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Abstract. Let {P,}~= o be a system of orthogonal polynomials. LASSER [5] observed 
that if the linearization coefficients of {Pn}~= 0 are nonnegative then each of the P, (x) is 
a linear combination of the Tchebyshev polynomials with nonnegative coefficients. The 
aim of this paper is to give a partial converse to this statement. We also consider the 
problem of determining when the polynomials P, can be expressed in terms of Q~ with 
nonnegative coefficients, where {Q~};= 0 is another system of orthogonal polynomials. 
New proofs of well known theorems are given as well as new results and examples are 
presented. 

Introduction 

The  a im o f  this p a p e r  is to give a new cri terion for  the nonnega t ive  
l inear izat ion o f  o r t h o g o n a l  polynomials .  This  cri ter ion is related to the 
ques t ion  whe ther  po lynomia l s  can  be expressed in te rms o f  the 
Tchebyshev  po lynomia l s  with nonnega t ive  coefficients. The  relat ion 
be tween l inear izat ion coefficients and  connec t ion  coefficients relative to 
the Tchebyshev  po lynomia l s  was s ta ted by  LASSER [5] but  can be t raced 
to NEVAI'S w o r k  [7]. 

In  the second section we reprove  wel l -known theorems  concern ing  
connec t ion  coefficients. We  also prov ide  some new results and  exam-  
ples. 

1. Linearization Coefficients 

Let  P,(x) be the po lynomia l s  o r t h o g o n a l  with respect  to p robab i l i ty  
measu re  dp(x) on the real line, normal ized  so tha t  the leading coef- 
ficients are positive. The  P,(x) satisfy a recurrence re la t ion 

x P n ( x )  ~- ~nPn+l (X) -~ ~nPn(X) -~- O[ npn_l(X) ,  (1) 
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where an and ~'n are positive. The product  Pn (x)Pm (X) is a polynomial  
of  degree n + m, so it can be expressed in the form 

n + rn 
Pn (x) Pm (X) = ~ a (n, m, k) P~ (x). (2) 

k = In - ml 

The coefficients in (2) are called the linearization coefficients of the 
polynomials Pn (x). 

Let T, (x) be the Tchebyshev polynomials of  the first kind, i.e. 

Tn (cos 0) = cos n 0. 

By the well known cosine identity the Tchebyshev polynomials satisfy 

1Tn+l(x) + 1 xTn(X)=- ~ -~rn_l(x ), n>~ 1. 

Let us consider the connection coeff• from Tn (x) to Pn (x). Let 

Pn (x) = ~, c (n, m) T m (x). (3) 
ra=0 

Following NEVAI [7] we say that a measure dp (x) belongs to the class 
M(0,  1) if 

1 
l i m a  n = n~lim ~n = 2 ,  (4) 

lim fin = 0. (5) 
n~oo 

LASSER [5] observed that  NEv~a's result ([7], Theorem 4.2.13) implies 
that  if dll(x)eM(O, 1), then the nonnegativity of  the linearization 
coefficients a (n, m, k) from (2) implies that  of the connection coef- 
ficients c (n, m) from (3). We are going to show that the result has a 
partial converse. 

Let Pn(X) be the polynomials or thonormal  with respect to the 
measure d/t (x). In this case they satisfy 

X en (X) ~- ~n en +1 (x)  ul- ~n Pn (x)  -~- ~n -1 Pn -1 (x) .  (6)  

Theorem 1. Let the orthogonal polynomials Pn(x) satisfy (6) and 
dl2(x)eM(O, 1). Assume that 

(i) the sequences Zn and fin are decreasing; 
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(ii) the connection coefficients c (n, m) in (3) are nonnegative. 
Then the linearization coefficients a (n, m, k) in (2) are also nonnegative. 

Proof. Let us renormalize the polynomials P, (x) (i.e. multiply each 
P, (x) by a positive coefficients) in two different ways. Let P, (x) be the 
monic version of P, (x), and/~,  (x) be the version satisfying 

f ~  x" (x) d~(x) = 1. 

An easy verification gives that  

x b. (x) = ~o +, (x) + ~, ~. (x) + ~.~_, b. _~ (x), n >/0, (7) 

xP . (x )=~ .~ .+l (x )+~oPo(x )+~o_~(x ) ,  n > 0 .  (8) 

Fix a natural  number  k, and define the matrix u (n, m) by 

Since Pm(x) 
respectively, 
c (n, m, k). Without  loss of  generality we can assume that  n 1> m. We 
will prove that  u(n, m) >! O, and u(n - 1, m) - u(n, m + 1) ~< 0, by 
induction on the difference k - (n - m). If k - (n - m) < 0 then 
u (n, m) = 0 by (9). Thus we can assume that k - (n - m) ~> 0. Observe 
that  (7), (8) and (9) imply 

u (n, m) = J_~ Pm (X) P, (x) Pk (x) d/l (x). (9) 

and P,(x) are positive multiples of Pm (X) and P,(x) ,  
nonnegativity of u(n, m) is equivalent to that  of  

= , ~ u ( n + l , m ) + f l ,  u ( n , m ) + u ( n - l , m ) .  

