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Abstract. Let {P,},°_, be a system of orthogonal polynomials. LASSER {5] observed
that if the linearization coefficients of {#,}7_, are nonnegative then each of the P, (x) is
a linear combination of the Tchebyshev polynomials with nonnegative coefficients. The
aim of this paper is to give a partial converse to this statement. We also consider the
problem of determining when the polynomials P, can be expressed in terms of @, with

©

nonnegative coefficients, where {Q,}7_, is another system of orthogonal polynomials.
New proofs of well known theorems are given as well as new results and examples are
presented.

Introduction

The aim of this paper is to give a new criterion for the nonnegative
linearization of orthogonal polynomials. This criterion is related to the
question whether polynomials can be expressed in terms of the
Tchebyshev polynomials with nonnegative coefficients. The relation
between linearization coefficients and connection coefficients relative to
the Tchebyshev polynomials was stated by LASSER [5] but can be traced
to NEVAI's work [7].

In the second section we reprove well-known theorems concerning
connection coefficients. We also provide some new results and exam-
ples.

1. Linearization Coefficients

Let P,(x) be the polynomials orthogonal with respect to probability
measure du(x) on the real line, normalized so that the leading coef-
ficients are positive. The P,(x) satisfy a recurrence relation

x Py (x) = 7, P11 (%) + B, P, (%) + @, P, (%), M
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where @, and y, are positive. The product P,(x) P,,(x) is a polynomial
of degree n + m, so it can be expressed in the form

n+m

P,(x)P,(x)= Y a(n m, k)P(x). @

k=|n—m|

The coefficients in (2) are called the linearization coefficients of the
polynomials P, (x).
Let T,(x) be the Tchebyshev polynomials of the first kind, i.e.

T, (cos 8) = cosn 6.
By the well known cosine identity the Tchebyshev polynomials satisfy

KT =T ()5 Toa (), > 1.

Let us consider the connection coefficients from 7, (x) to P,(x). Let

n

P,(x)= Y cn, mT,(x). €)

m=0

Following NEvAI {7] we say that a measure du(x) belongs to the class
MO, 1) if

1

lim g, = lim y, = ~2-, @)
lim B, = 0. (5)

n-—»oo

LAssER [5] observed that NEvAT's result ([7], Theorem 4.2.13) implies
that if du(x)e M (0, 1), then the nonnegativity of the linearization
coefficients a(n, m, k) from (2) implies that of the connection coef-
ficients ¢ (n, m) from (3). We are going to show that the result has a
partial converse.

Let P,(x) be the polynomials orthonormal with respect to the
measure du(x). In this case they satisfy

xPn(x)=A’nPn+l(x)+ﬁnPn(x)+}’n~1Pn—l(x)‘ (6)

Theorem 1. Let the orthogonal polynomials P,(x) satisfy (6) and
du(x)e M (0, 1). Assume that
(1) the sequences A, and f3, are decreasing;
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(ii) the comnection coefficients c(n, m) in (3) are nonnegative.
Then the linearization coefficients a(n, m, k) in (2) are also nonnegative.

Proof. Let us renormalize the polynomials P,(x) (i.e. multiply each
P,(x) by a positive coefficients) in two different ways. Let P, (x) be the
monic version of P,(x), and P,(x) be the version satisfying

j x" P (x) du(x) = 1.

