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Simultaneous Preservation of Orthogonality of
Polynomials by Linear Operators Arising from
Dilation of Orthogonal Polynomial Systems’

Frank Filbir,” Roland Girgensohn,” Anu Saxena,® Ajit Igbal Singh*
and Ryszard Szwarc®

For an orthogonal polynomial system p = (p,),,c, @nd a sequence d = (dy,),,ex0
of nonzero numbers, let S, 4 be the linear operator defined on the linear space of
all polynomials via Sy, 4 p, = d,, p, for all n € IN;.We investigate conditions on p
and d under which S, ; can simultaneously preserve the orthogonality of different
polynomial systems. As an application, we get that for p = (L% ), a generalized
Laguerre polynomial system, no d can simultaneously preserve the orthogonality
of two additional Laguerre systems, ( L2*" ) and (L™ ), where t;,t # 0 and
t1 # t2. On the other hand, for p = (T, ), the Chebyshev polynomial system and
d=((-1)"), Spq simultaneously preserves the orthogonality of uncountably
many kernel polynomial systems associated with p. We study many other ex-
amples of this type.

KEY WORDS: Orthogonal polynomials; dilation map; kernel polynomials;
Jacobi polynomials; Laguerre polynomials.

1. INTRODUCTION

We start with some notation. Let IN be the set of natural numbers and
INy = INU {0}. For a set X, # X will denote the cardinality of X. Let P; be
the linear space of all polynomials and let P be the set of sequences
p= (p")ne]N(. in P; with py =1 and deg p, = n for all n € IN,. We shall
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often write (p),c, simply as (p,) or even p. S will usually stand for a
degree preserving linear operator on P; to itself with S(1) = 1. Ortho-
gonality will always be with respect to some quasi-definite moment func-
tional, whereas positive orthogonality will be with respect to some positive
definite moment functional and in the context of real polynomials only
(see [5], Theorem 1.3.3). The word orthonormality will be used only in the
context of positive orthogonality, where, in addition, the positive moment
functional £ is normalized so that £(1) = 1. For any such pair (p, £) and
any polynomial ¢, (£(|¢[*))"/* will be denoted by lgllz or [[qll,; the suffix £
or p will be suppressed if no confusion arises. Orthogonality with respect to
a symmetric moment functional (see [5], Definition 1.4.1) will be termed
symmetric orthogonal. We refer to [2], [5], and [13] for the basics on
orthogonal polynomials.

Operators preserving orthogonality of polynomials have been studied
by various authors, among them [1], [8], and [10]. We start by quoting two
simple recent results from [8] which, to a certain extent, provided the
motivation for the present paper. For a € R\ (=IN), let (LJ) be the
generalized Laguerre polynomial system, given by

n k
L;:@c):Z(—l)k(”*a) " LR, nem,
k=0

n—k) k’
where
<t>:1 <t>:t(t—1)~--(t—k+1)
o) k K
t—k+1),

=———“‘8 telR, ke IN.
(D

From Ref. [8]: Corollary 1. If S preserves the orthogonality of (L) for
a=ag—1, ag, ag+ 1, ag + 2 (with some ap) and, moreover, || SL¢ ||* =
1+a for at least two of {ap, ag+ 1,09+ 2}, then for some a,
be R, (Sp)(z) =plax +b) for z € R and p € P;.

From Ref. [8]: Theorem 3. For any € IR, the linear operator Ss
defined on P via (SpL%)(z) = Lo (x + B), x € R, n € I, is independent
of a.. Further, Sp simultaneously preserves the orthogonality of ( LS ) for all
.

Let P, Po, Pimo, and Py, be the subsets of P consisting of monic,
orthogonal, monic orthogonal, and positive orthogonal systems, resp-
ectively. Let D be the set of nonconstant sequences d = (d,),,cv, of non-zero
numbers with dy = 1.
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In Section 2 we shall define a dilation-type linear operator .S, 4 on P; to
itself associated to a p in P, and d in D. In fact, S, 4 is the linear operator on
P1 to itself, given by Sy qp, = d,, p, for all n € INy;. We first observe that if
d € D is the sequence of eigenvalues of a linear differential operator F such
that the corresponding sequence of eigenfunctions consists of an orthogonal
polynomial system p, then .S, 4 coincides with F. (For these topics, one can
consult [7] and the related expository articles [4] and [11], or the books [3],
Section 3.5, and [5], Section V.2 and Section V.3.) This is illustrated by the
following simple examples.

(a) Leta,f>—1landp= (PT(L‘“S)), the Jacobi polynomial system. Let
dy=-n(n+a+p+1)+1 for n € N;. Then S,  is the differ-
ential operator F determined by

(FNHx) =1 —2%) f'(2) + (B—a—(a+B+2)2)f(z) + f(2).

(b) For p=(H,), the Hermite polynomial system, and d given by
d,=-2n+1 for n €Ny, S,4 coincides with the differential
operator F defined by

(FN(@) = f(x) = 22f'(z) + f(x).

(c) Letae R\ (—IN) and p = (L), the generalized Laguerre system.
If d,=-2n+1 for ne€ Ny, then S,; coincides with the
differential operator F determined by

(F)(@) =22f"(x) + 2(a+ 1 — ) f'(z) + f(=).

For a fixed (p,d) € P, x D we shall look for those subsets S of P,
which are mapped into P, by 5,4, i.e., where orthogonality is simulta-
neously induced by S, 4. Also, for a class S contained in P, and a p in P,, we
shall study the question of existence of a d in D such that S, ; preserves the
orthogonality of S.

To motivate, we may note the following result, which follows readily
from the connection coefficients of the Jacobi system (cf. [2], 7.32-7.34).

“ T)heorem 1.1. Let o, 8> —1 and p be the Jacobi polynomial system
(P, Let
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and d;, = 1/d,, for n € IN.
(a) Then, for t > 0 and n € IN,

Spd P((l.ﬂ*H,) — dn P((?z*H,.ﬂ)
and

(a+t,3) 4 a B+t)
Sy P —d P
! n :

Therefore Spa simultaneously preserves the orthogonality of
(P ¢ >0} and S,4 that of {PI""7 t>0}.
(b) For a= B we have d =(-1)", n € Ny, and d = d'. In this case,

S,a P = (=1)"PY" for all 4> —1, and thus S,q =S
for v > —1.

This is true for any sequence d satisfying dy, =1 and
d2n+1 = d1 foralln € No.

Further, for such d’s, it is enough to consider the case
p= (3571/2’71/2)) =(T,) instead of the whole class
{P,(ﬂ“”> : v> —1} of symmetric Jacobi polynomials.

(PY7).d

In Section 3, we shall define and study the notion of a ¢ = (¢,,) in P to
be analytic with respect to a p = (p,,) in P. Let P, be the class of those ¢’s in
‘P, which are analytic with respect to p. It turns out that for a p in P,,, and ¢
in Py, q € P, if, and only if, ¢ is a kernel polynomial K (p;y) associated
with p where y ¢ Z,, Z, being the set of zeros of p,’s. An equivalent form for
a pin P, is obtained using the general method developed in Section 2. This
enables us to have nice transparent conditions on d for Sy, to simulta-
neously preserve the orthogonality of various subsets of P, N P,. For some
special d’s we can obtain many different subsets of P,,, whose orthogonality
is simultaneously preserved by S, 4.

In the last section, we apply the results of the second and third sections
to the class of generalized Laguerre polynomial systems and obtain a
striking contrast to the situation for the Chebyshev polynomials!

2. DILATION-TYPE OPERATORS AND ORTHOGONALITY
2.1. Discussion and Definition

Let p = (p,) be an orthogonal polynomial system. Then the set P of all
polynomial systems is in one—one correspondence with the set A of (infinite)
matrices A = (a;); e, With ajp =0 for k> j,app =1 and a;; # 0 for
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all j via g = Ap, ie., forall n € No,q, =Y ) _( Qn Dk

(a)
(b)

©

(d)

(©

()

(2

Clearly, in the case p has real coefficients, ¢ has real coefficients if,
and only if, A is real.

In the case p € P,,, i.e., p is monic and A€ A, ¢g= Ap € P, if,
and only if, a;; =1 for all 5. Such matrices will be called monic.
The set of monic matrices will be denoted by A,,.

