

Nonnegative linearization for little q -Laguerre polynomials and Faber basis

Josef Obermaier^{a,*}, Ryszard Szwarc^{b,1}

^a*Institute of Biomathematics and Biometry, GSF - National Research Center for Environment and Health,
 Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany*

^b*Institute of Mathematics, Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland*

Received 30 November 2004; received in revised form 13 March 2005

Abstract

The support of the orthogonality measure of so-called little q -Laguerre polynomials $\{l_n(\cdot; a|q)\}_{n=0}^{\infty}$, $0 < q < 1$, $0 < a < q^{-1}$, is given by $S_q = \{1, q, q^2, \dots\} \cup \{0\}$. Based on a method of Młotkowski and Szwarc we deduce a parameter set which admits nonnegative linearization. Moreover, we use this result to prove that little q -Laguerre polynomials constitute a so-called Faber basis in $C(S_q)$.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Orthogonal polynomials; Nonnegative linearization; Little q -Laguerre polynomials; Faber basis

1. Introduction

Let S denote an infinite compact subset of \mathbb{R} . A sequence of functions $\{\varphi_n\}_{n=0}^{\infty}$ in $C(S)$, the set of real-valued continuous functions on S , is called a basis of $C(S)$ if every $f \in C(S)$ has a unique representation

$$f = \sum_{k=0}^{\infty} \lambda_k \varphi_k, \quad (1)$$

with coordinates λ_k . In 1914, Faber [5] proved that there is no basis in $C([a, b])$ which consists of algebraic polynomials $\{P_n\}_{n=0}^{\infty}$ with $\deg P_n = n$. One advantage of such a basis, which we call a Faber basis of $C(S)$, is that the n th partial sums of a representation (1) are converging towards f with the same order of magnitude as the elements of best approximation in \mathcal{P}_n do, where \mathcal{P}_n denotes the set of real algebraic polynomials with degree less or equal n , see [11, 19, Theorem 19.1].

* Corresponding author.

E-mail addresses: josef.obermaier@gsf.de (J. Obermaier), szwarc@math.uni.wroc.pl (R. Szwarc).

¹ Partially supported by KBN (Poland) under grant 2 P03A 028 25 by Research Training Network “Harmonic Analysis and Related Problems” Contract HPRN-CT-2001-00273 and by DFG fellowship 436 POL 17/1/04.

In [8,9] we have investigated the case $S = S_q$, where

$$S_q = \{1, q, q^2, \dots\} \cup \{0\}, \quad (2)$$

$0 < q < 1$. Besides a so-called Lagrange basis the little q -Jacobi polynomials, which are orthogonal on S_q , have been proven to constitute a Faber basis in $C(S_q)$.

Orthogonal polynomial sequences $\{P_n\}_{n=0}^{\infty}$ with respect to a probability measure π on S are of special interest, because a representation (1) is based on the Fourier coefficients given by

$$\hat{f}(k) = \int_S f(x) P_k(x) d\pi(x), \quad k \in \mathbb{N}_0, \quad (3)$$

of $f \in C(S)$.

The linearization coefficients $g(i, j, k)$ for a orthogonal polynomial sequence are defined by

$$P_i P_j = \sum_{k=0}^{\infty} g(i, j, k) P_k = \sum_{k=|i-j|}^{i+j} g(i, j, k) P_k, \quad i, j \in \mathbb{N}_0, \quad (4)$$

where $g(i, j, |i - j|), g(i, j, i + j) \neq 0$. The nonnegativity of the linearization coefficients has many useful consequences. For instance, it is sufficient for a special boundedness property. Namely, for $x_0 = \sup S$ or $x_0 = \inf S$ we have

$$\max_{x \in S} |P_n(x)| = P_n(x_0) \quad \text{for all } n \in \mathbb{N}_0, \quad (5)$$

see for instance [10, p. 166(17); 9].

Here, we use a recent result of Młotkowski and Szwarc to prove nonnegative linearization for a certain parameter set of so-called little q -Laguerre polynomials. Finally, we check that the resulting boundedness property also implies the sequence of little q -Laguerre polynomials constitutes a Faber basis. The given proof goes along the lines of the one given in [8], see also [9].

