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Abstract

The support of the orthogonality measure of so-called little g-Laguerre polynomials {/,;(.; a|q)}3‘;0, 0<g<l1l,0<a< q‘l,

is given by S; = {1, ¢, qz, ...} U {0}. Based on a method of Miotkowski and Szwarc we deduce a parameter set which admits
nonnegative linearization. Moreover, we use this result to prove that little g-Laguerre polynomials constitute a so-called Faber basis
in C(Sg).
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1. Introduction

Let S denote an infinite compact subset of R. A sequence of functions {¢,}7° in C(S), the set of real-valued
continuous functions on S, is called a basis of C(S) if every f € C(S) has a unique representation

£=Y oy (1)
k=0

with coordinates 4. In 1914, Faber [5] proved that there is no basis in C([a, b]) which consists of algebraic polynomials
{Pn},2 with deg P, = n. One advantage of such a basis, which we call a Faber basis of C(S), is that the nth partial
sums of a representation (1) are converging towards f with the same order of magnitude as the elements of best appro-
ximation in Z, do, where 2, denotes the set of real algebraic polynomials with degree less or equal n, see [11, 19,
Theorem 19.1].
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In [8,9] we have investigated the case S = §,;, where

Sy =1{1,q,4% ...} U{0}, 2

0 < g < 1. Besides a so-called Lagrange basis the little g-Jacobi polynomials, which are orthogonal on S, have been
proven to constitute a Faber basis in C(S;).

Orthogonal polynomial sequences {P,};°, with respect to a probability measure © on S are of special interest,
because a representation (1) is based on the Fourier coefficients given by

f(k)=fsf(X)Pk(x)d7t(X), k e No, 3)
of f € C(S).
The linearization coefficients g(i, j, k) for a orthogonal polynomial sequence are defined by
00 i+j
PiP;=Y gl.j.k)Pc= Y g j. k)P i jeNo, @
k=0 k=li—j|

where g(i, j, i — j|),g(@, j,i + j) # 0. The nonnegativity of the linearization coefficients has many useful
consequences. For instance, it is sufficient for a special boundedness property. Namely, for xo = sup S or xg = inf S
we have

mag& |Py(x)] = Py(xg) foralln e Ny, (@)
xXe

see for instance [10, p. 166(17); 9].

Here, we use a recent result of Mtotkowski and Szwarc to prove nonnegative linearization for a certain parameter
set of so-called little g-Laguerre polynomials. Finally, we check that the resulting boundedness property also implies
the sequence of little g-Laguerre polynomials constitutes a Faber basis. The given proof goes along the lines of the one
given in [8], see also [9].

2. Little g-Laguerre polynomials and nonnegative linearization

For parameters 0 < ¢ < 1,0 <a < g~ the sequence {I,,(x; alq)};2, of little g-Laguerre polynomials is defined by
the three term recurrence relation

—xln (x5 alg) = Anlpt1(x; alq) — (An + Co)ln(x; alq) + Cplp—1(x;alq), n=0, (6)
with

Ap=q"(1—ag""h, (7

Cn=aq"(1—q"), (8)

where /_1(x; alg) =0 and lp(x; alg) = 1. They are normalized by /,,(0; a|g) = 1 and they fulfill the orthogonalization
relation

00 k ne,.
S D ks k(g alg) = —SD @D ©)
= @D (aq; 9)o(aq; q)n

where (¢; ¢)y=(1—c)(1—cq)---(1— cg* 1y and (c; Qoc= ]_[,fio(l —cqF), see [6]. We use a criterion of Miotkowski
and Szwarc to deduce a set of parameters which guarantees nonnegativity of the linearization coefficients g(i, j, k).
The criterion given in [7] fits especially for orthogonality measures supported by a sequence of numbers accumulating
at one point. Let us recall this result.
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Theorem 1 (Mtotkowski and Szwarc). Let {P,};°  be a sequence of polynomials with Py =1 and P_ = 0 satisfying
the three term recurrence relation

xP,(x) =0, Py +ﬁnPn(x)+ynPn—l(x)- (10)
If the sequence {f, ), is increasing and the sequence {v,};° , with

_ %nYn+1
(ﬁn-i,-z - ﬁn-i-l)(ﬁn—i-l - ﬂn)

is a chain sequence, then the linearization coefficients are nonnegative.

Vn

(1)

Note that a sequence {u,},-, is called a chain sequence if there exists a sequence of numbers {g,}° . 0< g, <1,
satisfying u, = (1 — g,)gn+1. We gain the following result.

