch.IV.4). For
readers convenience we give a proof of it based on the Fredholm theory.

It is rather inconvenient to deal with operators acting on the weight space £2(w). We therefore
find a similar operator acting on the usual £2(N) space and examine its spectrum.

Let L be a linear operator acting on ¢2(N) as

(La)(n) = )\nan+1 + ﬂnan + )\n_lan_l (19)

1/2

where \,, = (@p+17n)"# . Then L is similar to L. The isometry ®

P (w) 3 6, 5w/25, € 12
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intertwines L and L, i.e. oL = Lo®. Hence their spectra coincide. Observe that by the assumptions
A = (Qnp1vn)Y? — 3 as n tends to infinity.
Let U be the operator given by

(Ua)(n) = %anﬂ + %am : (20)

It is well known that the spectrum of U on ¢? coincides with [—1,1] (see Appendix). Moreover the
difference

(F~U)a(n) = (n — )an 1+ Batn + (ncr = 2)n s

is a compact operator because \,, — % and 3, — 0. Hence by the Weyl theorem the continuous
spectra of L and U coincide. Thus [—1,1] C op2(L) = 0¢2()(L) = supp p. Furthermore by this

same theorem any number z in supp p\[—1, 1] is an eigenvalue of the operator L.
Now we can state the main result of the paper.

Theorem 2 Let {P,}n>0 be polynomials orthogonal with respect to a measure p on the real
line. Assume that (1), (2) hold and the linearization coefficients in (4) are non-negative. If a,, —
%,’yn — % and B, — 0 as n — +o0o then the following condition are equivalent for every z € C:

(i) sup,, > [Pa(2)] < 400,

(ii) sup,>o [ Pn(2)] = 1,

(iil) z € supp p.

Proof. Let L be a linear operator acting on ¢! by
Z(Sn = 'Yndn-l—l + Bnbn 4+ apdp_1. (21)

By (1) and (6) we have
Pi(L)5, = 61 % 0,,.

Thus the operator L belongs to the convolution algebra generated by 67, namely L = vod; + Bodo.
Moreover, if ¢ is a multiplicative functional such that ¢(d;) = P;(z), then (L) = 2. This means
that the set {z € C : |P,(2)] < 1,n = 0,1,2,---} coincides with the spectrum of the operator L
on the space ¢*. Let U be the operator acting on ¢! defined by (20). Then o4 (U) = [—1,1] (see
Appendix). Again as in the proof of our Lemma the difference L — U is a compact operator on £.
By the Weyl theorem o1 (L) = [—1,1]UD, where D is a countable set consisting of the eigenvalues
of L. We already know that [—1,1] is contained in supp p. It remains to show that D C supp i as

well.



Let z € D. Then La = za for a nonzero sequence a € ¢*. By (21)

(La)(n) = apg1Gn41 + Bnln + Yn—1Gn—1 = 2Gp.

Applying (16) gives

'Yn(W;ilanJrl) + Bulwy, tan) + an(wplian—1) = z(wy M an).
The above formula can be rewritten as (cf (1))
’)/nbn+1 + ﬁnbn + anbnfl - an; (22)

where b, = w,, ta,,. Moreover the sequence b = {b, },,>0 belongs to ¢! (w) since a = {a, }n>¢ is in £1.
Furthermore, by virtue of (1) and (22) we have b, = P,(2)by. Since z € D the sequence P,(z) is
bounded by 1. Thus |b,| < |bo| and {by}n>0 is a bounded sequence from ¢!(w). This implies that
{bs}n>0 belongs also to £2(w). Now (22) is equivalent to Lb = zb (see (15)), so z is an eigenvalue of
the operator L with an eigenvector from ¢?(w). Thus z € o2 (L) = supp . This completes the proof
of Theorem 2.

Example Consider the Jacobi polynomials Riﬁ"ﬁ ), «, 3 > —1. They are orthogonal with respect
to the measure du(z) = (1 — )3 (1 + x)id:}: When normalized at the point « = 1 they satisty the
recurrence formula (1) with

2n+a+p+1)(n+a+1)
Cn+a+8+1)2n+a+8+2)

n

62 _ a2
B”:@n+a+m@n+a+ﬁ+m’ (23)
o - 2n(n + )

2n+a+6+1)2n+a+p6)

We have a,, + By, + v =1 (as Rg{l’ﬂ) are normalized at z = 1); also a,, — %,'yn — % and 8, — 0.
If « > 8 and o+ 4+ 1 > 0 then by Gasper’s theorem ([5], [6], [10]) the linearization coefficients
are non-negative. Hence all the assumptions of Theorem 2 hold. Therefore the maximal ideal space
of the convolution algebra associated with RS{“’B ) can be identified with [-1,1]. The multiplicative

functionals on (¢!, ) are then given by

El > {an}nZO = Z aan(CC) S [*17 1]

n=0



Applying Gelfand’s theorem gives the following.

