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Abstract A stronger notion of nonnegative linearization of orthogonal polynomi-
als is introduced. It requires that also the associated polynomials of
any order have nonnegative linearization property. This turns out to be
equivalent to a maximal principle of a discrete boundary value problem
associated with orthogonal polynomials through the three term recur-
rence relation. The property is stable for certain perturbations of the
recurrence relation. Criteria for the strong nonnegative linearization are
derived. The range of parameters for the Jacobi polynomials satisfying
this new property is determined.
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1. Introduction

One of the main problems in the theory of orthogonal polynomials is
to determine whether the expansion of the product of two orthogonal
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polynomials in terms of these polynomials has nonnegative coefficients.
We want to decide which orthogonal systems {pp }32 , have the property

Pa(@)Pm(z) = ) c(n, m, k)pi()

with nonnegative coefficients c¢(n,m, k) for every n, m and k.

Numerous classical orthogonal polynomials as well as their g-analogues
satisfy nonnegative linearization property (Gasper, 1970a; Gasper, 1970b;
Gasper, 1983), (Gasper and Rahman, 1990), (Ramis, 1992), (Rogers,
1894), (Szwarc, 1992b; Szwarc, 1995). There are many criteria for non-
negative linearization given in terms of the coefficients of the recurrence
relation the orthogonal polynomials satisfy (Askey, 1970), (Mlotkowski
and Szwarc, 2001), (Szwarc, 1992a; Szwarc, 1992b; Szwarc, 2003), that
can be applied to general orthogonal polynomials systems. These crite-
ria are based on the connection between the linearization property and
a certain discrete boundary value problem of hyperbolic type.

In this paper we are going to show that many polynomials systems
satisfy even a stronger version of nonnegative linearization. Namely let
{Pn}2, be an orthogonal polynomial system. Let {pﬁl o o denote the
associated polynomials of order . We say that the polynomials {p,}5°
satisfy the strong nonnegative linearization property if

pn(ac)pm(a:) = Z C(na m, k)pk(x)a
P@pl(z) = 3" aln,m, k) (@).

with nonnegative coefficients c¢(n,m, k) and ¢;(n,m, k) for any n, m, k
and [.

The interesting feature of this property is the fact that it is equivalent
to a maximum principle of the associated boundary value problem (see
Theorem 2). Also this property is invariant for certain transformations of
the recurrence relation (see Proposition 2), unlike the usual nonnegative
linearization property.

In the last part of this work we are going to show that the Jacobi
polynomials have the strong linearization property if and only if either
a=p>~1/2ora>pf>-1land a+32>0.

2. Strong nonnegative linearization

Let p, denote a sequence of orthogonal polynomials, relative to a
measure u, satisfying the recurrence relation

TPn = YnPn+1 + /Bnpn + 0pPn—1, n > 0, (21)
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where v, opy1 > 0 and G, € R. We use the convention that py = 1 and
[

og = p-1 = 0. For any nonnegative integer [ let p;,’ denote the sequence
of polynomials satisfying

wpw = 'ann+1 + ﬂnp + anpg]—h n2l+1, (2:2)
I 1 1 1 1
o =p =-..=p =0, g, = v (2:3)

For n > l+1 the polynomial pg] is of degree n—1—1. The polynomials pw

are called the associated polynomial of order 1+1. These polynomials are
orthogonal as well. Let u; denote any orthogonality measure associated

with {pn o1
For n > m > 1+ 1 > 0 consider the polynomials p,(z)pm(z) and
(w)p[l]( )- We can express these products in terms of pi(z) or pg}(:c)
to obtain the following.

p(T)pm(z) = ) c(n,m, k)pr(z),

>

pl@)pll(z) = 3 eifn, m, k)pl ().

x
Il
<)

The polynomial p,(z)pm(z) has degree n + m while pg] (w)py,]l(x) has
degree n + m — 2] — 2. Hence the expansions have finite ranges and by
the recurrence relation we obtain expansions of the form

n+m
pa(@)pm(z) = > c(n,m, k)p(z), (2:4)
k=|n—m|
n4+m-—I[—1
Uyl = > aln,m k(). (2.5)
k=|n—m|+I+1

Definition 2.1. The system of orthogonal polynomials p, satisfies the
strong nonnegative linearization property (SNLP) if

c(n,m, k) > 0, (2.6)
c(n,m,k) >0, (2.7

for anyn,m, k>0 andl > 0.