For a d = (d,) € D let S,4 be the linear operator on P; to itself
given by S, 4 p, = d,p, for all n € INy. The map induced by S, 4 on
P will be called the (p, d)-dilation and denoted by S, 4 only.
Clearly for an A € Aand g = Ap, S, 4q corresponds to the matrix
Aq=(ajrdy) = AD, D being the diagonal matrix given by the
diagonal d. In the case p is monic, the associated monic polynomial
system @ has the matrix ((a;. di)/(a;j; d))).

For a fixed p, the sequence d and the operator S, 4 determine each
other. However, for a fixed d, S, 4 = S;q can hold without p = ¢,
as is seen from Theorem 1.1. In fact, for ¢ = Ap and d,d € D,
Spa = Sga if, and only if, a;y (d; —di) =0forall j, k€ INy. As a
consequence, if d has all terms distinct and p,q are monic, then
p = q<=Spa = Syq. On the other hand, if d has at least two terms
coincident then {¢ monic : S, = S, 4} is infinite.

Monic orthogonal polynomial systems (p,) can be characterized
via their recurrence relation

SUPn,(33> = Pn+1 (37) + b7Lpn<x) + C'n,pnfl(x% HAS IR, n e NO

with recurrence sequences b = (b,), ¢ = (c,) and ¢, # 0 for all
n € INy (see again [5]). For notational convenience, we set
p-1=¢-1=0, ajr =0 for j<Oork<0, dy =0, and we take
empty sums to be zero and empty products to be 1.

I. M. Sheffer [12] defined polynomial systems of type zero as
follows. The system g = (g,,) is of type zero if there are numbers «,,
with a; # 0 such that a;q¢, + asq, +--- + oznqﬁ,i”) = g,_1 for all
n € IN. Among other things, he connected systems of type zero to
orthogonal systems by dilations. He proved ([12], Theorem 4.1):
Assume that a polynomial system ¢ = (d,, p,,) is given with d € D.
Then q is of type zero if, and only if, there exist numbers a1, ..., a4
with

b,=a1+asn and ¢, =n(ag+asn) for all n € IN.
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Theorem 2.2. Let p = (p,) be a monic orthogonal polynomial system
with recurrence sequences b = (b,) and ¢ = (¢,). Let A = (a;;) be a monic
matrix and ¢ = (¢,,) = Ap.

(a) The system g is orthogonal if, and only if,
(i) agp — azpa10 # 1 + (bo — br)ary — (a1,0)27
(i1) Gpt1,n—1—An+1,nnn—1
#cp + (bn-1 = bp)ann-1 — (ann-1)
+tapp-2, N =2,
(iii) (an+1‘0 - an+1,nafn,0) - (a’n—o-l,n,—l - a'n+l,nan,n—1)an—l,O

2

= [(bU - bn) - an,nfl]an,() + ci1an1
*[Cn + (bnfl - bn)an,nfl - (an,nfl)z + an.,nfﬂanfl,oa n Z 27
and
(1V) (an+1,j - a7z+1,71a71,,j) - (a77,+1.,n—1 - an,-&-l,n,an‘n—l)an—lﬁj
= Gpj-1 + [bj — by — an,nfl]an.j + Cj+1Qn, j+1
_[Cn + (bnfl - bn)an,nfl - (an,nfl)2 + an,n72]an71.ja
n>3, 1<j<n-2.
(b) Suppose p is positive orthogonal and A is real. Then ¢ is positive

orthogonal if, and only if, all the conditions in (a) above are
satisfied with # in (i) and (ii) strengthened to <.

Proof. (a) By Favard’s Theorem ([5], Theorem 1.4.4), combined with
the fundamental recurrence relation ([S], Theorem 1.4.1), g is orthogonal if,
and only if, there exist sequences 8= (3,),cn,» 7 = (Vn)nen,» Yo arbitrary
(and ineffective) such that for each n € IN, ~,, # 0

IQ’H(I) = QH+1(I) + ﬂn‘h(x) + ’ann,l(l’), S R, n € INp.
Using the recurrence relation for the p,’s, this happens if, and only if, for all
n e ]NU,

n

Z anj(Pjr1 +bipj +cpj1)
=0

n+1 n

n—1
=" 1D+ B Y @ngpi W D Gno1py
i=0 =0 =0

Since the p;’s are linearly independent, we can equate their coefficients on
both sides, and simple computations then give that the conditions stated in
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the theorem are necessary and sufficient. Along the way we also have that
Bo = bo — a1,
Br="b1+aio—az,
Y =c+ [bo —b - a1,o} aio — (a2,0 - 62,101,0)7
and for n > 2,
Bn = by, + Upn—1 — An+ln
Yn = Cn + [(bn—l - bn) - a?L?L—l] Qpn—1
+ anpn-2 — (@ny1p—1 — an+1,na7m—1)~

(b) We shall again use the fundamental recurrence relation and
Favard’s Theorem. We have that for each n, b, is real and c,.; > 0.
Further, ¢ is positive orthogonal if, and only if, for each n, g, is real
and 7,41 > 0. This gives us that # in (i) and (ii) of (a) have to be replaced by
<. ]

Remark 2.3.
(a) The above theorem tells us how to construct all infinite matrices

which preserve orthogonality or positive orthogonality.

Take any sequence s = (s,),cy, of numbers and another sequence
t = (tn),e, Of numbers satisfying

to # c1 4 so[(bo — b1) — (50 — 1)),
ty —th—1 7é Cpnt1 + Sn[(bn - bn+1) - (Sn - 571,+1)]a n > 1.

Set apy1n = S, and a,49, = t, for all n. Define, for n > 2, 0 < j<n -2,
the numbers a1 ; recursively as in (a) (iii) and (iv). Finally, take a;; =1
and a;; =0 for k>j, and obtain A,; = (a;x). Then g= A, p is
orthogonal. Also, every monic matrix A having this preservation property
has this form for a unique pair (s, ).

(b) In case p is positive orthogonal, we have to restrict s and ¢ to be real
sequences and take

to < c1 4 so[(bo — b1) — (s0 — 51)],

tn, - tn—l < Cp+1 + Sn[(bn - bn-‘rl) - (Sn - 57z+1)]7 n Z 1.
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(c) On the other hand, if p is symmetric orthogonal, then b, = 0 for
all n. Thus ¢ is symmetric orthogonal if, and only if, 5, = 0 is satisfied
together with (a) of Theorem 2.2, i.e., the sequence s = (s,,) is constant. This
simplifies the condition on ¢ to ¢, —t,_1 # ¢,+1 for all n € IN, and it
simplifies (a) as follows:

) a2.0 # c1,
(11) Ap+1n—1 ?é Ap.n—2 + ¢p, n 2 2,
(111) Ap+1,0 = C1 Ap1 + (an+1.n71 — Apn-2 — Cn) ap-1,0, TN Z 2»
and
(V) g1 = Anj—1 + Cj1 Anjt1 + (Gntin—1 — Gpp—2 — Cn) Gn1s
n>3 1<j53<n-2.

As before, for positive orthogonality, in (i) and (i), # has to be replaced
by <.

(d) Given a monic matrix A, the above theorem also gives us
conditions on the sequences b and c¢ for the polynomial system ¢ = Ap to
be orthogonal.

Theorem 2.4. Let A be a monic infinite matrix, d a sequence of nonzero
numbers with dy=1 and p= (p,) a monic orthogonal system with
recurrence sequences b and c. Let g = Ap and r =5, 4¢.