oo (oo}
Proposition 1. Leta > 3> —1 and a+3+1 > 0. Ifz lan| < 400 and Zaan(x) # 0 for

n=0 n=0

x € [-1,1], then (Z anRy)™? = Z bRy, where
n=0 n=0

o0
> Jbn| < +00.
n=0

A maximum value principle.
Let us examine the set {z € C: |P,(2)] < 1,n =10,1,2,---} with the same assumptions as in
Theorem 2 except that we assume a,, — o, v, — 7, 3, — [ as n tends to infinity and a # . First

of all analyzing the proof of Theorem 1 gives

supp p = [—(a7)"/2, (ay)/?] U D,

where D is a countable set contained in (—oo, 1] consisting of the eigenvalues of L on the space £2.

Next, if U is the linear operator on ¢! defined by
U(Sm = 76n+1 + aén—h

then L — U (see (21)) is a compact operator. Thus the continuous spectra of L and U coincide, the
latter being the ellipse E = {z € C : |z — 2(ay)'/?| + |z + 2(ay)/?| < 2} (see Appendix). Hence
op (L) = EUD', where D’ is a countable set consisting of the eigenvalues of L on £. As in the proof

of Theorem 2 we can show that D’ C supp p. In particular the following holds.

Proposition 2. Let the polynomials {P,}n>0 satisfy all the assumptions of Theorem 2 except
that oy, — @, Vo — 7, PBn — 0 as n tends to infinity. Then for each n = 0,1,2,--- the mazximal

absolute value of P, on the ellipse
E={z€C:|z—2(a)"?|+|z+2(ay)"/? < 2}
is attained at z =1 and is equal to 1.

Proposition 2 implies a maximum value principle for orthogonal polynomials satisfying the
assumptions of Theorem 2.
Suppose that {P, },>0 satisfy the assumptions of Theorem 2. Assume also that the sequences

{} and {v, — a,} are decreasing. Fix a number a > 1. We are going to show that the sequence

P;,Jr(lé‘)z) is increasing and converges to a + va? — 1. Let ¢, = Pﬁ(lé‘)l). Then
_ 1_
Cozpl(a)zaiﬁo>7/80=1.
Yo Yo
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Assume that ¢, > ¢,—1 > 1. We will show ¢,,41 > ¢,. For a contradiction suppose that ¢, 11 < ¢,.

Then by substituting a in (1) and dividing by P, (a) we obtain

(7% Qp
a = YnCn + Bn > YnCn + Bp + —
Cp—1 n
and
Q41 Apt1
a4 = Yn4+1Cn+1 + ﬂnJrl + —= < Yn+1Cn + ﬂnJrl + z .
Cn Cn
Therefore
anJrl

«
> YnCn + Bp + —.

n CTL

’VnJrlCn + 5n+1 +

Multiplying both sides by ¢, and using (2) yields
(Y1 = 1)(€n = €n) = (Ans1 — an)(cn — 1) > 0
Since by assumption ¢, —1 > 0
(41 = M)en — (ang1 — o) > 0.
As {7y, } is decreasing and ¢, > 1 we have

(Ynt1 = @ny1) = (' — @) = (Vg1 — o) — (g1 — @) > (Vg1 — Yn)en — (g1 — @) > 0.

This gives a contradiction since {y, — a,} is decreasing. Hence the sequence
P, . .

Cn = %{E?) must be increasing.
n

The formula

(6]
a:7ncn+6n+ B

Cpn—1
implies that {c,} is bounded because 7, \, 3 and 3, — 0. Thus {¢,} converges to a limit ¢ > 1.

Taking the limits on the right hand side we obtain

1 1
a= §(c—|— E)

Hence ¢ = a + Va2 — 1.

Let us introduce the renormalized polynomials Péa) by the formula




Then the Pﬁba) satisfy the recurrence relation

PIP) = o P, + AR + aff P,

n—

where

'77(lu) = G_IVnCna ﬁr(la) = a_lﬁna Oé%a) = a_lancﬁil-

Observe that by (24), Py(La)(l) = 1. Thus %(La) + ﬁﬁla) + a;") =1forn=0,1,2,---. Hence {P,(La)}

e=ve=1 and y") — ¢Sl By

satisfy all the assumptions of Proposition 2. In particular aﬁla) —
Proposition 2 the maximal absolute value of P on the ellipse {zeC:lz—a Y+ |z+a <2}
is 1 and it is attained at z = 1. Using (24) and rescaling P,(La) yields that the maximal value of P,
on the ellipse {z € C|z — 1| + |z + 1| < 2a} is attained at z = a. Collecting all the above we have

the following.

