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Abstract

Harper’s operator is defined on `2(ZZ) by

Hθξ(n) = ξ(n + 1) + ξ(n− 1) + 2 cos nθ ξ(n),

where θ ∈ [0, π]. We show that the norm of ‖Hθ‖ is less than or equal
to 2

√
2 for π/2 ≤ θ ≤ π. This solves a conjecture stated in [1]. The

general formula for estimating the norm of self adjoint tridiagonal
infinite matrices is also derived.

1 Introduction

This paper is an appendix to [1]. The authors considered there a random
walk on the discrete Heisenberg group. They reduced the problem of deter-
mining the spectrum of the corresponding transition operator to estimating
the norm of the Harper operator, well known in mathematical physics (see
the references in [1]). This is a discrete Schrödinger operator which acts on
square summable doubly infinite sequences {ξ(n)}+∞

−∞, according to the rule

Hθξ(n) = ξ(n + 1) + ξ(n− 1) + 2 cos nθ ξ(n), (1)
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where θ is a fixed angle from the interval [0, π]. The authors of [1] were
satisfied with the estimate

‖Hθ‖ ≤ 2(1 +
√

2 + cos θ). (2)

This estimate is interesting only in the interval [π/2, π] because elsewhere the
obvious estimate by 4 is sharper than the one in (2). The authors conjectured,
supported by numerical evidence, that in the interval [π/2, π] the estimate
2
√

2 holds. In this note we prove this conjecture, by introducing a method of
estimating the norms of tridiagonal operators, which originates in the theory
of orthogonal polynomials.

2 Norm estimates

We start with a general method of estimating the norms of self adjoint tridi-
agonal operators. The method goes back to the theory of orthogonal poly-
nomials, where it is used to localize the supports of orthogonality measures
(see [2, Theorem I.9.2]).

Let J be a linear operator defined on `2(ZZ) by

Jξ(n) = λn+1ξ(n + 1) + βnξ(n) + λnξ(n− 1), (3)

where βn ∈ IR and λn > 0 are fixed bounded sequences.

Proposition 1 Let m and M be such that M > max βn, and m < min βn.
Assume also that there exist sequences 0 < gn < 1 and 0 < hn < 1 such that

λ2
n

(M − βn−1)(M − βn)
≤ gn(1− gn−1), (4)

λ2
n

(m− βn−1)(m− βn)
≤ hn(1− hn−1). (5)

Then mI ≤ J ≤ MI, i.e. the spectrum of J is contained in the interval
[m, M ].

Proof. Let ξ(0) = 1 and define ξ(n) recursively for n 6= 0 by

λnξ(n− 1)

(M − βn)ξ(n)
= gn.
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Then ξ(n) > 0. By (3) and (4) we get

Jξ(n) ≤ Mξ(n).

Let β = −min βn. Then β + βn ≥ 0, for each n. We have

(J + βI)ξ(n) ≤ (M + β)ξ(n).

The matrix J +βI has nonnegative entries and the sequence ξ(n) is positive.
Thus by Schur’s test (see [3, Theorem 5.2]) we obtain

‖J + βI‖ ≤ M + β.

In particular
J + βI ≤ (M + β)I.

This shows the upper estimate of the spectrum of J.
The lower estimate can be obtained from the upper estimate of the matrix

−J. But this matrix has negative entries on the upper and lower diagonals.
So instead of −J we consider the unitarily equivalent matrix J ′ = −UJU−1,
where

Uξ(n) = (−1)nξ(n).

The operator J ′ acts as follows

J ′ξ(n) = λn+1ξ(n + 1)− βnξ(n) + λnξ(n− 1).

Observe that assumption (4) of Proposition 1 is satisfied for J ′ with M = −m.
Hence by the first part of the proof we get J ′ ≤ −mI. Since J is similar to
−J ′ we get J ≥ mI. ut

The converse of Proposition 1 also holds. In fact, we have the following.

Proposition 2 Assume that the operator J in (3) satisfies mI ≤ J ≤ MI.
Then M > max βn and m < min βn and there exist sequences 0 < gn < 1
and 0 < hn < 1 such that (4) and (5) hold.