Theorem 2. If the parameters a and q with respect to the sequence of little g-Laguerre polynomials {l,,(.; alq)};2

satisfy
ta <1, (12)
(1= @)1 +ag2~ )P
then the linearization coefficients are nonnegative.
Proof. For to apply the previous theorem we write (6) as
(I = 0)ln(x; alq) = anlpt1(x; alg) + Puln(x; alg) + 7,ln—1(x; alq) (13)
with
ot = Ap, 14
Bp=1—= A, —Cp), (15)
T = Cn. (16)

By the transformation y = 1 — x we get

VP, () = Pup1 (V) + By Pa(y) + 7 Pa1(y) A7)

with P,(y) =1,(1 — y; alq). Such transformation does not influence the linearization coefficients. It is easy to check
that a necessary and sufficient condition for {f,}7° , to be an increasing sequence is

1
a<——. (18)
92 +q)
Since the constant sequence 4—1‘, }T, ... 1s a chain sequence, by Wall’s comparison test for chain sequences [3, Theorem
5.7] a sufficient condition for {v,};Z, to be a chain sequence is v, < ‘l‘. A simple computation yields
a(l —¢"(1 —aq"*" 19)
vy = ,
T =@l +all =g (L4 @ {1 +all — " (1+¢)"])
which implies
a
Vp < for all n € Ny. (20)
=@l +ag2 - P
Hence a sufficient condition for {v,}7° , to be a chain sequence is
4
. @1

<.
(1=l +aq2—q)

It remains to prove that (21) implies (18), but there are elementary arguments. For instance, if %gq <1 then (21)
implies a < % which yields (18). In case of 0 < g < % we get by (21) that a < % and hence (18) is also fulfilled. [
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We should mention that there are parameters g and a, which admit negative linearization coefficients. For instance
g(1,1,1)<0if and only if A 4+ C1 > Ag, which is equivalent to

q(1 —ag® +aq(l —q)> (1 —aq). (22)

The last inequality holds for a close to g 1.

Problem. Determine the range of parameters g and a for little g-Laguerre polynomials, for which nonnegative product
linearization holds.

Before we take advantage of our result to prove an approximation theoretic consequence let us make a remark on
combinatorics and special functions. Even and Gillis [4] gave the quantity

k

o0

(—1)"'+"'+"k/0 e*X]_[L;?(x)dx, (23)
i=1

where L,(f), o> — 1, denote the classical Laguerre polynomials, a combinatorial interpretation. Namely (23) is the
number of possible derangements of a sequence composed of 721 objects of type 1, ny objects of type 2, . . ., ny objects
of type k. In such a way they have shown the nonnegativity of (23) and as a simple consequence they have proven the
nonnegativity of the linearization coefficients of {(—1 )"Lf,o) }72 o- This property was reproved by Askey and Ismail [2]
using more analytical methods for « > — 1. They also gave a combinatorial interpretation of

(_1)n1+~~+nk o0 k @
- e x* | LI (x)dx, 24
TG+ 1) /0 xﬂ (O e
incase of x =0, 1,2, ... . Our result concerning the g-analogues of classical Laguerre polynomials is achieved only

by means of analytical methods and is without any combinatorial interpretation until now. So it would be of interest if
there is a connection with combinatorics, too. The reader is invited to check our results also from this point of view.

3. Little g-Laguerre polynomials and Faber basis

Now we use the fact that nonnegative linearization yields the boundedness property (5) for to prove that certain little
g-Laguerre polynomials constitute a Faber basis in C(S,).

Theorem 3. If the parameters a and q with respect to the sequence of little g-Laguerre polynomials {I,(.; alq)},2
satisfy
4a
(1-¢)’[1+aq2—q)]

S<1, (25)

then {I,(.; alq)};2, constitutes a Faber basis in C(S,).

Proof. Let n denote the orthogonality measure. We have

(ag)* _ (ag)*
(@ (1—g)(1—¢% - (1—-4¢"

and n({0}) = 0. The corresponding orthonormal polynomials are given by

putialg) = | CL D@L Dy oy, @7)
(aq)"(q; 9)p

n({g") = ., keNo, (26)
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Let K, (x, y) denote the kernel

n

Kn(x,y) =Y pr(x; alg) pr(y; alg). (28)
k=0

For proving that the sequence {/,(.; alg)};, constitutes a Faber basis in C(S,) it is necessary and sufficient to show

sup/ |K,(x,y)|dn(y)<C forall n € Ny, (29)
S‘I

X€eSy,
see for instance [9]. For this purpose we split the integration domain into two parts [0, ¢"] and [¢", 1]. Using
maxyes, |pn(x; alg)| = pn(0; alg) we deduce

n

q
/O |Kn (x, )| dn(y) <K (0, 0)7([0, ¢"]) = O(aq) ) O((ag)") = O(1). (30)

For investigating the second part we use in case of x # y the Christoffel-Darboux formula

Ko(x.y) = /Ao Pnt1(x; alg)pn(y; alg) + pu(x; alq) pny1(y; alg) 31)

X =y

and |[x — y|> (1 — q)y for to get

/1 VAL Cri1 puy1(0; alg) /1 P (yiall
q q y

K, y)ldn(y) < T—q ()

n

VA Ci1pa(0salg) 1 1pat1(y; alg)l «
+ T / ProllB SO dan(y) + Y prlaalg®n((x)). (32)
—q q" y =0
First, note that
> pilxs alg)*n(ixh <1, (33)
k=0

see [1, Theorem 2.5.3, p. 63]. Next, we compute

AnCrr1 =¢"(1 = ag" Hag" ' (1 — ") = 0™ (34)
and

Pu(0: alg) = O((ag)™"). (35)
By Cauchy—-Schwarz inequality we get

U pu(y: alg) (/1 1 )”2 " @ \
Wnd0»> 21901 4 < —d - I VA
/n y =0) . Y2 ) Z (q: Prg*

k=0

1 " ra\k 2 a\"?
< - o (= , 36
((q;q)oo g (61) ) ((61) ) (30

which completes the proof. [
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