ORTHOGONAL POLYNOMIALS AND A DISCRETE BOUNDARY VALUE PROBLEM I*

RYSZARD SZWARC†

Abstract. Let $\{P_n\}_{n=0}^{\infty}$ be a system of orthogonal polynomials with respect to a measure μ on the real line. Sufficient conditions are given under which any product P_nP_m is a linear combination of P_k 's with positive coefficients.

Key words. orthogonal polynomials, recurrence formula

AMS(MOS) subject classifications. 33A65, 39A70

Let us consider the following problem: we are given a probability measure μ on the real line **R** all of whose moments $\int x^{2n} d\mu(x)$ are finite. Let $\{P_n(x)\}$ be an orthonormal system in $L^2(\mathbf{R}, d\mu)$ obtained from the sequence 1, x, x^2, \cdots by the Gram-Schmidt procedure. We assume that the support of μ is an infinite set so that 1, x, x^2, \ldots are linearly independent. Clearly P_n is a polynomial of degree n which is orthogonal to all polynomials of degree less than n. It can be taken to have positive leading coefficients. The product $P_n P_m$ is a polynomial of degree n+m and it can be expressed uniquely as a linear combination of polynomials $P_0, P_1, \cdots, P_{n+m}$,

$$P_n P_m = \sum_{k=0}^{n+m} c(n, m, k) P_k$$

with real coefficients c(n, m, k). Actually, if k < |n-m| then c(n, m, k) = 0. This is because

$$c(n, m, k) = \langle P_n P_m, P_k \rangle_{L^2(d\mu)} = \langle P_n, P_m P_k \rangle_{L^2(d\mu)} = \langle P_m, P_n P_k \rangle_{L^2(d\mu)}.$$

Hence if k < |n-m| then either k+m < n or k+n < m and one of the above scalar products vanishes. Finally we get

(1)
$$P_{n}P_{m} = \sum_{k=|n-m|}^{n+m} c(n, m, k)P_{k}.$$

We ask when the coefficients c(n, m, k) are nonnegative for all $n, m, k = 0, 1, 2, \cdots$. The positivity of coefficients c(n, m, k) (called also the linearization coefficients) gives rise to a convolution structure on $l^1(N)$ and if some additional boundedness condition is satisfied then l^1 with this new operation resembles l^1 of the circle (see [2]).

Analogously to (1), we have

(2)
$$xP_n = \gamma_n P_{n+1} + \beta_n P_n + \alpha_n P_{n-1}$$
 for $n = 0, 1, 2, \cdots$

(we apply the convention $\alpha_0 = \gamma_{-1} = 0$). The coefficients α_n and γ_n are strictly positive. If the measure μ is symmetric, i.e., $d\mu(x) = d\mu(-x)$, then $\beta_n = 0$. When P_n are normalized so that $||P_n||_{L^2(\mu)} = 1$ then we can check easily that $\alpha_{n+1} = \gamma_n$. Hence, if we put $\lambda_n = \gamma_n$ we get

(3)
$$xP_n = \lambda_n P_{n+1} + \beta_n P_n + \lambda_{n-1} P_{n-1} \quad \text{for } n = 0, 1, 2, \cdots.$$

^{*} Received by the editors January 1, 1990; accepted for publication August 16, 1991.

[†] Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland.

Favard [4] proved that the converse is also true, i.e., any system of polynomials satisfying (3) is orthonormal with respect to a probability measure μ (not necessarily unique). In case of bounded sequences λ_n and β_n we can recover the measure μ in the following way. Consider a linear operator L on $l^2(N)$ given by

(4)
$$La_n = \lambda_n a_{n+1} + \beta_n a_n + \lambda_{n-1} a_{n-1}, \qquad n = 0, 1, 2, \cdots.$$

Then L is a self-adjoint operator on $l^2(N)$. Let dE(x) be the spectral resolution associated with L. Then the system $\{P_n\}$ is orthonormal with respect to the measure $d\mu(x) = d\langle E(x)\delta_0, \delta_0 \rangle$.