Proof. We focus on showing (4), since (5) can be proved analogously by
considering the operator J ′ introduced in the proof of Proposition 1. Let en

denote the sequence whose terms are all zero except for the nth term which
is equal to 1. By J ≤ MI we get

βn = (Jen, en) ≤ M(en, en) = M. (6)
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We claim that the inequality in (6) is strict for each n.. Otherwise we would
have Jen = Men. This is impossible, beacuse Jen(n + 1) = λn+1 6= 0. Thus
we proved the first part of Proposition 2.

In the remaining part we will make use of the following lemma, whose
origins lie in the Frobenius–Perron method in the theory of finite stochastic
matrices (see [4, Lemma 9.2.2]).

Lemma 1 Let A = {a(i, j)} be N × N symmetric matrix with nonnegative
entries, such that a(i, i + 1) > 0 and a(i + 1, i) > 0 for i = 1, 2, . . . , N − 1.
Let M ≥ ‖A‖, where ‖A‖ denotes the operator norm with respect to `2-norm
on IRN . There exists a nonzero vector ξ ∈ IRN with positive coordinates, such
that

Aξ(n) ≤ Mξ(n), 1 ≤ n ≤ N.

Proof. Assume M = ‖A‖. Then M or −M is the eigenvalue of A. Thus
there is ξ 6= 0 such that

Aξ = ±Mξ.

Taking absolute values of both sides gives

A|ξ| ≥ M |ξ|. (7)

We claim that there holds the equality in (7). If not, we would have

M(|ξ|, |ξ|) ≥ ((A|ξ|, |ξ|) > M(|ξ|, |ξ|),

a contradiction. Thus
A|ξ| = M |ξ|.

We will show that the coordinates ξ(n) are all nonzero. Assume that ξ(n) =
0. Then

a(n− 1, n)|ξ(n− 1)|+ a(n + 1, n)|ξ(n + 1)| ≤ M |ξ(n)| = 0.

Hence ξ(n ± 1) = 0. Repeating this reasoning we finally get that ξ(m) = 0
for all m = 1, 2, . . . , N, which contradicts ξ 6= 0. This completes the proof of
Lemma 1. ut

Let us return to the proof of Proposition 2. Let β = −min βn. Then
the matrix A = J + βI has nonnegative entries and A ≤ (M + β)I. Let PN

denotes the projection onto 2N + 1 dimensional subspace of `2(ZZ) acting by

PNξ =
N∑
−N

ξ(n)en.

4



Let AN denote the truncated matrix PNAPN . It is clear that

AN ≤ A ≤ (M + β)I.

By Lemma 1 there exist sequences ξN ∈ IR2N+1 with positive entries such
that

ANξN(n) ≤ (M + β)ξN(n) −N ≤ n ≤ N. (8)

Since the entries of ξN are positive we may assume, by multiplying by a
positive constant if necessary, that ξN(0) = 1. We may also assume that (8)
holds for all n ∈ ZZ extending ξN by 0 for |n| > N. We will show by induction
that for any fixed n ∈ ZZ the sequence of values N 7→ ξN(n) is bounded. For
n = 0 it is constantly 1. Let n = ±1. Then by (8) we have

ANξN(0) = λ1ξN(1) + (β0 + β)ξN(0) + λ0ξN(−1) ≤ MξN(0).

Since β1 + β ≥ 0 we get

λ1ξN(1) + λ0ξN(−1) ≤ M.

Since λ±1 6= 0, we conclude that ξN(±1) are bounded. Similarly the induction
step follows from the inequalities

λn+1ξN(n + 1) ≤ MξN(n),

λnξN(n− 1) ≤ MξN(n).

Now, using Helly’s selection principle we can choose a subsequence Nk of Ns
for which all sequences Nk 7→ ξNk

(n) are convergent. Let

ξ(n) = lim
k

ξNk
(n).

By (8) we get
Aξ(n) = (J + βI)ξ(n) ≤ (M + β)ξ(n).

