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Abstract

Harper’s operator is defined on ¢(Z) by
Hyé(n) = €(n+1) + E(n — 1) + 2cos b (n),

where 6 € [0, 7]. We show that the norm of ||Hy|| is less than or equal
to 2v/2 for w/2 < 6 < m. This solves a conjecture stated in [1]. The
general formula for estimating the norm of self adjoint tridiagonal
infinite matrices is also derived.

1 Introduction

This paper is an appendix to [1]. The authors considered there a random
walk on the discrete Heisenberg group. They reduced the problem of deter-
mining the spectrum of the corresponding transition operator to estimating
the norm of the Harper operator, well known in mathematical physics (see
the references in [1]). This is a discrete Schrédinger operator which acts on
square summable doubly infinite sequences {£(n)}*, according to the rule

Hpé(n) =&(n+1)+&(n—1)+ 2cosnb £(n), (1)
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where 6 is a fixed angle from the interval [0,7]. The authors of [1] were
satisfied with the estimate

| Hp|| < 2(1 + v/2 + cos 0). (2)

This estimate is interesting only in the interval [7/2, 7] because elsewhere the
obvious estimate by 4 is sharper than the one in (2). The authors conjectured,
supported by numerical evidence, that in the interval [7/2, 7] the estimate
21/2 holds. In this note we prove this conjecture, by introducing a method of
estimating the norms of tridiagonal operators, which originates in the theory
of orthogonal polynomials.

2 Norm estimates

We start with a general method of estimating the norms of self adjoint tridi-
agonal operators. The method goes back to the theory of orthogonal poly-
nomials, where it is used to localize the supports of orthogonality measures
(see [2, Theorem 1.9.2]).

Let J be a linear operator defined on (*(Z) by

JEM) = A1é(n+ 1) + B.€(n) + Aé(n — 1), (3)
where (3, € IR and \,, > 0 are fixed bounded sequences.

Proposition 1 Let m and M be such that M > maxf3,, and m < minf3,.

Assume also that there exist sequences 0 < g, <1 and 0 < h, <1 such that
)\2

N < gn(l = gn-1), 4

(M - ﬁnfl)(M _ﬂn> ( ) ( )

A2 -
(m _ 5n_1)(m — 611) < hn<1 hn_l). (5)

Then mI < J < MI, i.e. the spectrum of J is contained in the interval
[m, M].

Proof. Let £(0) = 1 and define £(n) recursively for n # 0 by

Aé(n—1) _,
(M = 8,)¢(n) 7
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Then £(n) > 0. By (3) and (4) we get

JE(n) < M&(n).
Let 3 = —min 3,. Then 8+ 3, > 0, for each n. We have

(J 4+ B1)E(n) < (M + 3)¢(n).

The matrix J 4+ (I has nonnegative entries and the sequence £(n) is positive.
Thus by Schur’s test (see [3, Theorem 5.2]) we obtain

1]+ B < M + 3.

In particular
J+ 6 < (M + p)I.

This shows the upper estimate of the spectrum of J.

The lower estimate can be obtained from the upper estimate of the matrix
—.J. But this matrix has negative entries on the upper and lower diagonals.
So instead of —.J we consider the unitarily equivalent matrix J' = —UJU !,
where

Ug(n) = (=1)"¢(n).

The operator J' acts as follows

J'E(n) = Anpr€(n+ 1) = Bp€(n) + Ané(n — 1).

Observe that assumption (4) of Proposition 1 is satisfied for J' with M = —m.
Hence by the first part of the proof we get J' < —ml. Since J is similar to
—J we get J > ml. O

The converse of Proposition 1 also holds. In fact, we have the following.
Proposition 2 Assume that the operator J in (3) satisfies mI < J < M.

Then M > max (3, and m < min (3, and there exist sequences 0 < g, < 1
and 0 < h,, < 1 such that (4) and (5) hold.

Proof. We focus on showing (4), since (5) can be proved analogously by
considering the operator J' introduced in the proof of Proposition 1. Let e,
denote the sequence whose terms are all zero except for the nth term which
is equal to 1. By J < M1 we get

Bn = (Jen, en) < M(ep, e,) = M. (6)
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We claim that the inequality in (6) is strict for each n.. Otherwise we would
have Je, = Me,. This is impossible, beacuse Je,(n + 1) = A\,11 # 0. Thus
we proved the first part of Proposition 2.

In the remaining part we will make use of the following lemma, whose
origins lie in the Frobenius—Perron method in the theory of finite stochastic
matrices (see [4, Lemma 9.2.2]).

Lemma 1 Let A = {a(i,j)} be N x N symmetric matriz with nonnegative
entries, such that a(i,i+ 1) > 0 and a(i + 1,7) > 0 fori=1,2,...,N — 1.
Let M > ||A||, where || A]| denotes the operator norm with respect to £2-norm
on RYN. There exists a nonzero vector ¢ € RY with positive coordinates, such
that

Aé(n) < ME&(n), 1<n<N.