(ag) The system r is orthogonal if, and only if,

L1 1 1 ?
(1) d:(azo —az1a10) # a1 + dil (bo — b1)aip — <d1a1’0> )
(11) ﬁ (anJrl,nfl - an+1,nan,n71)
n+
dnfl dnfl 2
n —bnf _bn nn—1 " \ =7 Ynn—
# et b =bdonns = (o)
dp—
+d—2an,n727 n Z 2a
o 1
(lu)d— [(an-&-l,O - an-‘rl,nan,O) - (an-‘rl,n—l - a'n-H,nan,n—l)an—l,O]
n+1
1 dn_
= din [(bo - bn - dnlan,n1> an.0 + dlclan,l
dn dn—l
- Cn + bnf - bn Apn—
dnfl dn ( ! ) ot

- > d,
_ ( dnl an,n1> —&—_d,L? a7,,,n,2> a77,1,()‘| ) n>2,
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. 1
(iv) P [(@ns+1j = ns1nny) = (@nsin—1 — GnstnGnn—1)0n-1]
n+1

1 d‘_l d7,—1
= d—n [;—] Qp,j—1 + <bl —b, — cli—na"’"1> Qn,j

j+1
+ 4 Cj10n, j+1
j

dn dn—
- (ﬂcn + (bnfl - bn)anm,fl - T]l (an,nfl)2
dn—Z .
+ d—anm—Z Qp-14], M >3, 1<j<n—-2.
n—1

(bg) Suppose p is positive orthogonal. Then ¢ is positive orthogonal if,
and only if, ((d/d;)a;) is a real matrix and all the conditions in
(ag) above are satisfied with # in (i) and (ii) strengthened to <.

Proof. (a;) We first note that r is orthogonal if, and only if, the cor-
responding monic polynomial system R = (R,) = ((1/d,)r,) is orthogonal.
The matrix associated with R is A = (a;), given by a;; = (di./d;)a;y. for
j,k € INg. Thus, by Theorem 2.2 above, R is orthogonal if, and only if, A
satisfies the Condition 2.2(a) where «a is replaced by a everywhere. We al-
ready bracketed the expressions in 2.2(a) in such a way that (a) transforms
to (ag) immediately.

(by) By 2.1(a), A has to be real in the first place. The rest follows from
(ag) in the same manner as (b) does from (a) in Theorem 2.2. O

Remark 2.5.

(a) The above theorem is a two-edged sword, although not equally
sharp! The sharper one says that if a d is given, then we can construct all
those A’s for which r is orthogonal (respectively, positive orthogonal in case
p is so). All we have to do is to choose any sequence (s,) of numbers and
then take another sequence (t,) satisfying

1 1 1 d
d—Qto 7é C1 +d—180 |:(b() 71)1) — <d—180 d—;sl>:|,
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and, forn>1,

dn dnfl
—t’n, - —tn— n
dpta dpy " 7 Cutl
dn, |: ( dn dn-&-l ):l
+ sy | (b — by, - Sn — Sn '
dn+1 ( +1) dn+1 dn+2 o

Then we can set a,11, = s, and a,12, =t, for all n € IN. Next we can
define, for n > 2 and 0 < j <n —1, the numbers a,4;; recursively using
(ii1) and (iv) of (ag). Finally, take a;; = 1 for all j and a;; = 0 for all k£ > j
and obtain A,; = (a;;). Then for ¢ = A, p, the system S, 4 ¢ is orthogonal.
In addition, every monic matrix A having this preservation property has this
form for a unique (s,t).

In case p is positive orthogonal, we have to restrict s = (s,) so that
(dn/(dyi1))sn is real for all n and ¢ = (¢,) so that (d,,/(d,+2))t, is real for all
n, and strengthen the inequalities to < in the above construction.

(b) We now come to the question of determining the sequence d when a
monic matrix A is given. For j,n € IN, we put

o o Apn—1 1
Up = Ap+1n—1 — Opt1nlnn-1 = — ’
An+1,n—1 Ap+1n

Un,j = Qn+1,j = An+1,n0n,j>
and forn > 2,0 < j<n-—2, we put

Ap—1,5 1 0
Whp,j = Upj — UpQp—15 = | Qn,j Qppn—1 1
An+1,j  Oniln—1  QAniln

For each n > 2, one of the following two conditions is satisfied:

(n1) for some j,, 0 <7, <n—2, wyj, #0, wp; =0, 0 <5< jy.

n2) w,;=0,0<j,<n—2 This holds if, and only if, for
0 < ] < N, Apt1,j = Apt1nQnj + UpQn—1,5 lf, and Only lf,
Qn+1 = Pn+1 + Antr1nGn + UnQn—1-

Let
Ty ={n:n>2, (nl)holds},
and

To={n:n>2 (n2)holds } U{0,1}.
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The problem reduces to finding a suitable function £ on the set 75 to the set
of nonzero numbers such that, setting d,,.; =&, for n € Ty and then de-
fining the remaining d,’s recursively using (ay)(iii) if j,—1 = 0 and (ay)(iv) if
jn—1 > 0, the condition (ay) [respectively, (by)] is satisfied.

Theorem 2.6. Let p, A,d, g and r be as in Theorem 2.4 above.

(a) We may combine the conditions (a) of Theorem 2.2 and (ay) of
Theorem 2.4 to obtain necessary and sufficient conditions on A and d for
both ¢ and r to be orthogonal.

(b) For positive orthogonality, we have to combine (b) of Theorem 2.2
with (by) of Theorem 2.4 which, in turn, put together are equivalent to:

(1) Both A and d are real,
(i) ag0 — agya10 < ¢1 + (b — bi)arg — (ai0)?,

and

1

1 1 2
& (ag0 — azqa1p0) < 1 +d71(b0 —b)aro — <d1 a1,0> ;

(111) Ap+1n—1 — Ap+1,n0nn—1

< Cn + (bnfl - bn)an,nfl - (an‘nfl)2 + an,,n72

and

dn—l

-5 (CL71+17/,L,1 - an+1,nan,n71)

dn+1 9
dn,1 dnfl

<y + (bn—l - bn,)an,n—l - Qpp—1
dn dn

dn72
+ Unp—2, N =23
dn

(iv) (an-o—l,j - a’!H—lJLa'n.j) - (an-&-l,n—l - afn+1,nan,n—1)an—l,j
= Qpj-1 + (bj — by, — an,nfl)an,j + Ci+10an j+1

2
- |:C7z + (bnfl - bn)a'n,nfl - (afnrnfl) + an7n72:| Ap—1,5,

and

dny1dj1
e ) DY
( dy d; it

(500 - (1 B8,
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+ <1 . dn+1 dj+1

d d. )Cj+1an,j+1
n Uy

dn+1 dn+1
— 1= : 1———) (b1 — bp)ann_
[( dnl>cn + < dn ( n—1 n)an,n 1

d7z+1 dn—? dn+1 dnfl 2
i el L Rl (e R nn— n_1; =0,
- < dn dn,—l )a n—2 ( d121 (a’ 8 1) Ap—1,j

n>2,0<j<n-—2.
(c) For a set A of monic matrices, we can have a set of conditions on d
in order that the members of {S,,Ap: A€ A} are all orthogonal or
positive orthogonal systems.

In this general form these conditions look formidable. We shall discuss
a few special cases here and in the next two sections.

Corollary 2.7. Let d = ((—1)"), p a monic orthogonal system with
recurrence sequences b and ¢, and A a monic infinite matrix. Let ¢ = Ap and
r=.5p44.

(a) (1) Incase (b; — by,)a,; =0 for 0 < j < n, ¢is orthogonal if, and
only if, r is orthogonal.

(i1) Suppose b is a constant sequence. Then g € P, if, and only if,
Sp.daq € P,. Thus S, 4P, =P,. In particular, it is so if p is a
symmetric orthogonal system. In this case, we also have that q
is symmetric if, and only if, r is.

(iii) Suppose b is eventually constant, i.e. , for a least number
J1 € Ng, b,=0; for all n>j. Then (S,sP,)NP, is
infinite.

(b) Suppose p is positive orthogonal. Then (i), (ii) and (iii) above
hold with orthogonal replaced by positive orthogonal and P, by
P+0.

Proof. (a) (i) In this case Condition (a) of Theorem 2.2 and Condition
(ag) of Theorem 2.4 become equivalent.

(i1) Because b is a constant sequence, every monic matrix A satisfies the
requirement in (i). For symmetric orthogonal polynomial systems, we have
b, = 0 for all n.

(iii) Let Aj, ={A €A, : a,;=0for 0<j<n, j<j }. Thenevery
Ain A; satisfies the requirement in (i) and, therefore, ¢ = A p is orthogonal
if, and only if, S,4 ¢ is orthogonal if, and only if, A satisfies (a)
of Theorem 2.2. There are infinitely many matrices in A; satisfying



Simultaneous Preservation of Orthogonality of Polynomials by Dilations 189

this condition, as can be easily seen, because aj 41,4 can be chosen arbi-
trarily.

