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Nonnegative linearization for little q-Laguerre polynomials
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Abstract

The support of the orthogonality measure of so-called little q-Laguerre polynomials {ln(.; a|q)}∞n=0, 0 < q < 1, 0 < a < q−1,

is given by Sq = {1, q, q2, . . .} ∪ {0}. Based on a method of Młotkowski and Szwarc we deduce a parameter set which admits
nonnegative linearization. Moreover, we use this result to prove that little q-Laguerre polynomials constitute a so-called Faber basis
in C(Sq).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let S denote an infinite compact subset of R. A sequence of functions {�n}∞n=0 in C(S), the set of real-valued
continuous functions on S, is called a basis of C(S) if every f ∈ C(S) has a unique representation

f =
∞∑

k=0

�k�k , (1)

with coordinates �k . In 1914, Faber [5] proved that there is no basis in C([a, b]) which consists of algebraic polynomials
{Pn}∞n=0 with deg Pn = n. One advantage of such a basis, which we call a Faber basis of C(S), is that the nth partial
sums of a representation (1) are converging towards f with the same order of magnitude as the elements of best appro-
ximation in Pn do, where Pn denotes the set of real algebraic polynomials with degree less or equal n, see [11, 19,
Theorem 19.1].
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In [8,9] we have investigated the case S = Sq , where

Sq = {1, q, q2, . . .} ∪ {0}, (2)

0 < q < 1. Besides a so-called Lagrange basis the little q-Jacobi polynomials, which are orthogonal on Sq , have been
proven to constitute a Faber basis in C(Sq).

Orthogonal polynomial sequences {Pn}∞n=0 with respect to a probability measure � on S are of special interest,
because a representation (1) is based on the Fourier coefficients given by

f̂ (k) =
∫

S

f (x)Pk(x) d�(x), k ∈ N0, (3)

of f ∈ C(S).
The linearization coefficients g(i, j, k) for a orthogonal polynomial sequence are defined by

PiPj =
∞∑

k=0

g(i, j, k)Pk =
i+j∑

k=|i−j |
g(i, j, k)Pk, i, j ∈ N0, (4)

where g(i, j, |i − j |), g(i, j, i + j) �= 0. The nonnegativity of the linearization coefficients has many useful
consequences. For instance, it is sufficient for a special boundedness property. Namely, for x0 = sup S or x0 = inf S

we have

max
x∈S

|Pn(x)| = Pn(x0) for all n ∈ N0, (5)

see for instance [10, p. 166(17); 9].
Here, we use a recent result of Młotkowski and Szwarc to prove nonnegative linearization for a certain parameter

set of so-called little q-Laguerre polynomials. Finally, we check that the resulting boundedness property also implies
the sequence of little q-Laguerre polynomials constitutes a Faber basis. The given proof goes along the lines of the one
given in [8], see also [9].

2. Little q-Laguerre polynomials and nonnegative linearization

For parameters 0 < q < 1, 0 < a < q−1 the sequence {ln(x; a|q)}∞n=0 of little q-Laguerre polynomials is defined by
the three term recurrence relation

−xln(x; a|q) = Anln+1(x; a|q) − (An + Cn)ln(x; a|q) + Cnln−1(x; a|q), n�0, (6)

with

An = qn(1 − aqn+1), (7)

Cn = aqn(1 − qn), (8)

where l−1(x; a|q) = 0 and l0(x; a|q) = 1. They are normalized by ln(0; a|q) = 1 and they fulfill the orthogonalization
relation