2. Little q -Laguerre polynomials and nonnegative linearization

For parameters $0 < q < 1$, $0 < a < q^{-1}$ the sequence $\{l_n(x; a|q)\}_{n=0}^{\infty}$ of little q -Laguerre polynomials is defined by the three term recurrence relation

$$-x l_n(x; a|q) = A_n l_{n+1}(x; a|q) - (A_n + C_n) l_n(x; a|q) + C_n l_{n-1}(x; a|q), \quad n \geq 0, \quad (6)$$

with

$$A_n = q^n (1 - aq^{n+1}), \quad (7)$$

$$C_n = aq^n (1 - q^n), \quad (8)$$

where $l_{-1}(x; a|q) = 0$ and $l_0(x; a|q) = 1$. They are normalized by $l_n(0; a|q) = 1$ and they fulfill the orthogonalization relation

$$\sum_{k=0}^{\infty} \frac{(aq)^k}{(q; q)_k} l_m(q^k; a|q) l_n(q^k; a|q) = \frac{(aq)^n (q; q)_n}{(aq; q)_{\infty} (aq; q)_n} \delta_{n,m}, \quad (9)$$

where $(c; q)_k = (1 - c)(1 - cq) \cdots (1 - cq^{k-1})$ and $(c; q)_{\infty} = \prod_{k=0}^{\infty} (1 - cq^k)$, see [6]. We use a criterion of Młotkowski and Szwarc to deduce a set of parameters which guarantees nonnegativity of the linearization coefficients $g(i, j, k)$. The criterion given in [7] fits especially for orthogonality measures supported by a sequence of numbers accumulating at one point. Let us recall this result.

Theorem 1 (Młotkowski and Szwarc). Let $\{P_n\}_{n=0}^{\infty}$ be a sequence of polynomials with $P_0 = 1$ and $P_{-1} = 0$ satisfying the three term recurrence relation

$$x P_n(x) = \alpha_n P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n-1}(x). \quad (10)$$

If the sequence $\{\beta_n\}_{n=0}^{\infty}$ is increasing and the sequence $\{v_n\}_{n=0}^{\infty}$ with

$$v_n = \frac{\alpha_n \gamma_{n+1}}{(\beta_{n+2} - \beta_{n+1})(\beta_{n+1} - \beta_n)} \quad (11)$$

is a chain sequence, then the linearization coefficients are nonnegative.

Note that a sequence $\{u_n\}_{n=0}^{\infty}$ is called a chain sequence if there exists a sequence of numbers $\{g_n\}_{n=0}^{\infty}$, $0 \leq g_n \leq 1$, satisfying $u_n = (1 - g_n)g_{n+1}$. We gain the following result.

Theorem 2. If the parameters a and q with respect to the sequence of little q -Laguerre polynomials $\{l_n(\cdot; a|q)\}_{n=0}^{\infty}$ satisfy

$$\frac{4a}{(1-q)^2[1+aq(2-q)]^2} \leq 1, \quad (12)$$

then the linearization coefficients are nonnegative.

Proof. For to apply the previous theorem we write (6) as

$$(1-x)l_n(x; a|q) = \alpha_n l_{n+1}(x; a|q) + \beta_n l_n(x; a|q) + \gamma_n l_{n-1}(x; a|q) \quad (13)$$

with

$$\alpha_n = A_n, \quad (14)$$

$$\beta_n = (1 - A_n - C_n), \quad (15)$$

$$\gamma_n = C_n. \quad (16)$$

By the transformation $y = 1 - x$ we get

$$y P_n(y) = \alpha_n P_{n+1}(y) + \beta_n P_n(y) + \gamma_n P_{n-1}(y) \quad (17)$$

with $P_n(y) = l_n(1 - y; a|q)$. Such transformation does not influence the linearization coefficients. It is easy to check that a necessary and sufficient condition for $\{\beta_n\}_{n=0}^{\infty}$ to be an increasing sequence is

$$a < \frac{1}{q(2+q)}. \quad (18)$$

Since the constant sequence $\frac{1}{4}, \frac{1}{4}, \dots$ is a chain sequence, by Wall's comparison test for chain sequences [3, Theorem 5.7] a sufficient condition for $\{v_n\}_{n=0}^{\infty}$ to be a chain sequence is $v_n \leq \frac{1}{4}$. A simple computation yields

$$v_n = \frac{a(1-q^n)(1-aq^{n+1})}{(1-q)^2\{1+a[1-q^n(1+q)^2]\}\{1+a[1-q^{n+1}(1+q)^2]\}}, \quad (19)$$

which implies

$$v_n \leq \frac{a}{(1-q)^2[1+aq(2-q)]^2} \quad \text{for all } n \in \mathbb{N}_0. \quad (20)$$