The statement of the positivity of c(n, m, k) does not require orthonormalization of the polynomials P_n . We can as well consider another normalization, i.e., let $\tilde{P}_n = \sigma_n P_n$ where σ_n is a sequence of positive numbers. The problem of positive coefficients in the product of $\tilde{P}'_n s$ is equivalent to that of $P'_n s$. Moreover, it is easy to check that the polynomials \tilde{P}_n satisfy the recurrence relation of the form

(5)
$$x\tilde{P}_n = \gamma_n \tilde{P}_{n+1} + \beta_n \tilde{P}_n + \alpha_n \tilde{P}_{n-1} \quad \text{for } n = 0, 1, 2, \cdots$$

and the unique relation connecting α_n , γ_n and the coefficients λ_n from (3) is $\alpha_{n+1}\gamma_n = \lambda_n^2$; the sequence of diagonal coefficients β_n remains unchanged. From this observation it follows that if polynomials \tilde{P}_n satisfy (5) then after appropriate renormalization the polynomials $\bar{P}_n = c_n \tilde{P}_n$ satisfy

(6)
$$x\bar{P}_n = \alpha_{n+1}\bar{P}_{n+1} + \beta_n\bar{P}_n + \gamma_{n-1}\bar{P}_{n-1}.$$

Consider the particular case of monic normalization, i.e., assume that the leading coefficient of any P_n is 1. Then the recurrence formula is

(7)
$$xP_{n} = P_{n+1} + \beta_{n}P_{n} + \lambda_{n-1}^{2}P_{n-1}.$$

In 1970 Askey proved the following theorem concerning the monic case.

THEOREM (Askey [1]). Let P_n satisfy (6) and let the sequences λ_n and β_n be increasing $(\lambda_n \ge 0)$; then the linearization coefficients in the formula

$$P_n P_m = \sum_{k=|n-m|}^{n+m} c(n, m, k) P_k$$

are nonnegative.

This theorem applies to the Hermite, Laguerre, and Jacobi polynomials with $\alpha + \beta \ge 1$ (see [7]). However, it does not cover the symmetric Jacobi polynomials with $\alpha = \beta$ when $-\frac{1}{2} \le \alpha \le \frac{1}{2}$ (and, in particular, the Legendre polynomials when $\alpha = \beta = 0$). Recall that the problem of positive linearization for Jacobi polynomials was completely solved by Gaspar in [5] and [6]. In particular, c(n, m, k) are positive for $\alpha \ge \beta$ and $\alpha + \beta + 1 \ge 0$.

The aim of this paper is to give a generalization of Askey's result so it would cover the symmetric Jacobi polynomials for $a \ge -\frac{1}{2}$. One of the results is as follows.

THEOREM 1. If polynomials P_n satisfy

$$xP_n = \gamma_n P_{n+1} + \beta_n P_n + \alpha_n P_{n-1}$$

and

- (i) α_n , β_n , and $\alpha_n + \gamma_n$ are increasing sequences $(\gamma_n, \alpha_n \ge 0)$,
- (ii) $\alpha_n \leq \gamma_n \text{ for } n = 0, 1, 2, \cdots,$

then $c(n, m, k) \ge 0$ (see (1)).

It is remarkable that the assumptions on α_n 's and γ_n 's are separated from that on β_n .

Before giving a proof let us explain how Askey's theorem can be derived from Theorem 1. If polynomials \tilde{P}_n satisfy the assumptions of Askey's theorem then after orthonormalization of \tilde{P}_n 's we get the system of polynomials P_n satisfying (3), i.e.,

$$xP_n = \lambda_n P_{n+1} + \beta_n P_n + \lambda_{n-1} P_{n-1}$$
 for $n = 0, 1, 2, \cdots$

and if λ_n and β_n are increasing then putting $\alpha_n = \lambda_{n-1}$ and $\gamma_n = \lambda_n$ we can see easily that the assumptions of Theorem 1 are also satisfied.