∞∑
k=0

(aq)k

(q; q)k
lm(qk; a|q)ln(q

k; a|q) = (aq)n(q; q)n

(aq; q)∞(aq; q)n
�n,m, (9)

where (c; q)k =(1−c)(1−cq) · · · (1−cqk−1) and (c; q)∞ =∏∞
k=0(1−cqk), see [6]. We use a criterion of Młotkowski

and Szwarc to deduce a set of parameters which guarantees nonnegativity of the linearization coefficients g(i, j, k).
The criterion given in [7] fits especially for orthogonality measures supported by a sequence of numbers accumulating
at one point. Let us recall this result.
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Theorem 1 (Młotkowski and Szwarc). Let {Pn}∞n=0 be a sequence of polynomials with P0 = 1 and P−1 = 0 satisfying
the three term recurrence relation

xP n(x) = �nPn+1 + �nPn(x) + �nPn−1(x). (10)

If the sequence {�n}∞n=0 is increasing and the sequence {�n}∞n=0 with

�n = �n�n+1

(�n+2 − �n+1)(�n+1 − �n)
(11)

is a chain sequence, then the linearization coefficients are nonnegative.

Note that a sequence {un}∞n=0 is called a chain sequence if there exists a sequence of numbers {gn}∞n=0, 0�gn �1,
satisfying un = (1 − gn)gn+1. We gain the following result.

Theorem 2. If the parameters a and q with respect to the sequence of little q-Laguerre polynomials {ln(.; a|q)}∞n=0
satisfy

4a

(1 − q)2[1 + aq(2 − q)]2
�1, (12)

then the linearization coefficients are nonnegative.

Proof. For to apply the previous theorem we write (6) as

(1 − x)ln(x; a|q) = �nln+1(x; a|q) + �nln(x; a|q) + �nln−1(x; a|q) (13)

with

�n = An, (14)

�n = (1 − An − Cn), (15)

�n = Cn. (16)

By the transformation y = 1 − x we get

yP n(y) = �nPn+1(y) + �nPn(y) + �nPn−1(y) (17)

with Pn(y) = ln(1 − y; a|q). Such transformation does not influence the linearization coefficients. It is easy to check
that a necessary and sufficient condition for {�n}∞n=0 to be an increasing sequence is

a <
1

q(2 + q)
. (18)

Since the constant sequence 1
4 , 1

4 , . . . is a chain sequence, by Wall’s comparison test for chain sequences [3, Theorem
5.7] a sufficient condition for {�n}∞n=0 to be a chain sequence is �n � 1

4 . A simple computation yields

�n = a(1 − qn)(1 − aqn+1)

(1 − q)2{1 + a[1 − qn(1 + q)2]}{1 + a[1 − qn+1(1 + q)2]} , (19)

which implies

�n � a

(1 − q)2[1 + aq(2 − q)]2
for all n ∈ N0. (20)

Hence a sufficient condition for {�n}∞n=0 to be a chain sequence is

4a

(1 − q)2[1 + aq(2 − q)]2
�1. (21)

It remains to prove that (21) implies (18), but there are elementary arguments. For instance, if 2
3 �q < 1 then (21)

implies a� 1
3 which yields (18). In case of 0 < q < 2

3 we get by (21) that a� 9
16 and hence (18) is also fulfilled. �
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We should mention that there are parameters q and a, which admit negative linearization coefficients. For instance
g(1, 1, 1) < 0 if and only if A1 + C1 > A0, which is equivalent to

q(1 − aq2) + aq(1 − q) > (1 − aq). (22)

The last inequality holds for a close to q−1.

Problem. Determine the range of parameters q and a for little q-Laguerre polynomials, for which nonnegative product
linearization holds.