Proof. Assume M = ||Al|. Then M or —M is the eigenvalue of A. Thus
there is € # 0 such that
A¢ = £ME.

Taking absolute values of both sides gives
Al¢] > MIE]. (7)
We claim that there holds the equality in (7). If not, we would have
Ml 1gl) = ((Afgl 161 > Mgl €D,

a contradiction. Thus
Al¢| = MI¢].

We will show that the coordinates £(n) are all nonzero. Assume that £(n) =
0. Then

a(n— 1, n)|E(n — 1|+ a(n + 1, m)|é(n + 1)| < MIg(n)| = 0.

Hence &(n + 1) = 0. Repeating this reasoning we finally get that £(m) = 0
for all m = 1,2,..., N, which contradicts & # 0. This completes the proof of
Lemma 1. O

Let us return to the proof of Proposition 2. Let # = —min(3,. Then
the matrix A = J + I has nonnegative entries and A < (M + ()I. Let Py
denotes the projection onto 2N + 1 dimensional subspace of ¢?(Z) acting by

N
Py¢ = Zf(n)en
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Let Ay denote the truncated matrix Py APy. It is clear that
Ay <A< (M+p)I.

By Lemma 1 there exist sequences &y € IR*M'! with positive entries such
that
Anén(n) < (M +B)én(n) - N<n<N. (8)

Since the entries of &y are positive we may assume, by multiplying by a
positive constant if necessary, that £y (0) = 1. We may also assume that (8)
holds for all n € Z extending £y by 0 for |n| > N. We will show by induction
that for any fixed n € Z the sequence of values N +— {y(n) is bounded. For
n = 0 it is constantly 1. Let n = £1. Then by (8) we have

AnEn(0) = Mén (1) + (Bo + B)En(0) + Aoén(—1) < MEn(0).
Since B + f > 0 we get
AéN (1) + Aoén(—1) < M.

Since Ayq # 0, we conclude that {5 (£1) are bounded. Similarly the induction
step follows from the inequalities

Anpién(n+1) <
Aén(n—1) < M&x(n).

Now, using Helly’s selection principle we can choose a subsequence N of Ns
for which all sequences Ny — &y, (n) are convergent. Let

£(n) = lim &, (n).

By (8) we get
A(n) = (J + BI)E(n) < (M + B)¢(n).
We have £(n) > 0 and £(0) = 1. Similarly as in the proof of Lemma 1 we

can derive that £(n) > 0 because the matrix J + $I has nonnegative entries.
Hence we constructed a positive sequence £(n) such that

JE(n) < Mé&(n), neZzZ.



Now by taking
M= Ba)em)
we get (4). O

Let us turn to the Harper operator Hy, i.e. A\, =1 and 3, = 2cosnf. We
will focus on the upper estimate M. It will follow from the proof that the
lower estimate is equal —M in this case. It follows also from the fact that
the spectrum of Hy is symmetric about the origin (see [1, comments before
).

Let M > 2 be the smallest number such that

1 1 1 1

(M —2cos(n — 1)8)(M — 2cosnb) =i1T 5(1 a §> ©)

By Proposition 1 we get Hy < MI. The condition (9) gives the same estimate
as in Proposition 4 from [1]. To get sharper estimate 2v/2 we need a better
choice of g,.

Theorem 1 Let I <0 <. Then ||Ho|| < 2V/2.

Proof. We will have to find an appropriate g, in order to satisfy (9) with
M = 2+/2. First we will look for gn in the form

1 QO

In = 2 22 — 2cosnb’

Now assumption (9) can be transformed into
(V2 = cosnb — o) (V2 — cos(n — 1)0 + ap_y) > 1. (11)

So the problem reduces to finding «, such that (11) is satisfied and both the
factors are positive. We will first look for «, in the form

(10)

0
ay = Y, — sinnd cot 3 (12)
Then
sin(2n — 1)¢
ay, +cosnf = %——( —3 )2,
sin 3
sin(2n — 1)¢
apq—cos(n—10 = ~v,1+ (,—9)2.
sin
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Let 0 =1 —2p. Then 0 < p < 7. Moreover

a, +cosnf = v, + Sy,
a, —cos(n—1)0 = y,_1 — sp,
where 5 .
Sn = (_1>n+1COS(n——)QO (13>
cos
Now (11) takes the form
(\/E_Sn_yn)(\/g—f_sn"i_fyn—l) 2 L. (14>

We will use essentially the following fact, which follows obviously from (13).

Fact 1. If |s,| > 1 then |spa1| < 1 for 0 < o < m/4.