An easy verification gives that
xpn(x)=ﬁn+l(x)+ﬂnpn(x)+A’nz—1pn—l(x)7 n>05 (7)
xpn(x)=lrfpin—#l(x)+18n15n(x)+Pn—l(x)a n>0' (8)

Fix a natural number &, and define the matrix u(n, m) by

0

u(n, m) = f B () B (3) B () du (). ©)

— o0

Since P, (x) and P,(x) are positive multiples of P, (x) and P,(x),
respectively, nonnegativity of u(n, m) is equivalent to that of
¢ (n, m, k). Without loss of generality we can assume that n > m. We
will prove that u(n, m) =0, and u(n — 1, m) —u(n, m + 1) <0, by
induction on the difference k — (n —m). If k — (n —m) <0 then
u(n, m) = 0 by (9). Thus we can assume that £k — (n — m) = 0. Observe
that (7), (8) and (9) imply

u(m,m~+ 1)+ Bu(n, my+ A:_ju(n,m—1)=
=u(m+1, m)+ Buln, m)+uln—1, m).
This gives
up—1,m)—um,m+1)= (B, — Blum,m+ (A, — )u@,m~1)
+ Aun,m— 1) —um+ 1, m)]. (10)

Assume that u(s, t+ 1) >0, and u(s— 1, t) —u(s, t + 1) =0, for

s>tandk—(—8)< /[ Letn>mand k — (n — m) = [+ 1. Then by

(10), the assumptions (i), (ii) and by induction hypothesis we get
un—1,m)y—u@m m+1)=0. (1n

22+
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Define the sequence
a=ulk+r, l+7r).

By (11) the sequence g, is decreasing. Let a,, = lim, _,  a,. We will show
that a,, is nonnegative. This will imply a, > 0.
Observe that by (9) g, is a positive multiple of { P, , , P, , P, du. Thus

4=, f P () Py () P () du (),

- 00

where o; ;, > 0. Now using [7] ((3), p. 45) we get

0

lim P ,(x)P ., (x)P(x)du(x) = }J_lpk(x)];c_l(x) (1 — x?)" 2 dx.

r—o J_

The last integral is exactly the connection coefficient ¢ (k, k — ), which
by assumption is nonnegative. Summarizing the sequence a, is the
product of a positive sequence oy ;,, and a sequence having non-
negative limit. Thus a,, = 0. This completes the proof of the theorem.

Example 1. Consider the Gegenbauer polynomials CZ(x). Let C*(x)
denote the orthonormal polynomials. Then

xCN”l(x)=\/ (nt D +24) Clo (@) +
’ 4m+A+ D@+

-I-\/ nn+21-1) & ().
4n+A)(n+21-1)

When 0 < A < 1, then the sequence

/1:\/ (n+ D+ 24)
" dn+A+1Dn+ 1)

is decreasing. Moreover since T, (x) = C{(x), we get by Example 1 that
the connection coefficients from 7, (x) to C}(x) are nonnegative. Thus,
by Theorem 1 also the linearization coefficients of C?(x) are non-
negative for 0 < A < 1. The case 4> 1 is more handy and can be
derived from ASKEY’s result ([2], Theorem 5.2; see also [9] and {10]).
Actually the linearization coefficients for the Gegenbauer polynomials
are known explicitely (see [2], Lecture 5).
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2. Connection Coefficients

Let {P}*_, and {Q,}7., be polynomials orthogonal with respect to
different measures du (x) and dv(x) respectively, on the real line. Every
polynomial can be represented as a linear combination of the polyno-
mials Q,(x). In particular we have

n

P, (x) = Zoc(n, mQ,(x), n=0,1,2, ... (12)

m=

The coefficients ¢ (n, m) from (12) are called the connection coefficients
from the Q,s to the P,s.

We are interested in finding conditions ensuring the nonnegativity
of the connection coefficients. One way is to impose conditions on the
coefficients in the recurrence formulas that the polynomials P, and Q,
satisfy. This was done in [1] and [8], but applications were rather
modest, however in some cases that was the only method available so
far (see [8], Corollary 1).

Another direction is to explore the relation between the measures
du(x) and dv(x). To be more specific, it was being assumed that du (x)
was absolutely continuous with respect to dv(x), and conditions were
imposed on the density function to secure ¢ (n, m) were nonnegative.
MiccHELI [6] showed that if the derivative of this density is a complete-
ly monotonic function on the positive half-axis then the connection
coefficients are nonnegative. He also proved that the condition is
necessary provided that the conclusion holds for every measure du (x).