Example. Consider the symmetric Jacobi polynomials $R_n^{(\alpha,\alpha)}$ normalized by $R_n^{\alpha,\alpha}(1)=1$. They satisfy the following recurrence formula:

$$xR_n^{(\alpha,\alpha)} = \frac{n+2\alpha+1}{2n+2\alpha+1} R_{n+1}^{(\alpha,\alpha)} + \frac{n}{2n+2\alpha+1} R_{n-1}^{(\alpha,\alpha)}.$$

In this case

$$\alpha_n = \frac{n}{2n+2\alpha+1}, \quad \gamma_n = \frac{n+2\alpha+1}{2n+2\alpha+1}, \quad \beta_n = 0.$$

Observe that $\alpha_n + \gamma_n = 1$ and α_n is increasing when $\alpha \ge -\frac{1}{2}$. We have also $\alpha_n \le \gamma_n$ when $\alpha \ge -\frac{1}{2}$.

Instead of showing Theorem 1 we will prove a more general result.

Theorem 2. Let polynomials P_n satisfy

$$xP_n = \gamma_n P_{n+1} + \beta_n P_n + \alpha_n P_{n-1}$$

and let for some sequence of positive numbers σ_n polynomials $\bar{P}_n = \sigma_n P_n$ satisfy

$$x\bar{P}_n = \gamma'_n\bar{P}_{n+1} + \beta_n\bar{P}_n + \alpha'_n\bar{P}_{n-1}.$$

Assume also that

- (i) $\beta_m \leq \beta_n$ for any $m \leq n$,
- (ii) $\alpha_m \leq \alpha'_n$ for any m < n,
- (iii) $\alpha_m + \gamma_m \le \alpha'_n + \gamma'_n$ for any m < n 1,
- (iv) $\alpha_m \leq \gamma'_n$ for any $m \leq n$.

Then the linearization coefficients c(n, m, k) in the formula

$$P_n P_m = \sum_{k=|n-m|}^{n+m} c(n, m, k) P_k$$

are nonnegative.

Setting $\alpha'_n = \alpha_n$ and $\gamma'_n = \gamma_n$, we can easily see that Theorem 2 implies Theorem 1. *Proof.* First observe that we have $\alpha_{n+1}\gamma_n = \alpha'_{n+1}\gamma'_n$. Moreover, by the remarks preceding (6) we may assume that P_n and \bar{P}_n satisfy

$$xP_{n} = \alpha_{n+1}P_{n+1} + \beta_{n}P_{n} + \gamma_{n-1}P_{n-1},$$

$$x\bar{P}_{n} = \alpha'_{n+1}\bar{P}_{n+1} + \beta_{n}\bar{P}_{n} + \gamma'_{n-1}\bar{P}_{n-1}.$$

The rest of the proof will follow from the maximum principle for a discrete boundary value problem.

Let L and L' be linear operators acting on sequences $\{a_n\}_{n\in N}$ by the rule

(8)
$$La_{n} = \alpha_{n+1}a_{n+1} + \beta_{n}a_{n} + \gamma_{n-1}a_{n-1},$$

$$L'a_{n} = \alpha'_{n+1}a_{n+1} + \beta'_{n}a_{n} + \gamma'_{n-1}a_{n-1}.$$

Let L_m and L'_n denote the operators acting on complex functions u(n, m), $n, m \in N$, as L and L' but with respect to the m- or n-variable treating the other variable as a parameter.

Let us consider the following problem: $N \times N \ni (n, m) \mapsto u(n, m) \in C$ and

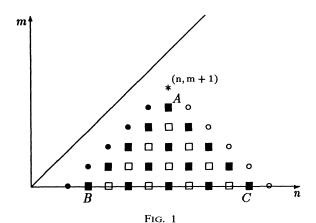
(9)
$$(L'_n - L_m)u = 0,$$
$$u(n, 0) \ge 0.$$

THEOREM 3. Assume that $\alpha_n > 0$ for $n \ge 1$ (we follow the convention $\alpha_0 = \alpha_0' = 0$) and

- (i) $\beta_m \leq \beta'_n$ for any $m \leq n$,
- (ii) $\alpha_m \leq \alpha'_n$ for any m < n,
- (iii) $\alpha_m + \gamma_m \le \alpha'_n + \gamma'_n$ for any m < n 1,
- (iv) $\alpha_m \leq \gamma'_n$ for any $m \leq n$.