The form of recurrence relation used in (2.1) and (2.2) is suitable for
applications. For technical reasons we will work with the renormalized
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polynomials P, and P7[Ll] defined as

Y0V -+ - Yn—1
_= e >
Pn(l‘) 19 ... Qp pn(m), = 17
p[l]m:M[l]m’ n>1+1.
A (2) al+1al+2---anpn( ) >

Clearly the property of strong nonnegative linearization is equivalent for
the systems {pn }o2 o and {P,}52,, so we can work with the latter system
from now on.

The polynomials P, satisfy

Q:Pn = an+1Pn+1 + /BnPn + ’Yn—lpn—ly n > 07 (28)

where y_1 = 0. On the other hand the polynomials P,[ll] satisfy

:EP,[ll] = an-i—lpr[tl—]i-l + ﬂnPr[Ll] + ’Yn—lpr[zl]—h n2l+1 (2.9)

Moreover by (2.4) and (2.5) we have

n+m

Po(z)Pn(z)= Y C(n,m,k)Ps(x), (2.10)
k=|n—m|
n+m—[—1

Pl@)Pl@) = 3 Gin,mk)PY(). (2.11)
k=|n—ml|+I+1

Let L denote a linear operator acting on sequences a = {a,}52, by
the rule

(La)n = ant1an+1 + Bnan + Yn-10n-1, n > 0. (2.12)

For any real number x set

P(m) = {Pn(x)}fzor—-O?
Pl(z) = {PH(2)}22,.

Let §; denote the sequence whose terms are equal to zero except for the
Ith term which is equal to 1. The formulas (2.8}, (2.9) and the fact that

Pl[_lgl = al—+11 immediately imply that
LP(z) = zP(xz), (2.13)
LPY(z) = cPU(z) + 4. (2.14)
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3. Hyperbolic boundary value problem and
basic solutions

Let u(n,m) be a matrix defined for n > m > 0. We introduce the
operator H acting on the matrices by the rule

(Hu)(n,m) = oppru(n+1,m) + Bru(n,m) + yp—1u(n — 1, m)

- am+1u(n7 m+ 1) - ﬂmu(nv m) - ’)’m_l’U/(’I’L, m - 1):
(31)

for n > m > 0. By (2.13), if we take u(n,m) = P,(z) Py (z) for some =,
then
(Hu)(n,m) = 0. (3.2)

Similarly by (2.14), if we take u(n,m) = P (z)PY(z), then
(Hu)(n,m) = Pl(@)8i(n) - P ()8 (m).
Assume n > m. Then n = I implies PY(z) = 0. Hence
(Hu)(n,m) = —PW(z)8;(m), for n >m > 0. (3.3)

Proposition 3.1. Given a matriz v = {v(n, m) }n>m>0 and a sequence
f=A{f(n)}nz0. Let u= {u(n,m)}nz>m>o satisfy
Hu(n,m) = v(n,m), forn>m >0,
u(n,0) = f(n), forn>0.
Then
u(”: m) = Z U(k) l)Cl(na m, k) + Z f(k)C(na m, k)
k>1>0 k>0

Proof. The formula (3.1) and the fact that o, > 0 imply that u is
uniquely determined.
Let ug(n,m) = C(n,m, k). By (2.10) we have

-1
u(n, m) = ( / P(x) dﬂ(w)) / P (2) Pm(2) Py(z) du(z).

R R

Therefore by (3.2) we obtain

(Hug)(n,m) =0, forn >m >0,
uk(n,0) = dx(n), for n > 0.
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For k > 1> 0 let ug(n,m) = Ci(n,m,k). By (2.11) we have

-1

wgtrm) = | [{PP@)} due) ) [ PP P @) diuta).
R

R

Thus by (3.3) we get

(Hug,1)(n,m) = =35 (n,m), for n>m >0,
ug,1(n,0) =0, for n > 0.

Hence the matrix

u(n,m) = — Z v(k, Dugi(n,m) + Zf(k)uk(n, m)

k>1>0 k>0

satisfies the assumptions of Proposition 1. By uniqueness we have u =
U, (|

Let H* denote the adjoint operator to H with respect to the inner
product of matrices

o0

(u,v) = Z u(n, m)v(n, m).

n>m>0

The explicit action of this operator is given by the following.

(H*v)(n,m) =yv(n+ 1,m) + Bov(n, m) + apv(n — 1,m)

— Ymv(n,m + 1) — Bpv(n, m) — anv(n,m—1).

For each point (n,m) with n > m > 0, let A, ,, denote the set of
lattice points located in the triangle with vertices in (n — m + 1,0),
(n+m —1,0) nad (n,m — 1), i.e.