One of the tools which was used for instance by MICCHELI [6] was
the following result of Karlin and McGregor which we would like to
furnish with a new proof.

Theorem 2. (KARLIN and MCGREGOR, [4]). Let du (x) be a probability
measure on the halfline [0, + o). Let P,(x) be the orthogonal polyno-
mials with respect to du(x), normalized so that P,(0) > 0. Then

re—txp,,(x) P, (x)du(x) > 0, (13)

for every t > 0.

Proof. We start by showing the weak inequality in (13) which is
sufficient for further applications. First we consider a measure with
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bounded support. Let du(x) be supported on the interval [0, a]. Set
du,(x) = du(a — x). Then we have

a

L " e P (x) By () du () = f e~ P,(x) P, (1) du (x) =

0

- Jae_“""”Pn(a—x)Pm(a—x)dua(x) =
0
et f "¢t Py(a — x) P (@ — x) dpty () =
0

© Lk
=e——taz _t__

P kama—xm,,(a—xwua(x)

We will show that every term of the series is nonnegative, and the terms
k = |n —m| and k = n + m are positive. To this end observe that the
polynomials

B,(x)=P(a—x)

are orthogonal with respect to the measure du,(x) and have positive
leading coefficients as they are normalized by 2, (a) > 0 and the corres-
ponding measure is supported on [0, ¢]. Hence by the Favard theorem
they satisfy a recurrence formula

xB,(x)= 1P 1)+ BB (x) + . B, (x), (14
with y, and @, positive. Multiplying (14) by P,(x) and integrating
against dy,(x) we get

A= ( [, (x))*l [ @, (15)

Thus the coefficients S, are nonnegative. Applying (14) succesively k
times we obtain that the integral

f " x4 B () B () o (3)
0

vanishes for k < |n — m| and it is strictly positive otherwise. This
proves (13) in case of compactly supported measures.

If du(x) is an arbitary measure supported on [0, co) then the
sequence of measures duy(x) = x5 (X)du(x) converges to du(x)



Linearization and Connection Coefficients of Orthogonal Polynomials 325

weakly. Let P, y(x) be the polynomials orthogonal with respect to the
measure dpy(x), such that P, ,(0) = 1. Since the moments of duy(x)
tend to the corresponding moments of du(x) and the coefficients of
orthogonal polynomials depend only on the moments of the measure
(see [3], Theorem 3.1), we have

Jme_txPn(X)Pm(x)dﬂ(x) = z\}l—{n ,[Ooe’u nn (X) By (X) dpiy (). (16)

This shows that the integral in (13) is nonnegative. Now we are going
to prove that actually we have strict inequality in (13). To this end
observe that the polynomials P, (x) satisfy the following.

XB(x)==%F () + B, Ex) ~ o, P (x), (17

where 7,, a, > 0, except for ¢, = 0. Let m < n. Consider the function

+

1) = j e P,(x) Py (x) du ().

0

We have that f(#) > 0. Assume that f(¢,) = 0, at some point #,. Then
S (#) has a minimum at ¢,. Thus f7(#,) = 0. Observe that by (17) we have

+

() = — j €0 x B, ()] By (x) dt () =

0

= nL Ce TR () Pa) du ()
-~ ﬂnrmf—”"‘“a (%) P (x) dpt (x) +
0

+ a,,fwe‘”"z’,,_l(x)z’m () dt (%)
¢

The first and the third integral are nonnegative by the first part of the
proof, while the second integral vanishes by our assumption. As
J'(t) =0, we get that

rw e " P,_;(x) P, (x)du(x) = 0.
0
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We can now repeat the argument several times till we get

f e P () By () du(x) = 0,

which gives the contradiction.

Next we are going to give an alternative proof to the following result
of Wayne Wilson. Our proof doesn’t make use of the Stieltjes theorem
on matrices with negative entries off the main diagonal.