We have ξ(n) ≥ 0 and ξ(0) = 1. Similarly as in the proof of Lemma 1 we
can derive that ξ(n) > 0 because the matrix J + βI has nonnegative entries.
Hence we constructed a positive sequence ξ(n) such that

Jξ(n) ≤ Mξ(n), n ∈ ZZ.
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Now by taking

gn =
λnξ(n− 1)

(M − βn)ξ(n)

we get (4). ut

Let us turn to the Harper operator Hθ, i.e. λn ≡ 1 and βn = 2 cos nθ. We
will focus on the upper estimate M. It will follow from the proof that the
lower estimate is equal −M in this case. It follows also from the fact that
the spectrum of Hθ is symmetric about the origin (see [1, comments before
(2)]).

Let M > 2 be the smallest number such that

1

(M − 2 cos(n− 1)θ)(M − 2 cos nθ)
≤ 1

4
=

1

2
(1− 1

2
). (9)

By Proposition 1 we get Hθ ≤ MI. The condition (9) gives the same estimate
as in Proposition 4 from [1]. To get sharper estimate 2

√
2 we need a better

choice of gn.

Theorem 1 Let π
2
≤ θ ≤ π. Then ‖Hθ‖ ≤ 2

√
2.

Proof. We will have to find an appropriate gn in order to satisfy (9) with
M = 2

√
2. First we will look for gn in the form

gn =
1

2
− αn

2
√

2− 2 cos nθ
. (10)

Now assumption (9) can be transformed into

(
√

2− cos nθ − αn)(
√

2− cos(n− 1)θ + αn−1) ≥ 1. (11)

So the problem reduces to finding αn such that (11) is satisfied and both the
factors are positive. We will first look for αn in the form

αn = γn − sin nθ cot
θ

2
. (12)

Then

αn + cos nθ = γn −
sin(2n− 1) θ

2

sin θ
2

,

αn−1 − cos(n− 1)θ = γn−1 +
sin(2n− 1) θ

2

sin θ
2

.

6



Let θ = π − 2ϕ. Then 0 ≤ ϕ ≤ π
4
. Moreover

αn + cos nθ = γn + sn,

αn − cos(n− 1)θ = γn−1 − sn,

where

sn = (−1)n+1 cos(2n− 1)ϕ

cos ϕ
. (13)

Now (11) takes the form

(
√

2− sn − γn)(
√

2 + sn + γn−1) ≥ 1. (14)

We will use essentially the following fact, which follows obviously from (13).

Fact 1. If |sn| > 1 then |sn±1| < 1 for 0 ≤ ϕ ≤ π/4.

Now we are going to define the sequence γn. First we will take care of
those n for which |sn| > 1 or |sn+1| > 1. If sn > 1 we put

γn =
1− s2

n√
2 + sn

.

If sn+1 < −1 we put

γn =
1− s2

n+1√
2− sn+1

.

By Fact 1 we do not run into contradiction, beacuse the indices with the
property |sn| > 1 must be at least at the distance 2 from each other, if
0 ≤ ϕ ≤ π/4. Next we put γn = 0 for all n for which γn has not been defined
yet. Now we have to check if (14) is satisfied. In doing this we will use the
another obvious fact.

Fact 2. Let |x| < 1 < y and x2 + y2 ≤ 2. Then

y2 − 1√
2 + y

≤ 1− x2

√
2 + x

.

Lemma 2 s2
n + s2

n+1 ≤ 2.
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Proof. We have

s2
n + s2

n+1 =
cos2(2n− 1)ϕ

cos2 ϕ
+

cos2(2n + 1)ϕ

cos2 ϕ

=
2 + cos(2n− 1)2ϕ + cos(2n + 1)2ϕ

2 cos2 ϕ
=

1 + cos 2ϕ cos 4nϕ

cos2 ϕ

≤ 1 + cos 2ϕ

cos2 ϕ
= 2

ut
We return to the proof of (14). We will consider the four cases.

(i) γn−1 = γn = 0.
Then |sn| ≤ 1. Therefore

(
√

2− sn − γn)(
√

2 + sn + γn−1) = 2− s2
n ≥ 1.

(ii) γn−1 = 0, γn 6= 0.
This has two subcases.