Then $u(n, m) \ge 0$ for $m \le n$.

Proof. On the contrary, assume that u is negative at some points. Let (n, m+1) be the lowest point in the domain $\{(s, t): s \ge t\}$ for which u(n, m+1) < 0. It means that u(s, t) is nonnegative if $t \le m$. Consider the rectangular triangle with vertices A(n, m), B(n-m, 0) and C(n+m, 0), as illustrated in Fig. 1.



All lattice points in $\triangle ABC$ we divide into two subsets: Ω_1 , consisting of the points (k, l) such that $k - l = n - m \pmod{2}$, and the rest Ω_2 . In the figure the points of Ω_1 are marked by \blacksquare while the points of Ω_2 are marked by \square . Let Ω_3 denote the lattice points connecting (n - m - 1, 0) and (n, m + 1) (except (n, m + 1)) and Ω_4 denote those which connect (n + m + 1, 0) with (n, m + 1) (except (n, m + 1)). The points of Ω_3 and Ω_4 are marked by \blacksquare and \bigcirc , respectively.

Assume that $(L'_n - L_m)u = 0$. Thus $\sum_{(x,y)\in\Omega_1} (L'_n - L_m)u(x,y) = 0$. If we calculate the terms $(L'_n - L_m)u(x,y) = 0$ and we sum them up we will obtain a sum of the values of the function u(s,t) with some coefficients $c_{s,t}$ where (s,t) runs throughout the sets $\Omega_1 \cup \Omega_2 \cup \Omega_3 \cup \Omega_4 \cup \{(n,m+1)\}$. Namely,

$$0 = \sum_{(x,y)\in\Omega_1} (L'_n - L_m) u(x, y)$$

= $\sum_{i=1}^4 \sum_{(s,t)\in\Omega_1} c_{s,t} u(s, t) + c_{n,m+1} u(n, m+1).$

It is not hard to compute the coefficients $c_{s,t}$, so we just list them below.

- (i) $(s, t) \in \Omega_1$; $c_{s,t} = \beta'_s \beta_t$.
- (ii) $(s, t) \in \Omega_2$; $c_{s,t} = \alpha'_s + \gamma'_s (\alpha_t + \gamma_t)$.
- (iii) $(s, t) \in \Omega_3$; $c_{s,t} = \gamma'_s \alpha_t$.
- (iv) $(s, t) \in \Omega_4$; $c_{s,t} = \alpha'_s \alpha_t$.
- (v) $c_{n,m+1} = -\alpha_{m+1}$.

By the assumptions of the theorem all coefficients $c_{s,t}$ are nonnegative while $c_{n,m+1}$ is strictly negative. Since $u(s,t) \ge 0$ for $(s,t) \in \Omega_1 \cup \Omega_2 \cup \Omega_3 \cup \Omega_4$ and u(n,m+1) < 0 then the sum we were dealing with cannot be zero. It gives a contradiction.