This gives 

2 u(n -- 1, m) -- u(n, m + 1) = (tim -- fl,)u(n, m) + O~m_l -- )~2)u(n, m -- 1) 

+ ) 2 [ u ( n ,  m -  1 ) -  u(n + 1, m)]. (10) 

Assume that  u(s, t + 1) I> 0, and u ( s -  1, t) - u(s, t + 1) >/0, for 
s > t a n d k -  ( s -  t) ~< l. Let n > m a n d k -  (n - m) = l +  1. Then by 
(10), the assumptions (i), (ii) and by induction hypothesis we get 

u ( n - l , m ) - u ( n , m +  1)~>0. (11) 

22* 

u(n, m + 1) + ~ u ( n ,  m) + ,L2,_~u(n, m - 1) = 
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Define the sequence 

ar = u (k  + r, l + r). 

By (11) the sequence a~ is decreasing. Let a~ = lim~_, ~ a ,  We will show 
that am is nonnegative. This will imply ar >10. 

Observe that  by (9) a~ is a positive multiple of ~ Pk +r Pt +~ Pk d/l. Thus 

ar = crk, l, r f~-o~ Pk + r (X) Pl + r (X) Pk (X) d~l(X)' 

where O'k, t,~ > 0. Now using [7] ((3), p. 45) we get 

.~m I Pk+r(X)PI+r(X)Pk(x)d]J(X)= ~_g Pk(x) Tk-I(X)(] - x2)-l/2dx" 
r ~d-~ 1 

The last integral is exactly the connection coefficient e (k, k - / ) ,  which 
by assumption is nonnegative. Summarizing the sequence ar is the 
product  of a positive sequence o-k, l,r and a sequence having non- 
negative limit. Thus a~ >f 0. This completes the p roof  of the theorem. 

Example 1. Consider the Gegenbauer polynomials C, z (x). Let ~z (x) 
denote the or thonormal  polynomials. Then 

/ e:+,(x) + 
x C ~ ( x ) = ~ / 4 ( n + Z + l ) ( n + Z )  

n (n + 2Z - 1) C,x_I (x). 
+ 4 ( n + Z ) ( n + 2 - 1 )  

When 0 ~< Z ~< 1, then the sequence 

•f4(n + 1)(n + 2~) 
Z" = (n + ;t + 1) (n + ,~) 

is decreasing. Moreover since T, (x) = C ~ (x), we get by Example 1 that  
the connection coefficients from T~ (x) to C2 (x) are nonnegative. Thus, 
by Theorem 1 also the linearization coefficients of C,~(x) are non- 
negative for 0 ~< Z ~< 1. The case Z > 1 is more handy and can be 
derived from ASKEV'S result ([2], Theorem 5.2; see also [9] and [10]). 
Actually the linearization coefficients for the Gegenbauer polynomials 
are known explicitely (see [2], Lecture 5). 
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2. Connection Coefficients 

323 

Let {P,}~= 0 and {Q,}~= 0 be polynomials orthogonal with respect to 
different measures dp (x) and dr(x) respectively, on the real line. Every 
polynomial can be represented as a linear combination of  the polyno- 
mials Q, (x). In particular we have 

P , ( x ) =  ~ c (n ,m)  Q,,(x), n = 0 ,  1 ,2 . . . . .  (12) 
m = 0  

The coefficients c (n, m) from (12) are called the connection coefficients 
from the Q,, s to the Pn s. 

We are interested in finding conditions ensuring the nonnegativity 
of the connection coefficients. One way is to impose conditions on the 
coefficients in the recurrence formulas that the polynomials P, and Q, 
satisfy. This was done in [1] and [8], but applications were rather 
modest, however in some cases that was the only method available so 
far (see [8], Corollary 1). 

Another  direction is to explore the relation between the measures 
dp (x) and dv (x). To be more specific, it was being assumed that dp (x) 
was absolutely continuous with respect to dr(x), and conditions were 
imposed on the density function to secure c (n, m) were nonnegative. 
MICCHeLI [6] showed that if the derivative of  this density is a complete- 
ly monotonic function on the positive half-axis then the connection 
coefficients are nonnegative. He also proved that the condition is 
necessary provided that the conclusion holds for every measure dp (x). 