(b) In the above proof of Part (a), we only have to use (b) of
Theorem 2.2 and (b,) of Theorem 2.4 instead of (a) and (ay). O

Remark 2.8.

(a) Examples of p satisfying condition (iii) of Corollary 2.7 above
are provided by Modified Lommel polynomials, Tricomi—Carlitz poly-
nomials and polynomials related to Bernoulli numbers (cf. [5], V1.6, V1.7
and VL3).

(b) For any d; with 0 # d? # 1, define the sequence d = (d,,) = (d}).
Let p be a symmetric orthogonal system and A,q,r, as in the above
corollary. Then both ¢ and r are symmetric orthogonal if, and only if,
ajr =0 for 0<k<j—3,37>3, appap=a207#c1 and api1p = a1,
k€ INyg. For the positive orthogonal case, the extra conditions
dy, arg, azp € R and azg < min{ ¢;, dic; } are needed.

3. KERNEL POLYNOMIALS AND DILATIONS
3.1. Discussion and Definition

Let p = (p,) be a monic orthogonal polynomial system with the asso-
ciated recurrence sequences b = (b,) and ¢ = (c,). Let Z, be the set of zeros
of p,, n € Ny, and I, the open interval (inf Z,, sup Z, ). For a number y
not in Z,, let p¥ = (p¥) be the corresponding monic kernel polynomial
system. We may refer to [5], Section 7, for this and related results to be used
in this section.

(i)

- pey) Pt
pY = = Dk, where ¢ = q .
" paly) ,;) o ’ g

Thus, the associated monic matrix AY = (a} ) satisfies

Pi(y)
a’, =c}
n,k k+1 pn(y)

for0<k<n.

(i) Also, p¥ = (p¥) is orthogonal.

(ii1) Further, if p is positive orthogonal, then pY is positive orthogonal
if, and only if, y € R\ I,. In this case, we denote by p = (p,) the
corresponding orthonormal system. Then p, = 1/ \/@ pn, for n € IN, and
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thus, for n € IN,

n

Y BB = () paly) -

=0

This motivates the definition and the name of the main object of study in
this section.

(iv) A polynomial system q = (g,) will be called analytic with respect to
a polynomial system p = (p,), in short, p-analytic, if there is a sequence
h = (h,) of nonzero numbers with hy =1 such that ¢, =>;_, hips,
n € INy. The sequence (h,,) will be called the coefficient sequence for q. If p is
monic, then the monic system @ corresponding to ¢ is given by the matrix
A = (an) (with respect to p) that satisfies an, = hp/hy, 0 <k <n. We
shall say that q is monic analytic with respect to p, in short, p-monic analytic.
Any monic matrix A = (a,, ) having a,, of the form hy/h,, 0 < k < n fora
sequence (h,) € D gives rise to a ¢ that is p-monic analytic. We note that A
and h determine each other uniquely.

(v) If ¢ is p-analytic or p-monic analytic, then for d,d € D, we have
Sp.d # Sqa-

Theorem 3.2. Let p be a monic orthogonal system with recurrence
sequences b and ¢, and let ¢ be monic analytic with respect to p with monic
analytic sequence h.

(a) The following conditions are equivalent:

(i) q is orthogonal,

(11) (bO + Clhl)hn+l = hn + bn+1hn+1 + Cn+2h7z+2 , N E NO»
(iii) h, =1/c} po(bo+cih1), neIN,
(iv) q=pY with y = by + c1hy.

(b) Suppose p is positive orthogonal. Then ¢ is positive ortho—
gonal if, and only if, ¢ = p¥ for some y € R\ I,. Further, y and (h,) are
related via

1
y = by + c1h and hy, = p pn(y), n € N.
1

Proof. (a) We first note that the monic matrix A for ¢ satisfies
An i Gk = G, 0 <1 < k < n.In this case (a)(iii) and (a)(iv) of Theorem 2.2
are equivalent.

Let g be orthogonal. Then (ii) follows from (a)(iii) of Theorem 2.2.
Moreover, (i) gives (a)(i) and (a)(ii)) of Theorem 2.2 simply because
¢n # 0 # h, for all n. This shows the equivalence of (i) and (ii).
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Let, for n € IN, h/, = ¢'h,, and h{, = 1. We put y = by + ¢1h;. Then for
n €Ny, yhl, =hl , +b,hl, +¢,h,_,. This gives that h/ =p,(y) for
n € INy, which readily implies (iii).

(iii) = (iv) follows from 3.1(i), and (iv) = (i) is immediate from 3.1(ii).

(b) We only have to combine part (a) with 3.1(ii). O

Theorem 3.3. Let p be an orthogonal polynomial system with
recurrence relation

:Cpn(.%') = 0o Pus1(2) + & pn() + Cupu1() r€R, n € Ny,
po(z) =1,  pa(z)=0.
Let w, = H;’;}) nj/Ci+1 for n € INyg and wy = 1. Let g be p-analytic with

coefficient sequence h = (h,,).

(a) The system ¢ is orthogonal if, and only if, for some number
y & Z,, we have h, = w, p,(y), n € Ny.
(b) Suppose p is a positive orthogonal polynomial system.

(i) The system ¢ is orthogonal if, and only if, for some
ye R\ Z,,

_ Pa(y)
= 5 s
llpn ||p

n € INp.

n

In particular, if p is an orthonormal polynomial system, then
the condition reduces to h, = p,(y), n € Ny.

(i) The system ¢ is positive orthogonal if, and only if, y in (i)
above satisfies y <infZ, or y > sup Z,. Moreover, if p is
monic then, in the former case, (—1)" h,, > 0 for all n, while in
the latter case, h,, > 0 for all n.

Proof. (a) Let b and ¢ be the recurrence sequences for the monic
polynomial system P corresponding to p. Then ¢ is P-analytic as well with
the coefficient sequence (h,, (H’];B nj)fl). We note that 7, = 0,,/0,+1 and
Cn = cn(0nt1/0n—1)nm, wWhere o, is the leading coefficient of the polynomial
pn - From this we can derive w,, = 1/¢} ai. All that we have to do now is to
apply the above theorem to P.

(b) In this case, w,, above has the value ||p,,,||;2 for each n. Finally, p,(z)

retains the same sign in (—oo,inf Z,] and the same sign in [sup Z,, c0). [
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Theorem 3.4. Let p = (p,) be an orthogonal polynomial system with
71, &, ¢, w as in Theorem 3.3 above and d € D.

@) SpiPap C Pap.

(®) (Spa(PapNPy)) NPy #0 if, and only if, there exist
distinct numbers y; and y», both not in Z,, satisfying d,, p,(y1) = pn(y2)
for all n.

(©) $[(Spa(PapNPy)) N P,] >2 if, and only if, there exist distinct

pairs (yi,y2) and (ys,ys) With y; & Z,, y1 # v2. Y1 # Y3, Yo 7 Ya, Y3 # Ya,
such that

_ Pa(y2) _ Palys)

= for all n.
Pu(y1)  Pa(ys)

mn

(d) If pis positive orthogonal, then we can replace P, by P, , provided
we make the y,’s satisfy y; € IR \ I, instead of just y; & Z,.

Proof. For an h €D and g, =) 7 ; hyp; for n €Ny, we have
SpdGn = Y_5—o dihp;, n € No. This gives (a).

Further, by Theorem 3.3, both ¢ and S, 4 ¢ can be in P, if, and only if,
there exist distinct numbers y; and y» not in Z, satisfying

hp = wy, pn(yl)a hndy, = w, pn(yQ) forall n, ie.,
h’n, = Wy, p’n,(yl)a dnpn(yl) = p’n,(y2) forall n .
Thus we have (b).
(¢) and (d) follow immediately from (b) in view of 3.1. O

Corollary 3.5. Let p = (p,) be a symmetric orthogonal polynomial
system. Then for any two distinct nonzero numbers y; and y», both not in
Zy, and d,, = p,(y2)/pn(y1), n € Ny, we have §[S,4(Po, N P,) NP, > 2.