Let us return to the proof of Theorem 2. Let P_n and \bar{P}_n satisfy (8) and $\bar{P}_n = \sigma_n P_n$ for a strictly positive sequence σ_n . If

$$P_n P_m = \sum_{k=|n-m|}^{n+m} c(n, m, k) P_k,$$

then

$$\bar{P}_n P_m = \sum_{k=|n-m|}^{n+m} \bar{c}(n, m, k) P_k,$$

where $\bar{c}(n, m, k) = c(n, m, k)\sigma_n$. Therefore in order to prove $c(n, m, k) \ge 0$ it suffices to show that $\bar{c}(n, m, k) \ge 0$ for n > m. Since

$$L'_n(\bar{P}_n P_m) = x\bar{P}_n P_m = L_m(\bar{P}_n P_m)$$

and the polynomials P_n are linearly independent then for any k the function $u(n, m) = \bar{c}(n, m, k)$ is a solution of (9). Obviously,

$$u(n, 0) = c(n, 0, k)\sigma_n = \begin{cases} \sigma_n & \text{if } n = k, \\ 0 & \text{otherwise.} \end{cases}$$

In particular, $u(n, 0) \ge 0$. Hence by Theorem 3 we get $u(n, m) = \bar{c}(n, m, k) \ge 0$. This completes the proof of Theorem 2.

COROLLARY. Let polynomials P_n satisfy $xP_n = \gamma_n P_{n+1} + \beta_n P_n + \alpha_n P_{n-1}$ and let

- (i) β_n and α_n be increasing $(\alpha_n > 0 \text{ for } n \ge 1, \alpha_0 = 0)$;
- (ii) $\alpha_m + \gamma_m \leq \alpha_{n+1} + \gamma_{n-1}$ for m < n-1;
- (iii) $\alpha_m \leq \gamma_n$ for m < n.

Then the linearization coefficients c(n, m, k) in (1) are nonnegative.

Proof. By remarks preceding (6) after appropriate renormalization of P_n we obtain polynomials P'_n satisfying (6). Then we get the required result by applying Theorem 2.

Example. Consider Jacobi polynomials $P_n^{(\alpha,\beta)}$. They satisfy the recurrence formula

$$x P_n^{(\alpha,\beta)} = \frac{2(n+1)(n+\alpha+\beta+1)}{(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)} P_{n+1}^{(\alpha,\beta)}$$

$$+ \frac{\beta^2 - \alpha^2}{(2n+\alpha+\beta)(2n+\alpha+\beta+2)} P_n^{(\alpha,\beta)}$$

$$+ \frac{2(n+\alpha)(n+\beta)}{(2n+\alpha+\beta)(2n+\alpha+\beta+1)} P_{n-1}^{(\alpha,\beta)}.$$

Applying the corollary yields that for $\alpha \ge \beta$ and $\alpha + \beta \ge 0$ we get positive linearization coefficients. However, for $\alpha \ge \beta$ and $\alpha + \beta < 0$ the sequence

$$\beta_n = \frac{\beta^2 - \alpha^2}{(2n + \alpha + \beta)(2n + \alpha + \beta + 2)}$$

is decreasing and we cannot apply any of the preceding results, although we know from [5] and [6] that the condition $\alpha + \beta + 1 \ge 0$ is sufficient.

In part II of this paper we will discuss the problem of positive linearization under assumption β_n is decreasing when starting from n = 1. This is more delicate because assumptions on α_n 's and γ_n 's cannot be separated from those on β_n 's.

REFERENCES

- [1] R. ASKEY, Linearization of the product of orthogonal polynomials, in Problems in Analysis, R. Gunning, ed., Princeton University Press, Princeton, NJ, 1970, pp. 223-228.
- [2] ——, Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics 21, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1975.
- [3] R. ASKEY AND G. GASPER, Linearization of the product of Jacobi polynomials. III, Canad. J. Math., 23 (1971), pp. 119-122.
- [4] J. FAVARD, Sur les polynômes de Tchebycheff, C. R. Acad. Sci. Paris, 200 (1935), pp. 2052-2055.
- [5] G. GASPER, Linearization of the product of Jacobi polynomials. I, Canad. J. Math., 22 (1970), pp. 171-175.
- [6] _____, Linearization of the product of Jacobi polynomials. II, Canad. J. Math., 22 (1970), pp. 582-593.
- [7] G. SZEGÖ, Orthogonal Polynomials, Fourth ed., Amer. Math. Soc. Colloq. Publ. 23, American Mathematical Society, Providence, RI, 1975.