Before we take advantage of our result to prove an approximation theoretic consequence let us make a remark on
combinatorics and special functions. Even and Gillis [4] gave the quantity

(−1)n1+···+nk

∫ ∞

0
e−x

k∏
i=1

L(0)
ni

(x) dx, (23)

where L
(�)
n , � > − 1, denote the classical Laguerre polynomials, a combinatorial interpretation. Namely (23) is the

number of possible derangements of a sequence composed of n1 objects of type 1, n2 objects of type 2, . . ., nk objects
of type k. In such a way they have shown the nonnegativity of (23) and as a simple consequence they have proven the
nonnegativity of the linearization coefficients of {(−1)nL

(0)
n }∞n=0. This property was reproved by Askey and Ismail [2]

using more analytical methods for � > − 1. They also gave a combinatorial interpretation of

(−1)n1+···+nk

	(� + 1)

∫ ∞

0
e−xx�

k∏
i=1

L(�)
ni

(x) dx, (24)

in case of � = 0, 1, 2, . . . . Our result concerning the q-analogues of classical Laguerre polynomials is achieved only
by means of analytical methods and is without any combinatorial interpretation until now. So it would be of interest if
there is a connection with combinatorics, too. The reader is invited to check our results also from this point of view.

3. Little q-Laguerre polynomials and Faber basis

Now we use the fact that nonnegative linearization yields the boundedness property (5) for to prove that certain little
q-Laguerre polynomials constitute a Faber basis in C(Sq).

Theorem 3. If the parameters a and q with respect to the sequence of little q-Laguerre polynomials {ln(.; a|q)}∞n=0
satisfy

4a

(1 − q)2[1 + aq(2 − q)]2
�1, (25)

then {ln(.; a|q)}∞n=0 constitutes a Faber basis in C(Sq).

Proof. Let � denote the orthogonality measure. We have

�({qk}) = (aq)k

(q; q)k
= (aq)k

(1 − q)(1 − q2) · · · (1 − qk)
, k ∈ N0, (26)

and �({0}) = 0. The corresponding orthonormal polynomials are given by

pn(.; a|q) =
√

(aq; q)∞(aq; q)n

(aq)n(q; q)n
ln(.; a/q). (27)
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Let Kn(x, y) denote the kernel

Kn(x, y) =
n∑

k=0

pk(x; a|q)pk(y; a|q). (28)

For proving that the sequence {ln(.; a|q)}∞n=0 constitutes a Faber basis in C(Sq) it is necessary and sufficient to show

sup
x∈Sq

∫
Sq

|Kn(x, y)| d�(y)�C for all n ∈ N0, (29)

see for instance [9]. For this purpose we split the integration domain into two parts [0, qn] and [qn, 1]. Using
maxx∈Sq |pn(x; a|q)| = pn(0; a|q) we deduce

∫ qn

0
|Kn(x, y)| d�(y)�Kn(0, 0)�([0, qn]) = O((aq)−n)O((aq)n) = O(1). (30)

For investigating the second part we use in case of x �= y the Christoffel–Darboux formula

Kn(x, y) =√
AnCn+1

pn+1(x; a|q)pn(y; a|q) + pn(x; a|q)pn+1(y; a|q)

x − y
(31)

and |x − y|�(1 − q)y for to get∫ 1

qn

|Kn(x, y)| d�(y)�
√

AnCn+1pn+1(0; a|q)

1 − q

∫ 1

qn

|pn(y; a|q)|
y

d�(y)

+
√

AnCn+1pn(0; a|q)

1 − q

∫ 1

qn

|pn+1(y; a|q)|
y

d�(y) +
n∑

k=0

pk(x; a|q)2�({x}). (32)

First, note that

n∑
k=0

pk(x; a|q)2�({x})�1, (33)

see [1, Theorem 2.5.3, p. 63]. Next, we compute

AnCn+1 = qn(1 − aqn+1)aqn+1(1 − qn+1) = O(q2n) (34)

and

pn(0; a|q) = O((aq)−n/2). (35)

By Cauchy–Schwarz inequality we get

∫ 1

qn

|pn(y; a|q)|
y

d�(y)�
(∫ 1

qn

1

y2 d�(y)

)1/2

=
(

n∑
k=0

(aq)k

(q; q)kq
2k

)1/2

�
(

1

(q; q)∞

n∑
k=0

(
a

q

)k
)1/2

= O

((
a

q

)n/2
)

, (36)

which completes the proof. �
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