Proof. We may take y3 = —y; and y, = —yso. O
Remark 3.6.
(a) If we choose iy, = —y; in the above corollary, then we always get

the sequence d = ((—1)") and, thus, S, 4(Pap N P,) = Pap N P,. This follows
from Corollary 2.7, as well!

(b) We may use Mehler’s formula ([13], Ex. 23, p. 377 or [2], 2.44 on
p. 16) to deduce that in the case of Hermite polynomials there are no other
solutions for the condition in Theorem 2.4(iii) except those given by the
proof in Corollary 3.5 or (a) above. The same is true for Chebyshev
polynomials of the first, as well as the second, kind, as can be easily checked
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by just considering the case n = 1 and 2. Thus, for these polynomials the
following statements hold.

(i) For d, =(-1)", we have S, 4(Pay N Ps) = Pap N P,.
(it) For d,, = p,(y2)/pn(y1) with yy, yo two distinct numbers, both
not in Z,, and y» # —yi, we have

S[Ld (Pap N PO) N Po = {pyz , p(fyz) }

(iii) For all other d’s, we have S, 4(Pap NPy) NP, = 0.

(¢) We can use [13], Theorem 5.1, or [2], 2.43, to show that there
are no solutions to condition (iii) of Theorem 3.4 when we take p to
be any Laguerre polynomial system and thus we have that for distinct
y1, y2 not in Z, and dy, = pu(y2)/pa(y1) for all n, S,q(Pay NP,) NPy =
{p" }.

(d) As already noted in Theorem 3.3(b)(i), the coefficient sequence
takes a simple form for an orthonormal polynomial system p. In fact, a
direct proof of this part of Theorem 3.3 can be given using the orthogonality
measure .

Theorem 3.7.

(a) Let p be an orthogonal polynomial system with recurrence
sequences a, b, ¢, i.e.,

xpn(x) = a7),p7z+l(x) + bﬂpn(x) + Cnpn—l(x)a T E Ra n e NO‘

Let g be a polynomial system such that p is g-analytic with constant one as
the coeflicient sequence. Then ¢ is orthogonal if, and only if,

ap + by + ¢y = a1+ by + ¢ # ag + by, n > 2.

(b) Let (g,p,q) be a triple of polynomial systems such that p is g-
analytic and ¢ is p-analytic with constant one as the coefficient sequence in
each case. Then g, p, ¢ are all orthogonal if, and only if, p is orthogonal and
the recurrence sequences a, b, ¢ of p satisfy

(1) ap+b,+ep=a1+b+c1 #ag+b, n>2, and
(i) ap +bpy1+ 2 = by +c1, n €N
(c) The conditions in (b) are equivalent to

@’ a1 +by+c1 # ao+ b,
(11)/ ap—1 + (bn - bO) + (Cn+1 - Cl) = 0, n > 1, and
(i)’ (@ns1 — an-1 —a1) + [(bpy1 — by) — (b1 — by)] =0, n>1.
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Proof. (a) Suppose that g is orthogonal. Let «, 3, be its recurrence
sequences. Then «;,,v,+1 # 0, n € INy. Also,

n

D (@ gini(@) + B g5(2) + 7 -1(2))

j=0

n+1

= anzgj +bnzgj
+ ¢, Zgj(x), reR, nelN.
i=0
This implies

n
Z(Oéj gi+1+ Bj i + i gj-1)
=0

n+1 n+1
= a’rLZgj+blLZgj+crLZg}3 n € INy.
7i=0 7j=0

Equating coefficients of g; on both sides gives

ag =ag, By =ag+ bo,
ar=a, ap+pfi=a+b, fot+m=a+b+eci,
Qp = Qp, Op-1+ B’H, =a, + bna

aj_1 + B+ Y41 = an + by +cp

and

ﬁO +7 =a,+ b’n, +cn

for n >2 and 1 < j <n—1. This implies a, + b, + ¢, = a; + by + ¢; for
n > 2 and, because y; # 0, it also implies a; + b1 + ¢1 # ag + by.
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We also note that
an =a,, n € Ny,
Bo = ap + bo, B = (an — an-1) + bn, n €N,
7 =(a1+b+ec1)—(ao+bo), m=ci1, n=>2.
Now, on the other hand, if a, b, ¢ satisfy
an +bytcp=a1+by+cr #ay+by, n>2,

then «, 3,7, defined by the expressions given above, work as recurrence
sequences for g and this shows orthogonality of g.

(b) As a byproduct of the computations in the proof of (a), we note that
if «, 3,y are sequences satisfying

Ay Yot1 7 0, an + Bpt1 + Yotz = Bo + 1, n € Ny,
then the sequences a, b, ¢, defined by
a, = ap, n € Ny,
bo= 0B — o, by=pn—(n—n1), neEN,
Cn = Ynt1, nEN,

satisfy a,, + b, + ¢, = a1 + by + ¢1 # ag + by, n > 2. Thus, (b) follows from
(a) and its proof both applied to the pairs (g,p) and (p, q).
(c) is trivial. O

Definition 3.8. Let p = (p,) be an orthonormal polynomial system with
the orthogonality measure p. Let y € R\ I,. Let ¢ = (¢,) = O j_ pr(v)
pr) and @ be the corresponding orthonormal system, i.e.,

Q = (@n) = (gn/llanll,), and let 7 = (ry) = (35— Qr(y)@x). Then (p, g, 7)

will be called an analytic triple through y.

Theorem 3.9. Let (p, ¢, r) be an analytic triple through .
(a) The following are equivalent:
(i) There exists a d € D such that S, 4 simultaneously preserves
the positive orthogonality of { ¢, r }.
(i) There exist ¥/, ¥ € R\ I, y # ¢/, satistying

el

Dn ( pn+1
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N 16 N b P orall n
P Pna () [;)(Py(y))] forall n € Ny,

(iii) There exist ¢/, 4" € R\ I,, y # ¢/, such that

. , Do (V)
either (o) % =y and p(y)—"7C
() W) @)
p;LJrl (y)
:pl(y)i , S ]N7
Pnt1(y)

n) [ald) ]

or(8) o #4" and
(8) v =y L ()

_ )P (y)

, ne€IN.
Prt1(Y)

The point ¢ (respectively y”) chosen in (ii) can be taken to be
the same as in (iii), and vice versa, and in each case

d= (pn(y,)/p”(y))'

(b) For given y/,y" € R\ I,, y # ¢/, Part (iii)() above is equivalent
to each of the following, where o, is the leading coefficient of p,,, as

before.
: / n__ i pl(y)p2(y/) / () :|
e e i L R Y
and
1Y) [pnﬂ(y") _ 1] _ Py () n>9
Y =y [pn(y) Put1(y) T

- ’ ;L) p(y) 1oy
(i) v #vy + o [pil(y/)pQ(y) pQ(y)—pg(y)} S APA

and

i (y) l”i )

Pn+1 (y/) ]‘

(i [M Py (y) _p;(y/)}yl]

=1 o2

) ()
Pn+1 (y)
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Op, Wn+41 pn+2(yl) Wn—1 pnl(?/)) _ ( pn(y/) Pn+1 (yl>>:|
(111) |:( Wn p71,+1(y/) * Wn, pn(y/) pn+1(y’) + pn,(y’)

is a nonzero constant sequence, say m #0, and y’:=y+
m € IR\ I, satisfies

On+1

pn(y”) = Wn pn+1(y/) - anlpnfl(y/)a n € IN,

where

(y)
Wy, = E (p;( , n€Ny.
! Pn (y)p77+1 y =0 !