Theorem 3. Let the orthogonal polynomials {Py}n>0 satisfy the assumptions of Theorem 2.
Let the sequences {Yn}n>0 and {vn, — an}n>0 be decreasing. Thus on any ellipse with the foci at —1
and 1 the mazimum absolute value of P,, n=0,1,2,---, is attained on the right end of the major

half-axis.

Example. Consider again the Jacobi polynomials R%a’g) normalized at z = 1. If @ > 3 and
a+ B4+ 1 > 0 then by (23) {7,} is a decreasing sequence, while {«,} is increasing. Thus the

assumptions of Theorem 3 are fulfilled. So the conclusion of Theorem 3 holds in this case.

Remark. Let {T},},>0 be the Tchebyshev polynomials of the first kind. They are the special
case of the Jacobi polynomials (« = § = —%) In particular the Tchebyshev polynomials satisfy
the conclusion of Theorem 3. This can be verified directly using the formula T, (3(z + 271)) =
%(z" + 2z7™) or by applying Theorem 3. Furthermore, if the polynomials P,, can be expressed as
linear combinations of the T, s with non-negative coeflicients then the P,s satisfy the maximum
principle introduced in Theorem 3. In a forthcoming paper we will show that if the polynomials P,
satisfy * P, = Y Poy1 + OnPrn + anPr1, an + v, < 1, ap < % and 3, < 0 then the coefficients

n
a(n,m) in P, = Z a(n,m)T,, are non-negative.

m=0

Appendix.
Proposition A. Let U be a linear operator acting on (?(N), 1<p < oo, by
1
Udn = 5(5n—1 + 6n+1)-
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Then the spectrum o(U) can be identified with the closed interval [—1,1].

Proof. Let S be the unilateral shift defined by S4,, = d,,+1. Then S* is given by S*6,, = d,,—1
for n > 1 and S*8y = 0. Moreover U = (5 + 5*) and S*S = I. Both S and S* are contractions
on (P, so their spectra are contained in the closed unit disc {z € C : |z| < 1}. On the other hand,
any sequence {z"},>o is an eigenvector for S* corresponding to the eigenvalue z if |z| < 1. Thus
ow(S*) ={z€C:|z| <1}

Let o be complex number outside the interval [= 1, 1]. There exists a unique complex number

z such that |z| < 1 and a = 1(z + z7'). Therefore
1 _1 1 » 1 «
aI—Uzi(z—Fz )I_§(S+S):£(I_ZS (I — 25). (A1)

The operator on the right hand side is invertible because the operator norms of zS and zS* are
strictly less than 1. This means that ol — U is an invertible operator. Hence o does not belong to
the spectrum of U, i.e. o (U) C [-1,1].

In order to complete the proof we will show that the interval [—1, 1] is contained in the spectrum
of U. Let @ € [-1,1]. Then a = § (e~ +¢') for some ¢ € R. By (A1) it suffices to show that I —e®S*
is not surjective. First note that I — e®S* is injective. Indeed, let (I —eS*)a = 0 for a € ¢P. Then
an—ea, 1 =0forn =0,1,2,---. This implies that |a, 1| = |a,| forn =0,1,2,---. Thus {a,} € P
only if a, = 0 for all n. So I — €"S* is injective and non-invertible, as o4 (S*) = {2 € C : |z| < 1}.

Thus it cannot be surjective.

Proposition B. Let U be a linear operator acting on (*(N) by
Uan = O4671-‘,—1 + 7611—1’
where o,y >0, a# v and o+ = 1. Then the spectrum o(U) coincides with the elipse E

E={zcC:|z—-2/ay|+ |z +2/a7y| <2}.

Proof. We adopt the notation from the proof of Proposition A. Thus we have U = a.S + 7.5*.
We consider the case v > a. The complementary case can be treated similarly. One can observe
that the ellipse E is the holomorphic image of the annulus {w € C: 7y~ < |w| < (ay)~'/2} under
the mapping w +— w~! + ayw, while the punctured disc {w € C: 0 < |w| < v~!} is mapped onto
C\E.

12



Let 0 # z € C. Then z = w™' + ayw for some w satisfying |w| < (ay)~'/2. We have
2l —U = (w + ayw)l — (@S +v5*) = w™ (I — ywS*)(I — aws). (A2)

If = ¢ E then |w| < A7 Thus |ywS*| = ylwl < 1 and

lowS| = ajw| < ay™ < 1. Therefore by (A2) 2I — U is invertible, so z ¢ o(U). In case that
2z € F we have v~ ! < |w| < (ay)~Y2 Hence |awS| = alw| < (ay~ 1?2 < 1. Consequently
I — awS is invertible. But I — ywS* is non-invertible as (yw)~! is in the unit disc which coincides

with o(S5*). Thus by (A2) zI — U is non-invertible, i.e. z € o(U). This completes the proof.
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