Now we are going to define the sequence 7,. First we will take care of
those n for which |s,| > 1 or |s,41] > 1. If s,, > 1 we put

1-s
Ll
If 5,11 < —1 we put
= 1—s7, ‘
\/§_Sn+1

By Fact 1 we do not run into contradiction, beacuse the indices with the
property |s,| > 1 must be at least at the distance 2 from each other, if
0 < ¢ < 7/4. Next we put 7, = 0 for all n for which -, has not been defined
yet. Now we have to check if (14) is satisfied. In doing this we will use the
another obvious fact.

Fact 2. Let |z| <1 <y and 2% + 3*> < 2. Then

y? —1 - 1— 22

V2+y T V2+a

Lemma 2 s2 + s>, < 2.



Proof. We have
cos?(2n — 1)y N cos’(2n + 1)y

2, 2
Sn S cos? @ cos?
_ 24cos(2n —1)2p +cos(2n +1)2¢ 1+ cos2¢pcosdny
N 2cos? N cos? p
1+ cos2¢p _ 9
cos?

We return to the proof of (14). We will consider the four cases.

(i) Tn—1 = VYn = 0.
Then |s,| < 1. Therefore

(V2 = 50— ) (V2 + 50+ n1) =2 — 52 > 1.

(11) Tn—1 = 07 Tn 7é 0.

This has two subcases.

(a) s, > 1.
Then
(\/5_ Sn _’Vn)<\/§+5n+7nfl)
1—5% B
= (ﬂ_sn_\/ﬁ—ksn) (\/§+Sn) =1.
(b) Sp41 < —1.

By Fact 1 we have |s,| < 1. Therefore
(\/5 —Sn T 'Vn)(‘/i + Sp + Yn-1)

1_8121+1 s
S e = LCAS
> (\/ﬁ—sn)(\@%—sn):Q—sizl.

(iii) -1 #0, 7, = 0.
This also splits in two subcases.



(a) sp—1 > 1.
Then |s,| < 1 and

(\/5—871—7”)(\/5—1—8”—1—’}/” 1)

— (V2-s2) (ﬂ“”*\gjgn;)'

This expression takes the value greater than 1 if

2 2
Sn—l_l ]._Sn

< .
\/§+3n—1 N \/§_Sn

The last inequality follows from Fact 2 and Lemma 1.

(b) s, < —1.
Then

<\/§ —Sn T ’Vn)<\/§ + Sp + 'Yn—l)

= (V2—s,) <ﬁ+5"+\}§_—8§n> = 1.

(IV) Tn—1 7é 07 Tn 7é 0
By Fact 1 this is possible only when s,,_1 > 1, |s,| < 1 and s,,.; < —1.
By Fact 2 and Lemma 1 we have

s2 . —1 1—s2

n 1

< .
\/_+Sn1 \/§_Sn

Hence

(V2 — s, — %)(\/_—l—sn—kvn 1)

1 — 2
_ <\/§ n+1 ) <\/_+5n Sn—1 )
Sn+1 V2 + 551
2
Z < n+1 ) <\/_+Sn i 1 Sn )
— Sp+1 \/§ — Sn
7L+1 —1 1. 0

TV s (VI




Remark 1. Taking 7, = 0 in (14) gives

/ 0
| Hol| <2 me4§

Let us try to determine the smallest positive M such that (9) holds. By
solving the quadratic inequality generated by (9) we get that M satisfies

6 6 0 6
NfZQaﬁQGm@n+ﬂj2+2¢1+sm22$n%%r+n2. (15)
Let a = sin® ¢ and z = sin®(2n + 1)%. Then it suffices that M satisfies

M =2max{v1—aVl—x++V1+azx|0<z <1}

By an easy calculus the maximum is attained at t =0 oratz =a—a ' +1
according to whether a < @ or a > @ Summarizing we get

0 o2 0 V-1
2+2cosq if sin® g < ¥,

2/1+sin 22 if sin?¢ > V-1,
Now, combining this with Theorem 1 and the fact that § = 7/2 falls into the
first case of formula (16), gives

242cosh f0<H<T
1]} <
2v/2 if 2<60<m.

IWMSMZ{ (16)

Remark 2. Proposition 2 can be used to show that the estimate 2v/2 is sharp
for the endpoint 7, which has been also proved in [1] by different methods.
Indeed, assume that ||H.|| < M. Then there exists 0 < g, < 1 such that

< n 1 - Yn-1)-
D iy
Assume for a contradiction that M? < 8. Then

! < ! < gn(1 = gn_1).

1S M =2)(M+2) =TI
One can easily check that the sequence g, is increasing. Let g denotes its
limit. Then

: ! < g(1 <1
1S Or—paisy S -9=7

This is a contradiction. Hence M > 24/2.
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