Hence a sufficient condition for $\{v_n\}_{n=0}^{\infty}$ to be a chain sequence is

$$\frac{4a}{(1-q)^2[1+aq(2-q)]^2} \leq 1. \quad (21)$$

It remains to prove that (21) implies (18), but there are elementary arguments. For instance, if $\frac{2}{3} \leq q < 1$ then (21) implies $a \leq \frac{1}{3}$ which yields (18). In case of $0 < q < \frac{2}{3}$ we get by (21) that $a \leq \frac{9}{16}$ and hence (18) is also fulfilled. \square

We should mention that there are parameters q and a , which admit negative linearization coefficients. For instance $g(1, 1, 1) < 0$ if and only if $A_1 + C_1 > A_0$, which is equivalent to

$$q(1 - aq^2) + aq(1 - q) > (1 - aq). \quad (22)$$

The last inequality holds for a close to q^{-1} .

Problem. Determine the range of parameters q and a for little q -Laguerre polynomials, for which nonnegative product linearization holds.

Before we take advantage of our result to prove an approximation theoretic consequence let us make a remark on combinatorics and special functions. Even and Gillis [4] gave the quantity

$$(-1)^{n_1+\dots+n_k} \int_0^\infty e^{-x} \prod_{i=1}^k L_{n_i}^{(0)}(x) dx, \quad (23)$$

where $L_n^{(\alpha)}$, $\alpha > -1$, denote the classical Laguerre polynomials, a combinatorial interpretation. Namely (23) is the number of possible derangements of a sequence composed of n_1 objects of type 1, n_2 objects of type 2, ..., n_k objects of type k . In such a way they have shown the nonnegativity of (23) and as a simple consequence they have proven the nonnegativity of the linearization coefficients of $\{(-1)^n L_n^{(0)}\}_{n=0}^\infty$. This property was reproved by Askey and Ismail [2] using more analytical methods for $\alpha > -1$. They also gave a combinatorial interpretation of

$$\frac{(-1)^{n_1+\dots+n_k}}{\Gamma(\alpha+1)} \int_0^\infty e^{-x} x^\alpha \prod_{i=1}^k L_{n_i}^{(\alpha)}(x) dx, \quad (24)$$

in case of $\alpha = 0, 1, 2, \dots$. Our result concerning the q -analogues of classical Laguerre polynomials is achieved only by means of analytical methods and is without any combinatorial interpretation until now. So it would be of interest if there is a connection with combinatorics, too. The reader is invited to check our results also from this point of view.

3. Little q -Laguerre polynomials and Faber basis

Now we use the fact that nonnegative linearization yields the boundedness property (5) for to prove that certain little q -Laguerre polynomials constitute a Faber basis in $C(S_q)$.

Theorem 3. *If the parameters a and q with respect to the sequence of little q -Laguerre polynomials $\{l_n(\cdot; a|q)\}_{n=0}^\infty$ satisfy*

$$\frac{4a}{(1-q)^2[1+aq(2-q)]^2} \leq 1, \quad (25)$$

then $\{l_n(\cdot; a|q)\}_{n=0}^\infty$ constitutes a Faber basis in $C(S_q)$.

Proof. Let π denote the orthogonality measure. We have

$$\pi(\{q^k\}) = \frac{(aq)^k}{(q; q)_k} = \frac{(aq)^k}{(1-q)(1-q^2)\cdots(1-q^k)}, \quad k \in \mathbb{N}_0, \quad (26)$$

and $\pi(\{0\}) = 0$. The corresponding orthonormal polynomials are given by

$$p_n(\cdot; a|q) = \sqrt{\frac{(aq; q)_\infty (aq; q)_n}{(aq)^n (q; q)_n}} l_n(\cdot; a/q). \quad (27)$$