Proof. (a) It is enough to consider the case infZ, > —oco and
y < inf Z,. Let p, be the measure given by du,(z) = (z — y) du(z). Let, for
n € IN, o, be the leading coefficient of p, and P, = (1/0,) p,. Then, for
n € INg (cf. [5], Section 7),

[t e = 2 [ (Y nm)
X (pn(y)an (z) - pn+1(y)pn(x)) du(x)
= = na W) P (0)

In particular, taking n = 0, we get p,(R) = (—=1)/(o1) p1(y). So

|| n||2 — 010, pn(y)anrl(y) , ne INO. (1>
On+1 pl(y)

Let d € D. By Theorem 3.3, S, 4 q is positive orthogonal if, and only if, there
isay € R\ I, such that d, p,(y) = p.(v/), n € Ny. Since d € D, ¢/ # y.
As in Definition 3.8, let @, = ¢,/(/|gxll,). We next note that

Sp,d Tn = Z Qk(y) SpA,d, Qr, n € Np.
k=0

Thus, (S,4r,) is analytic with respect to (S,4@,). Therefore, by
Theorem 3.3 again, for a d satisfying d, p,(y) = p.(¢/), n € Ny, with a
y € R\ I, (Spqrn) is positive orthogonal if, and only if, there exists a
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y" € R\ I, such that for n € INg,

A Qn(y” , A4 n (Y
Qo) =4 DUD ) = gl S
HSdenHS aQ ”SpquHS aQ
Replacing y by ¢/ in (1), we have,
!/
I S [ = 2Lt Peal) gy

Tn1 1Y)

Hence, there exists a d with S,4 simultaneously preserving the positive
orthogonality of {¢,r} if, and only if, there exist v/, y" € R\ I,, y # v/
such that

n

sz W) =—20 S ), e,

Pn ( pn+1 pﬂ(y) pn+l(y) =0

In this case, dy, = pu(y)/pu(y) , 1 € INy. This shows (i)<=(ii).

In (ii), either ¢’ = ¢/ or ¢ # ¢/. Thus, using the confluent form of the
Christoffel-Darboux identity, (ii) holds if, and only if, there exists a
y € R\ I, such that either

P(y) / p , L )
) | () ) = 1) ) |
= }771(3/?;1]573:)1(?;) {p;m (y) pu(y) — p;l(y) pn+1(y)} , n €N,

or there exists a ¢ e R\ I, , ¢’ # ¢/, satisfying

1Y) i1 (YY) Pn(Y) = Pu(Y") Prs1 (y)
oY) Pos1(y) Yy -y

p1(y)

= ) [piz,ﬂ(y) Pa(y) — 1 (y) an(y)} , n €N,

i.e., either

() [ Pha (V) _pil(y’)} (@) [pim(y) A ] CneN,.

L Po1(¥)  puly) Po1(y)  pa(y)
or there exists a y' € R\ I, v’ # v/, satisfying

pi(y) _Pn+1(y")Pn(3//)] ( {M M], n € INy.

v =y [ pan(y)  pa(y) Pari(y)  paly)
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For n = 0, both the conditions are trivially satisfied, so (i) is equivalent to
the existence of ¢/ € IR\ I, such that either

/ p;LH ¥) . p;L+1 (y)
yai (y ) =P (y) Pt (y)

n €N
Pnt1 (yl) ’ ’

i.e., (iii)(c), or there exists y' € R \ I, satisfying

n@) [ponly”) ] _ Por®)
Y~y {pnﬂ(y’) 1] =ny) Por1(y) eI

i.e., (ii1)(B). This shows (ii)<=(iii).
(b) Condition (a)(iii)(0) is equivalent to

y#EY =y +ai2 {2718'))%2%% py(y) — p’a(y’)} €\,
and
n(y) {pm(@/’) - pnﬂ(y’)} _nWral
Por1 () Y~y Por1(y) -
which is (b)(i). Now,
an(y;)/ :Zwl(y') _ i piﬁl"m W= men,
j=1

so (a)(iii)(0) is further equivalent to

[pl (y) p2(y')

O ) <o | em,

1
y#FY +—
02

and
n+1 ()

n(y) p L) (m@)p) 6
)5 l 2 () 70 ~P) 1

) ()

n>2
p77,+1(y)

which is (b)(ii).

To prove the equivalence to (b)(iii), suppose first that (a)(iii)(8) holds.
This implies (a)(i), i.e., there exist ¢,y € R\ I,, ¥ #y such that
W P (V) Pir () = 225 2i(y )pi(y"), n € Ny.
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So wy=1/m) and w, pu(V) Pri1(y) — w1 Pa1 (Y) pu(Y) =
Pu(¥) pu(y") ,n € IN. Thus, w,pps1(y) — w1 Pn-1(y) = pu(y’). Also, by
the Christoffel-Darboux identity, for n € IN

o oY) Pasa (i) = —2 {

Ont1

o1 (y") Pa(y) — P (y") Pua (v) ]
y// _ y/

and, therefore,

" / i On [anrl (y”) _ p”(y"):|

VY T e Lo V) pa¥)

So,
m=y —y =" [ ! <W7L+1Pn+2(y/) —pn(y’))
Oni1 | Prr1(¥) \ wn
- pnéy/) (pn+1(y’) —wj;l pn—l(y’)ﬂ,
1e.,

I y/ On [<w71,+1 Pnt2(y) n Wn-1 Pn-1(¥/) )

Wn pn+1(y/) Wn, pn(y/)
pn(y/) anrl(?/)
B (anrl(y/) * pn(yl) )‘| .

The reverse implication is clear. O

On+1
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Theorem 3.10. Let (p, g,r) be an analytic triple through —1 such that

(i) the system p is in the Nevai class M(0,1) (see [9], Definition 3.1.6),
with the support of the orthogonality measure contained in [—1, 1],

and
(if) i Pt CY s e (D)

n—oo pn(—l) n—0oo pn(l) ’
Then for d € D, the operator S, 4 simultaneously preserves positive ortho-

gonality of {¢,r} if, and only if, d, = p,(1)/p.(—1), n € Ny, and

p1(1)p, (1) _ pi(=Dp, 4 (=1)
p71+1(1) pn,+l(_]-)

, n € IN.

Proof. We shall use Theorem 3.9 (with y = —1) and its notation. Suf-
ficiency (that is, the ‘if ” part) is immediate from Theorem 3.9(a)(iii)(«). For
necessity (that is, the ‘only if” part), we consider a d € D for which S, 4
simultaneously preserves the positive orthogonality of {g,r}. Then, either
Condition (a)(iii)(«) or Condition (b)(iii) of Theorem 3.9 is satisfied.

By definition, there exist sequences a = (a,) and b = (b,) satisfying

xp’n,(x) = anp pn+1(x) + b’n, pn(x) + Ap—1 p’n,—l(x)7 HARS IR; n c NOa

and lim,, o b, = 0, lim,, .o a, = lim,, .o 0, /041 = 3. By Poincaré’s theo-
rem (see [9], Theorem 4.1.13) and by assumption (ii), we have

v+Vy® -1, ify >1,

/

/
lim pn+1(y): v —y? -1, if y < —1,

n—o0 pn(y’)

1, if ¢ =1.
Moreover, from Theorem 4.1.3 in [9], it follows that

(pn-‘rl (_1))2

lim ————~—==0

n—00 Z;]: O(pj(_l))Q

which implies, together with assumption (ii), that lim, .., wy+1/w, =1. Asa
consequence,

o [ ( W Pui2(¥) | @t pn—l(y’)> B ( Pa(y) +pn,+1(y’)ﬂ _o.

W1 D1 (V) wn (YY) Pui1(y)  a(y)

b

lim
n—=00 Op4l

Thus, Condition (b)(iii) cannot be satisfied. Therefore Condition (a)(iii)(c)
must hold, which implies (a)(ii), where we can choose 3’ = ¥/.
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In the same way as before, we can also conclude that

; pn(—l)pn+1(—1)
n—o0o pl(—1> Z;L:()(Pj(_l))?

:07

which now gives us

pn(y/) Prn+1 (y,) =
B ) S )

Assume now that |y/| > 1. In this case we can utilize the proof of Theorem 1
in [14] to show that

e T @)+ Prnn(y))?
el o Y (pi(y)°

Since in our case, inf,en py1/0, > 0 and

inf, e min {|pn (¥') /P V)], [Prsr () /2a ()]} > 0,

and since always

Pn (yl) DPn+1 (yl) ! /
() + a1 < 2 mac{ | 2200, 0@ s (),
" Pur1 (W) | puly) ’
we get that
; Pu(y) Pas1(y)
n 2 ’
"N pi(y) 2250 (pi(y)
a contradiction. Thus, |y/| = 1, and since ¢/ is real and not equal to y = —1,
we get i/ = 1. Now putting this into Theorem 3.9(iii)(cr), we get the
assertion. O]
Remark 3.11

(a) The analogous result for analytic triples at 1 holds too.
(b) For a, > —1, the orthogonal Jacobi polynomial system
p:ngf*‘ﬁ)) satisfies the conditions of Theorem 3.10. We also have

P(a,@ !