One of the tools which was used for instance by MiccrmLi [6] was 
the following result of  Karlin and McGregor which we would like to 
furnish with a new proof. 

Theorem 2. (KARLIN and MCGREGOR, [4]). Let dp (x) be aprobability 
measure on the halfline [0, + ~ ) .  Let Pn(x) be the orthogonal polyno- 
mials with respect to dp (x), normalized so that Pn (0) > O. Then 

fo ~e- 'xp , (x)P~(x)dp(x)>O,  (13) 

for every t > O. 

Proof We start by showing the weak inequality in (13) which is 
sufficient for further applications. First we consider a measure with 
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bounded support.  Let dp (x) be supported on the interval [0, a]. Set 
dlt  a ( x )  = dlt  (a  - x ) .  Then we have 

f0 f0 e -t~ p. (x) Pm (x) d/l (x) = e -'~ P, (x) P,. (x) d/~ (x) = 

= e -t(a - ~) p ,  (a - x )  Pm (a -- X) d]l.l a ( x )  = 

fO a 
= e -t~ e ' ~ P . ( a  - x ) P m ( a  - x )d la~ (x )  = 

= e 7-., - -  x k p n ( a - x ) P m ( a - x ) d c t ~ ( x )  
J0 k = o k !  

We will show that every term of  the series is nonnegative, and the terms 
k = Jn - ml and k = n + m are positive. To this end observe that  the 
polynomials 

L(x)  = t'.(a - x) 

are orthogonal  with respect to the measure dlt a ( x )  and have positive 
leading coefficients as they are normalized by fin (a) > 0 and the corres- 
ponding measure is supported on [0, a]. Hence by the Favard theorem 
they satisfy a recurrence formula 

x f f , ( x ) = ) , n L + l ( x ) + f l . L ( x ) + a n L _ l ( x ) ,  (14) 

with )'n and an positive. Multiplying (14) by f in (x)  and integrating 
against d/t a (x) we get 

Thus the coefficients ft, are nonnegative. Applying (14) succesively k 
times we obtain that  the integral 

fo k L (x) P~ (x) dm (x) X 

vanishes for k < I n -  rnl and it is strictly positive otherwise. This 
proves (13) in case of  compactly supported measures. 

If  dl~(x)  is an arbitary measure supported on [0, oo) then the 
sequence of  measures d laN(X)=Zto ,  m ( x ) d l t ( x )  converges to d # ( x )  
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weakly. Let P,,N (X) be the polynomials orthogonal with respect to the 
measure dpN(X), such that P,,N (0) = 1. Since the moments of  d f lu  (X)  

tend to the corresponding moments of  dp (x) and the coefficients of  
orthogonal polynomials depend only on the moments of  the measure 
(see [3], Theorem 3.1), we have 

f0 ;0 e - t x p , ( x ) P m ( x ) d p ( x )  = lim e- tXP n N(x) Pm, N(x) dI~N(X ). (16) 
N ~  co ' 

This shows that the integral in (13) is nonnegative. Now we are going 
to prove that actually we have strict inequality in (13). To this end 
observe that the polynomials Pn (x) satisfy the following. 

X Pn ( x )  = - )t n Pn + 1 ( x )  q- fin Pn (X)  - -  Ot n Pn -1 (x), (17) 

where }% an > 0, except for a0 = 0. Let m < n. Consider the function 

f0 f ( t )  = e -x tp ,  (x) Pm (x) dll (x). 

We have that f ( O  >10. Assume that f(to) = 0, at some point to. Then 
f ( t )  has a minimum at to. Thus f ' ( to)  = 0. Observe that by (17) we have 

f ,  (to) -xto,- ,.. = -- e [x r ,  (x)] P,, (x) dp (x) = 

fO + c~ -- x t 0 = Yn e P, + 1 (x) P,, (x) dla (x) - 

fO ~176 - -x t  0 -- ft. e B. (x) P~ (x) dp (x) + 

fo +~ + a, e -~to Pn -1 (x) I'm (x) dtl (x) 

The first and the third integral are nonnegative by the first part of  the 
proof, while the second integral vanishes by our assumption. As 
f '  (to) = 0, we get that 

O!+ e e.  - i  (x) Pm (x) dll (x) = O. 
oo 

t O 
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We can now repeat the argument several times till we get 

fO ~ --Xto rt e -I-" m (X) Pm (x) dtz (x) = O, 

which gives the contradiction. 
Next we are going to give an alternative proof  to the following result 

of  Wayne Wilson. Our proof  doesn't make use of  the Stieltjes theorem 
on matrices with negative entries off the main diagonal. 