Theorem 3. (WiLsoN, [11]). Let P,(x) and Q,(x) be the polynomials
orthogonal with respect to du(x) and dv(x) respectively, having positive
leading coefficients. If

f 0,000 du(x) <0, n#m, 1)

then the connection coefficients in (12) are nonnegative.
Theorem 3 is a straightforward consequence of the following
proposition.

Proposition 1. Under assumptions of Theorem 3 we have

-1

Q.(x)=b(n, n)P,(x) + nzob(n, m)P,(x), n=0,1,2, .., (19)

where b(n, n) >0 and b(n, m) <0, form=0,1,2, ..., n— 1.

Proof. Let n > m. Without loss of generality we can assume that
P, (x) are orthonormal with positive coefficients of the highest power
of x. Then

0> f’ 0,(x)Q,,(x)du(x) = LOO Q,,(x)kiob(m, k) P, (x) du (x) =

= kio b(m, k) J _w 0, (%) P (x) du(x) = kio b(m, k)b(n, k).

We prove that b(n, m) is negative by induction on » and m. First
observe that b (n, 0) < 0, because

b, 0>=r 0, () du(x) < 0.
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Observe also that b(n, 1) > 0 as the leading coefficients of both sides
of (19) have the same sign.

Assume that b (/, k) is nonpositive for all /less than » and k£ < /; and
that b (n, k) is nonpositive for all k£ less than m. Then

m m— |
0= > b(m, k)b(n, k) =b(m, m)b(n,m) + Y. b(m, k)b(n, k) >
k=10 k=0
= b(m, m)b(n, m).

As b(m, m) is positive we get b (n, m) < 0.
The Wilson theorem yields the following (cf. [8], remarks preceding
the Example).

Theorem 4. Let du(x) = h(x)dv(x), and
h(x)=hy— Y, h,x"
a=1

where hy, hy, h,y, ... are nonnegative and let the series be uniformly
convergent on the support of the measure dv(x). Let Q,(x) be the
polynomials orthogonal with respect to dv(x) with positive leading coef-
ficients. Assume that in the recurrence formula

x0,(¥) = %,0n 1 (¥) + B,0.(x) + 0,0, (%), (20)

the coefficients B, are nonnegative (the coefficients a, and ¥, are always
nonnegative due to the fact that the leading coefficients are positive). Then

waAﬂQAﬂWK@<O,n#nL

In particular, the conclusion holds if the measure dv(x) is symmetric
about 0, i.e. dv(—x) = dv(x).

Proof. Let n > m. Then

J_ 0, (%) @, (x) dv(x) = fo 0, (%) @ (X) h (x) dpi (x) =

oCc

x£ 0, (x) 0, (x) dv (x) =

M'@m%mwm—imf
—w K=o

|

~Z@fﬂgmmmwm.

k=0 ~
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Applying (20) & times and using the orthogonality relations we get that
the integrals :

f x* 0, () O () dv (%)

are nonnegative. This completes the proof.
Combining Wilson’s theorem and Theorem 4 gives the following.

Corollary 1. Let P,(x) and Q, (x) be the polynomials orthogonal with
respect to the measures du(x) and dv(x) respectively. Under the assump-
tions of Theorem 4, the connection coefficients in (12) are nonnegative.

Example 2. Let C}(x) and C? be the Gegenbauer polynomials
corresponding to the measures du(x)= (1 —x*2 " "dx and
dv(x) = (1 — x»)2- P dx. Assume that 0<o=a—A<1. Put
h(x) = (1 — x?)*"* Then

h(x)=1— i <")x".

n=1 \H

As ois between 0 and 1, the binomial coefficients are positive. Thus the
assumptions of Corollary 1 are satisfied and we have

n

Cr(x)= 3, cln, m)Ch(x),

m=90

where ¢ (n, m) > 0. Iterating this we can get that the same is true if only
a> A
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