D (@) = ((n+ a+ B+2)/2) P (),
(1—2)" (1+ )" P9 (z)

_Cya
~ 2mpl dzn

[(1 — )"+ x)nw], z € R, n € INy.
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Thus Condition (a)(iii)(«r) of Theorem 3.9 reduces to, for n € INy,

a+1,6+1 a+1.64+1
plon gy B pas gy POTED e
() (c.3) Sy ) =P (-1),
RH—’l (1) Rz,-&-’l (_1)
i.e.
a+2 n-+1)!
) @Dy (D)

7’L' (Oé + 1)n+1

(-1)" (B+2) (n+1)!
(. 1 n
( )(ﬂ + )1 n' ( )TL+1 (ﬂ + 1)n+1

which is satisfied. So, the sequence

_ < pa(1) ) _ p£ﬂ~ﬁ>(1) _ ((—1)" (o + 1)n>
Pu(=1) P (—1) (B+1),
is the unique sequence such that Spa preserves the positive ortho-
gonality of the analytic triple {Pn“ & Pg“ AT pleft) } We have already

noted in the Introduction that it preserves the orthogonality of
{Pn/iJrf) £ 0}

4. DILATIONS FOR LAGUERRE POLYNOMIALS
4.1. Discussion and Definition

Denote by (L%) the generahzed Laguerre polynomial system, as given

in the Introduction. Clearly, (L2)' (z) = —L°"}(x), = € R, n € IN;, where

“, =0. The associated monic polynomial system (lﬁ) is given by

I8 = (=1)"n!L%, n e Ny, and, for a > —1, the orthonormal polynomial

system (L) with leading coefficients o,, positive and negative at even and
odd n’s, respectively, is given by

Ta n' F(O[ + 1) 1/2 a « *1/2 «

, € INy.
T(n+a+1 n e

Also, Lo = Z;L:U Ly and, more generally, for ¢ with « +¢ € R\ (—IN),
~(t+n—j—1
a+t @
Ln - ]:Z() ( n _j )LJ :

(1) Let p= (I%). Then the associated sequences (b,) and (c,), as in
Theorem 2.2, are given by b, =2n+1+a, c¢,=n(n+a),
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n € INy. For t € R with a + ¢ ¢ —IN, the monic matrix for (I2*") is
At = (d,), where

ik gLtttk 1)

a =D g (G — k) ’

0<k<y.

In particular, aj, #0, 0<k<j, j€N, if ¢t¢-INy, and
ab, #0 if, and only if, max{0,t+j} <k <j, j€ Ny in case

t € —INy. Also,
I+ (t+5—k ) )
altj+1’]g:_( j)—(k+1 )a§7ka nggjv JGH\IO»
k(t+j5—k ) )
a;,klz—%g_kﬁl)a}k, 1<k<y, jeN,
coo=d g 0<k<j, jeN
aj,k+1*(k_~_1) A1k <k<y7, jgelN.

Finally, aj,,,=—(k+1)t and af,;, = ((k+2)(k+1)/2)
t(t+1), ke IN,.

(ii) The system (LoF') is (L%)-analytic with constant one as the
coefficient sequence. Also, (1) is the monic kernel polynomial at
0 of (1). Thus, for a > —1, (L&) is (L%)-analytic with coefficient
sequence (L2(0)). Thus ((L2), (Lo, (L2*?)) is an analytic
triple through zero.

Theorem 4.2. Assume that o€ R\ (-IN), teR\{0} and
a+t¢-IN. Let p=(I%) and d € D. Denote u, := (n+1)d,/d,+1 and,
for notational convenience, u_; := 0.

(a) The system (S, 4(1%"")) is orthogonal if, and only if,
. t(t—1
(@) 7un—lun,% 7é n(ﬂ + Oé) + 2w, 1t — ui—ltz

t(t+1)

FUp—9Up_1 for n € IN,

(i) wa(t —1)(t—2)
1

S I D d =)
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—(n—=7(n—74+ Dupot(t+1)

2 (t+n—j7—1)t+n—-J +2n—jn—-7+1)

x((j+1+oe)j+1(n+a) " +2(nj1))1

Uj Up—1

2<74+2<n ift¢ —IN,
for

2<j+2<n<j—t+1 ifte —IN.

(b) Suppose a,a+t > —1. Then the system (S,4(I2*")) is positive
orthogonal if, and only if, d is real and (a) above holds with the inequality in
(1) strengthened to “<”.

t

Proof. Writing a,, ; instead of a], ., 4.1(i) gives

n,j°
1
Upt1n—1 — OnpinlGnn-1 = — wt(t - 1), n € IN,
and, for 2 <j+2<n,
(n+1)(n—Jj)
n ) — Un nnzit_l n,J
An+1,j = On+1n0n,j n—j+ 1) ( )an,j
(n+1)n ]
=————F—(t-1)t+n—-7—1ay_1;
(7’?, —j + 1)( )( J ) 1.7
and
nj . ,
Qpj-1 = . ; (t +n— j)(t +n—7— 1)0/,71,17',
T (n=n—j+1) !

where, for notational convenience, we take a,,_; = 0.

When applying these identities to the expressions in Theorem 2.4, we
note that both sides of 2.4(ay)(iii) have a common factor a,_1 o and those of
2.4(aq)(iv) have a common factor a,—; ;. In the case ¢t ¢ —IN, these factors
are not equal to 0 and can be cancelled. In the case ¢t € —IN, these factors are
not equal to 0 and can be cancelled if, and only if, n —j < —t +1; for
n —j > —t+ 1, Conditions 2.4(a,;)(iii) and 2.4(ay)(iv) are trivially satisfied.
Now combining 2.4(ay)(i) and 2.4(ay)(ii) into one line, as well as 2.4(a,)(iii)
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and 2.4(ay)(iv), we arrive at

dn—l n(n—|— 1) dn—l dn—l ?
— —t(t—1 2nt — (—— nt
dnJrl 2 ( ) 7& n(” * a) * dn " dn, "
dp— -1
+ = QMt(t—i—l), forn € IN
dy 2
and
t—1)(t—2
T -D-2)
_ 1
(n+1)(n—5)n—j—1)d,
. . dn—l
X [2(n—j—1)(n—j+1)n 7 t(t—1)
. . dn—2
—(n—j)(n—j—i—l)(n—l)d t(t+1)
n—1
. . LA . .
+2](t+n—j—1)(t+n—])7+2(n—])(n—j+1)
j
d; dy, .
x ((j+1+a)il—(n+a)—+2(n—j—1)>
dj dnfl
2<j+2<n ift¢ —IN,
for
2<j+2<n<j—t+1 ifte —N
Expressing the d,,’s in terms of w,’s, we arrive at (a); Part (b) follows from
Part (a). I:|
Remark 4.3.

(a) We note that by setting j = n — 2 in Part (a)(ii) above and doing
some simplifications, we arrive at

Un(t — 1)t — 2) = 3t(t — Dty — 3t(t + Dttns + (£ + 1)t + 2)un_s

+6<(n—1+a)n_1—(n+a) n +2)

Up—2 Up—1
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forn > 2. If t = —1, this is even equivalent to (a)(ii), because then j =n — 2

is the only admissible case.
(b) If t #£ —1, then we can also set j = n — 3 and get

1
%@—n@—gy:%@—1mwl—m@+1mma+§@+m@+3mw4

n—2 n
+4((n—2+a) —(n+a) +4)
Up—3 Up—1
for n > 3.

(c) The next result, Corollary 4.4, can be seen as a contrast to
Theorem 1.1. The statement there is that for the sequence d = ((—1)") and
the system p= (Pfﬂ”)), the operator S, simultaneously preserves
orthogonality of uncountably many systems of Jacobi polynomials. Here,
for d = (d}) and p = (I%), the operator S, ; preserves orthogonality of no
other system of Laguerre polynomials.

Corollary 4.4. Let a € R\ (—IN), p=(12), and let t € R\ {0} with
a+t¢ —IN.