Theorem 3. (WILSON, [11]). Let P,(x) and Q,(x) be the polynomials 
orthogonal with respect to dlt (x) and dr(x) respectively, having positive 
leading coefficients. I f  

~_ ~ Q . ( x ) Q m ( x ) d p ( x )  <~ O, n ~ m, (18) 

then the connection coefficients in (12) are nonnegative. 
Theorem 3 is a straightforward consequence of the following 

proposition. 

Proposition 1. Under assumptions of  Theorem 3 we have 

n - - 1  

Q, (x) = b (n, n) P, (x) + ~. b (n, m) Pm (X), 
m = O  

n = O ,  1,2, ..., (19) 

where b(n, n) > 0 and b(n, m) <. O, f o r m  = O, 1, 2, ..., n - 1. 

Proof. Let n > m. Without loss of generality we can assume that 
Pn (x) are orthonormal with positive coefficients of  the highest power 
of  x. Then 

0 >~ Q, (x) Q,, (x) dp (x) = Q, (x) b (m, k) Pk (X) dlt (x) = 
oo k = O  

= b (m, k) Q, (x) Pk (x) dp (x) = b (m, k) b (n, k). 
k = 0  oo k = 0  

We prove that b (n, m) is negative by induction on n and m. First 
observe that b (n, 0) ~< 0, because 

b (n, O) = Q, (x) d# (x) ~< O. 
co 
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Observe also that  b (n, n) > 0 as the leading coefficients of  both sides 
of (19) have the same sign. 

Assume that  b (l, k) is nonpositive for all l less than n and k < l; and 
that  b (n, k) is nonpositive for all k less than m. Then 

m m - - ]  

01> ~ b(m,k) b (n, k) = b (m, m) b (n, m) + ~ b(m,k) b(n,k)~> 
k = 0  k = 0  

i> b (m, m) b (n, m). 

As b (m, m) is positive we get b (n, m) ~< 0. 
The Wilson theorem yields the following (cf. [8], remarks preceding 

the Example). 

Theorem 4. Let dlz (x) = h (x) dv(x), and 

h(x) = h o -  ~ h .x  n, 
n = l  

where ho, hi, h2 . . . .  are nonnegative and let the series be uniformly 
convergent on the support of  the measure dv(x). Let Q.(x) be the 
polynomials orthogonal with respect to dv(x) with positive leading coef- 
ficients. Assume that in the recurrence formula 

x Q. (x) = ?'n Q. +1 (x) + fl~ Q~ (x) + an Q~ -1 (x), (20) 

the coefficients ft. are nonnegative (the coefficients an and 7"~ are always 
nonnegative due to the fact that the leading coefficients are positive). Then 

f ~ Q. (x) Q.~ (x) dlz (x) <<. O, n r m. 
oo 

In particular, the conclusion holds if  the measure dr(x) is symmetric 
about O, i.e. d v ( - x )  = dr(x). 

Proof. Let n > m. Then 

L Q.(x)Qm(x)dv(x)  = Q.(x) Qm(x)h(x)dl~(x) = 
- -00  

= ho Q. (x) Qm (x) dr(x) - x k Q. (x) Qm (x) dv (x) = 

= - hk Q. (x) Qm (x) dr(x).  
k = O  oo 
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Applying (20) k times and using the orthogonali ty relations we get that 
the integrals 

f ~ x k Q, (x) Qm (x) dv(x) 

are nonnegative. This completes the proof. 
Combining Wilson's theorem and Theorem 4 gives the following. 

Corollary 1. Let P, (x) and Q, (x) be the polynomials orthogonal with 
respect to the measures dp (x) and dr(x) respectively. Under the assump- 
tions of  Theorem 4, the connection coefficients in (12) are nonnegative. 

Example 2. Let C,Z(x) and C, ~ be the Gegenbauer polynomials 
corresponding to the measures dlt(x)=(1-x2)~+-~ and 
dr(x) (1 2 a- 0/2) dx. = - x ) +  Assume that  0 < r r = a - 2 < l .  Put  
h (x) = (1 - x2) a- 4. Then 

As o-is between 0 and 1, the binomial coefficients are positive. Thus the 
assumptions of  Corollary 1 are satisfied and we have 

C, ~ (x) = ~ c (n, m) C~ (x), 
m=0 

where c (n, m) ~> 0. Iterating this we can get that  the same is true if only 
a > ~ .  
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