Let $K_n(x, y)$ denote the kernel

$$K_n(x, y) = \sum_{k=0}^n p_k(x; a|q) p_k(y; a|q). \quad (28)$$

For proving that the sequence $\{l_n(\cdot; a|q)\}_{n=0}^{\infty}$ constitutes a Faber basis in $C(S_q)$ it is necessary and sufficient to show

$$\sup_{x \in S_q} \int_{S_q} |K_n(x, y)| d\pi(y) \leq C \quad \text{for all } n \in \mathbb{N}_0, \quad (29)$$

see for instance [9]. For this purpose we split the integration domain into two parts $[0, q^n]$ and $[q^n, 1]$. Using $\max_{x \in S_q} |p_n(x; a|q)| = p_n(0; a|q)$ we deduce

$$\int_0^{q^n} |K_n(x, y)| d\pi(y) \leq K_n(0, 0) \pi([0, q^n]) = \mathcal{O}((aq)^{-n}) \mathcal{O}((aq)^n) = \mathcal{O}(1). \quad (30)$$

For investigating the second part we use in case of $x \neq y$ the Christoffel–Darboux formula

$$K_n(x, y) = \sqrt{A_n C_{n+1}} \frac{p_{n+1}(x; a|q) p_n(y; a|q) + p_n(x; a|q) p_{n+1}(y; a|q)}{x - y} \quad (31)$$

and $|x - y| \geq (1 - q)y$ for to get

$$\begin{aligned} \int_{q^n}^1 |K_n(x, y)| d\pi(y) &\leq \frac{\sqrt{A_n C_{n+1}} p_{n+1}(0; a|q)}{1 - q} \int_{q^n}^1 \frac{|p_n(y; a|q)|}{y} d\pi(y) \\ &\quad + \frac{\sqrt{A_n C_{n+1}} p_n(0; a|q)}{1 - q} \int_{q^n}^1 \frac{|p_{n+1}(y; a|q)|}{y} d\pi(y) + \sum_{k=0}^n p_k(x; a|q)^2 \pi(\{x\}). \end{aligned} \quad (32)$$

First, note that

$$\sum_{k=0}^n p_k(x; a|q)^2 \pi(\{x\}) \leq 1, \quad (33)$$

see [1, Theorem 2.5.3, p. 63]. Next, we compute

$$A_n C_{n+1} = q^n (1 - aq^{n+1}) aq^{n+1} (1 - q^{n+1}) = \mathcal{O}(q^{2n}) \quad (34)$$

and

$$p_n(0; a|q) = \mathcal{O}((aq)^{-n/2}). \quad (35)$$

By Cauchy–Schwarz inequality we get

$$\begin{aligned} \int_{q^n}^1 \frac{|p_n(y; a|q)|}{y} d\pi(y) &\leq \left(\int_{q^n}^1 \frac{1}{y^2} d\pi(y) \right)^{1/2} = \left(\sum_{k=0}^n \frac{(aq)^k}{(q; q)_k q^{2k}} \right)^{1/2} \\ &\leq \left(\frac{1}{(q; q)_\infty} \sum_{k=0}^n \left(\frac{a}{q} \right)^k \right)^{1/2} = \mathcal{O} \left(\left(\frac{a}{q} \right)^{n/2} \right), \end{aligned} \quad (36)$$

which completes the proof. \square

References

- [1] N.I. Akhiezer, The Classical Moment Problem, Hafner Publication, New York, 1965.
- [2] R. Askey, M.E.H. Ismail, Permutation problems and special functions, Canad. J. Math. 28 (1976) 853–874.

- [3] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
- [4] S. Even, J. Gillis, Derangements and Laguerre polynomials, *Math. Proc. Cambridge Philos. Soc.* 79 (1976) 135–143.
- [5] G. Faber, Über die interpolatorische Darstellung stetiger Funktionen, *Jahresber. Deutsch. Math. Verein.* 23 (1914) 192–210.
- [6] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q -analogue, Technical Report 98-17, Delft University of Technology, 1998.
- [7] W. Młotkowski, R. Szwarc, Nonnegative linearization for polynomials orthogonal with respect to discrete measures, *Constr. Approx.* 17 (2001) 413–429.
- [8] J. Obermaier, A continuous function space with a Faber basis, *J. Approx. Theory* 125 (2003) 303–312.
- [9] J. Obermaier, R. Szwarc, Polynomial bases for continuous function spaces, in: M.G. de Bruin, D.H. Mache, J. Szabados (Eds.), Trends and Applications in Constructive Approximation, International Series of Numerical Mathematics, Birkhäuser, Basel, 2005, pp. 195–205.
- [10] A. Schwartz, l^1 -Convolution algebras: representation and factorization, *Z. Wahrsch. Verw. Gebiete* 41 (1977) 161–176.
- [11] I. Singer, Bases in Banach Spaces I, Springer, Heidelberg, New York, 1971.