(a) Let d € D be given by d, = d with d; # 1.

(b) Let d € D be given by d,, = (I'(n + 1)I'(a + 1)/T'(n + a + 1)) with
a# 0.

Then S, ; does not preserve orthogonality of (I%77).

Proof. (a) For this sequence d, we have u, = (n+ 1)/d;. Putting this
into 4.3(a), we arrive at
n+1 n n—1 n—2

G (=D =2) =30 1) g =B 1) S (4 2)

+6(n—14+a)d; — (n+a)d; +2).

This simplifies to (1 —d;)?/d; = 0, so that necessarily d; = 1, contrary to
the assumption that d; # 1.

(b) Now we have u,=n+a+1 (and wu_; =0). Putting this
into 4.2(a)(i) and cancelling the common factor (n+ «), which never
equals 0, we obtain

t(tgl)#n—&-%—(n—i—a)tz

—(n+a+1)
{ (n+a-1)(t+1)/2) forn>1,
Jr

0 forn =1.
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The first line simplifies to ¢t +n # 0 for all n > 1, and the second line implies
that ¢t # —1. Thus it is impossible that t € —IN.

Now for ¢t ¢ —IN, we can use Condition 4.2(a)(ii) with 7 = 0. This leads
to

m+a+1)(t—-1)(t—-2)

1
= T 2(n —1)(n+ 1) (n+a)t(t —1)

—nn+1l)n+a—-1tt+1)+2n(n+1)(n—1)

for all n > 2. Since « # 0, we can cancel a factor of 2« and arrive at the
identity

n 4+ (2t —Dn+tt—1)=0 for all n > 2,
which is impossible. O

Theorem 4.5. Let o € R\ (—IN) and p = (I%). Then there exists no
d € D such that S,, simultaneously preserves orthogonality of (I%"') and

(Io+12), where t1,t, € R are distinct and nonzero and satisfy a + ¢, a+
ty & —IN.

Proof. Assume that for some d € D, the operator S,, preserves or-
thogonality of (I2*") and (I2*2) with some ¢;,¢, as specified. Denote
T :=t; + to. Substitute ¢t = t; and ¢t = ¢, in 4.3(a), subtract, and cancel the
common factor (¢; — t). Then we get

(T=3)u, =3(t— D up—1 — 3(7+ D up_o + (7+ 3) up_s for n > 2.

This is a linear recursion with constant coefficients for the sequence u,,.
Using standard methods (cf. [6], Section 2.3), this recursion can be solved.
Explicitly, the sequence u,, satisfies the recursion if, and only if, there exist
constants 7y, such that, for all n € IN,

u, =7 (n+1) if =3,
T+3
T—3’

and the constants 1, y» are chosen such that w,, # 0 for all n € IN,. Here we
used the initial condition u_; = 0, and we set ¢” := 1 for all & € IR. Since it

up, =1 (n+1)+v (1 —a"“) if 72 3, where 0 :=
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is impossible that w, =-(n+1), because that would contradict
Corollary 4.4(a), we can, from now on, assume that 7 # 3 and that v, # 0.
Now we have to distinguish two cases: either t¢,to #% —1 or, say,
t1 = —1.
If t1,t2 # —1, then using 4.3(b) with n = 3, we get in the same way as
before the identity

(7—3)U3=§(T—1)uQ—2(T+1)u1.

Now using the above explicit formula for w,, simplifying and cancelling the
common factor v, # 0, we get

(7’—3)04:§(T—1)03—2(7’—}—1)02—|—§(7'—l—5)7

which, after remembering that o = (7 + 3)/(7 — 3), leads to a contradiction.
On the other hand, if t; = —1, then 4.3(a) implies

n—1
Uy —Up1 = (n—1+a) —(n+a)

+ 2 forn > 2. (*)
Up—2 Up—1

Replacing n by n — 1 and adding that to the line above, we obtain

—2_(n+a)

uﬂ,—un,g:(n—ZJroz)u ”
n—3 n—1

+4 form >3.  (xx)

Since to # —1, Remark 4.3(b) is applicable for ¢t = ¢, and gives now

un(tg — ].)(tg — 2) = %tg(tg — 1)un,1 — 2t2(t2 + ].)’Lbn,Q

+ % (t2 + 2)(t2 + 3)“71—4 + 4(“71 - un—Q)

for all » > 3. Next, setting n = 3, using —1 + ¢, = 7 and simplifying, we
obtain

(7 =7 —4)uz = 57(7+ Dug + 2(7* + 37+ 4) uy = 0.
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Again, using the above explicit formula for w,, simplifying and cancelling
the common factor v, # 0, we get
(P —r—4)o' —87(r+ 1) +2(r2 + 37+ 4)0® — L (7 +3) (7 +4) = 0.

With ¢ = (7 +3)/(r — 3), this implies 7=0 or 7= -3, i.e., c=—1 or
o = 0. In both cases, u,, — u,_2 = 2y, for n > 2.

For 0 = —1, we have
+1 if n is odd
:{71(n ) 1 nTso }forne]N().
m(n+ 1)+ 2y if n is even

Putting this into (**) with n = 4, we obtain

224 a) 44+«
p, _22%0) 4(ta)
2"}/1 4’)/1

which simplifies to 3 = 1, and then for odd n,

1
g 1to _3(3+a)+4
1+2’)/2 3+2’)/2

)

which simplifies to v = /2, since 72 # 0. But then

n+1 if nis odd
Up = . . .
n+a+1 if n is even

Putting this into (%), we see that necessarily o = 0, thus 2 = 0, a contra-
diction.

For 0 =0, we have u, = (n+ 1)+~ for n € INy. Putting this
into (%), we obtain

n—1 n
(n+a) —— 42,

=n-14+a) ———
= )71(n—1)+”yz NN+ 7

which simplifies to
N =120+ (= 1)* (= + 232) n
e mr—2%+2n+a—1-7)=0
for all n > 2. Comparing coefficients, we see that necessarily
N —17=0,  (n—1(—n+2%) =0
and

Yo (M2 — 279242 +a—1—197) =0.
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Since it is impossible that 7; = 0, because with the second equation that
would imply ~» = 0, which was excluded, we must have v; = 1 and then
¥ =a. But that means wu,=n-+a+1, and this contradicts
Corollary 4.4(b). ]

Applications 4.6. Let o € R\ (—IN).

(a) Theorem 3.3 and 4.1(ii) can be combined to obtain uncountably
many d’s for which Sz.) 4(L2") is orthogonal.
(b) Theorem 4.5 with ¢; = 1 and ¢, = 2 and Theorem 3.9 together give
the following result for o > —1.
(i) There exists no 3 < 0 such that

LYW Ly () = (n+ 1) Ly, (),  neN.

n+1
(if) There exist no ¢/, v’ withy/ <0, y” <0, v/ # " that satisfy
LY (y) [ Ly (y”
v' =y L Lia)

—1}:n+1, n € IN.

To see this, we note that in Condition (a)(iii) of Theorem 3.9, we can replace
(pn) by (u, py) for any u = (u,) € D. Next, we find that

L (0) Ly, (0)/L; 4 (0) =n+ 1

for alln € IN and ((L2), (v, L), (w, L2*?)) is an analytic triple through 0
for suitable (v,), (w,) € D. So, by Theorem 4.5 above, p = (L) does not
satisfy (a)(iii) of Theorem 3.9, i.e., (i) and (ii) above hold.
(c)We can give another proof of (c)(ii) using Theorem 3.9(b). In the notation
of that theorem with p = (L%), y=0, ¢ <0, we have

I Jnr Dntatl),

On+1

Vie+1)(n+1)(n+a+1)
(y) '

Wyp =

So,

1 o, Wn+1
lim — — =1 and lim =1= lim
n—oo N, 0’n+1 n—o0 wn n—oo wn
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Also by [9],

/ /
tim Pe2®) gy P8
=00 Pny1\Y n—oo PnlyY
So,
i O | Wott Posa(y) | wi-n pn,_l(y’)_( pa(y) pn+1(y’)> _o.

n—=00 Op41 Wn Pn+l (y/) Wn  DPn (y/) Pn+1 (y/) Pn (y/)

An appeal to Theorem 3.9(b) completes the proof.
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