(a) sn > 1.
Then

(
√

2− sn − γn)(
√

2 + sn + γn−1)

=

(√
2− sn −

1− s2
n√

2 + sn

)
(
√

2 + sn) = 1.

(b) sn+1 < −1.
By Fact 1 we have |sn| < 1. Therefore

(
√

2− sn − γn)(
√

2 + sn + γn−1)

=

(√
2− sn −

1− s2
n+1√

2− sn+1

)
(
√

2 + sn)

≥ (
√

2− sn)(
√

2 + sn) = 2− s2
n ≥ 1.

(iii) γn−1 6= 0, γn = 0.
This also splits in two subcases.
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(a) sn−1 > 1.
Then |sn| < 1 and

(
√

2− sn − γn)(
√

2 + sn + γn−1)

= (
√

2− sn)

(√
2 + sn +

1− s2
n−1√

2 + sn−1

)
.

This expression takes the value greater than 1 if

s2
n−1 − 1√
2 + sn−1

≤ 1− s2
n√

2− sn

.

The last inequality follows from Fact 2 and Lemma 1.

(b) sn < −1.
Then

(
√

2− sn − γn)(
√

2 + sn + γn−1)

= (
√

2− sn)

(√
2 + sn +

1− s2
n√

2− sn

)
= 1.

(iv) γn−1 6= 0, γn 6= 0.
By Fact 1 this is possible only when sn−1 > 1, |sn| < 1 and sn+1 < −1.
By Fact 2 and Lemma 1 we have

s2
n−1 − 1√
2 + sn−1

≤ 1− s2
n√

2− sn

.

Hence

(
√

2− sn − γn)(
√

2 + sn + γn−1)

=

(√
2− sn +

s2
n+1 − 1√
2− sn+1

)(√
2 + sn +

1− s2
n−1√

2 + sn−1

)

≥
(√

2− sn +
s2

n+1 − 1√
2− sn+1

)(√
2 + sn −

1− s2
n√

2− sn

)

= 1 +
s2

n+1 − 1

(
√

2− sn)(
√

2− sn+1)
≥ 1. ut
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Remark 1. Taking γn ≡ 0 in (14) gives

‖Hθ‖ ≤ 2

√
1 + sin−2 θ

2
.

Let us try to determine the smallest positive M such that (9) holds. By
solving the quadratic inequality generated by (9) we get that M satisfies

M ≥ 2 cos
θ

2
cos(2n + 1)

θ

2
+ 2

√
1 + sin2 θ

2
sin2(2n + 1)

θ

2
. (15)

Let a = sin2 θ
2

and x = sin2(2n + 1) θ
2
. Then it suffices that M satisfies

M = 2 max{
√

1− a
√

1− x +
√

1 + ax | 0 ≤ x ≤ 1}.
By an easy calculus the maximum is attained at x = 0 or at x = a− a−1 + 1
according to whether a ≤

√
5−1
2

or a >
√

5−1
2

. Summarizing we get

‖Hθ‖ ≤ M =

 2 + 2 cos θ
2

if sin2 θ
2
≤

√
5−1
2

,

2
√

1 + sin−2 θ
2

if sin2 θ
2
≥

√
5−1
2

.
(16)

Now, combining this with Theorem 1 and the fact that θ = π/2 falls into the
first case of formula (16), gives

‖Hθ‖ ≤

 2 + 2 cos θ
2

if 0 ≤ θ ≤ π
2

2
√

2 if π
2
≤ θ ≤ π.

Remark 2. Proposition 2 can be used to show that the estimate 2
√

2 is sharp
for the endpoint π, which has been also proved in [1] by different methods.
Indeed, assume that ‖Hπ‖ ≤ M. Then there exists 0 < gn < 1 such that

1

(M − 2)(M + 2)
≤ gn(1− gn−1).

Assume for a contradiction that M2 < 8. Then
1

4
<

1

(M − 2)(M + 2)
≤ gn(1− gn−1).

One can easily check that the sequence gn is increasing. Let g denotes its
limit. Then

1

4
<

1

(M − 2)(M + 2)
≤ g(1− g) ≤ 1

4
.

This is a contradiction. Hence M ≥ 2
√

2.
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