An,m:{(iaj)loﬁjfialn_il <m-—j}

The points of Ay, ,, are marked in the picture below with empty circles.



Strong nonnegative linearization of orthogonal polynomials 467

m

)
g

By (Szwarc, 2003, Theorem 1) nonnegative linearization is equivalent to
the fact that for every (n,m) with n > m > 0 there exists a matrix v
such that

suppv C Ay m, (3.4)
(H*v)(n,m) <0, (3.5)
(H*v)(4,7) 2 0, for (i,7) # (n,m). (3.6)

Definition 3.2. Any matriz v satisfying (3.4) and (3.5) will be called
a triangle function.

Definition 3.3. Let v, ., denote a matriz satisfying

SUPP Un,m C Ap,m, (3.7)
(H*upm)(n,m) = —1, (3.8)
(H*vpm)(3,5) =0, for0<j<m (3.9

The matriz vpm will be called the basic triangle function.

The main result of this section relates the values of vy, (k,1) to the
coeflicients Cj(n, m, k).

Theorem 3.4. For anyn>m >0 and k > 1 > 0 we have
Unm(k, ) = Ci(n,m, k).

Moreover
n+m

H*vn,m = —6(n,m) + Z C(n,m, k))é(k’o)

k=n—m
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Proof. Let u(n,m) = PT[L”(:B)P,BL] (z). We have Pél] = 0, hence by (3.3),
(3.8) and (3.9) we obtain

~PY(2) Pl (2) = —u(n,m) = (H*vp,m,u) = (vn,m, Hu)
_Zvnm(k ])(HU ).7 Z'Unm P[l] )

k,j

Thus by (2.11) we get v, m(k, 1) = Ci(n,m, k). The second part of the
statement follows from (Szwarc, 2003, Lemma), but we will recapitulate
the proof here for completeness. By (3.8) and (3.9) we have

H™ 0y g, = =0 ) + de5(k,o)-
k

Let u(n,m) = P,(z)Py(z). Since Hu = 0, we have

Po(z)Pr(z) = u{n,m) = —(H" vy m,u) + deu (k,0)
(Vm, Hu) + dePk (z) = Z di Py ()
k

Hence d, = C(n,m, k). O
4. Main results

The main result of this paper is the following.

Theorem 4.1. Let p, be a system of orthogonal polynomials satisfying
the recurrence relation

TPn = YnPn+1 + ﬁnpn + anPn-1,

where p_1 = 0 and po = 1. Then the following four conditions are
equivalent.

(a) The polynomials p, satisfy the strong nonnegative linearization
property.

(b) Let u = {u(n,m)}n>mxo satisfy

(Hu)(n,m) < 0, forn>m >0,
u(n,0) > 0.

Then u(n,m) > 0 for every n > m > 0.

(c) For every n > m > 0 there exists a triangle function v, satisfying
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(i) suppv C Ap .
(if) (H*v)(n,m) <0.
(iff) (H*v)(i4) 2 0 for (4,7) # (n,m).
(iv) v > 0.
(d) The basic triangle functions vy, ., (see (3.7), (3.8), (3.9)) satisfy

(i) (H*vnm)(%,0) > 0.
(ii) vnpm > 0.
Proof.
(b)=(a)
By the proof of Proposition 1 we have that if ug(n,m) = C(n,m, k)
and ugi(n,m) = Ci{n, m, k) then

(Hug)(n,m) =0, (Hug)(n,m) = —J(k,l)(n, m)
ug(n,0) = dk(n), ug,1(n,0) = 0.

for n > m > 0. Thus C(n,m,k) > 0 and Cj(n,m,k) > 0 for n > m > 0.
(a)=(d)

This follows immediately by Theorem 1.
(d)=(c)

This is clear by definition.
(c)=(b)

Let u = {u(n, m)}n>m>o satisfy (Hu)(n,m) <0, for n > m > 0 and
u(n,0) > 0. We will show that u(n, m) > 0, by induction on m. Assume
that u(3,7) > 0 for j < m. Let v be a triangle function satisfying the
assumptions (c). Then

0> (Hu,v) = (u, H*v) = u(n,m)(H*v)(n,m) + 3 u(s, j)(H*v)(,7)

i>j>0
j<m
Therefore
—u(n, m)(H*v)(n,m) > > u(i,§)(H*v)(i, ),
1>5>0
j<m
and the conclusion follows. O

Remark 4.2. Theorem 2 should be juztaposed with the following result
which can be derived from (Szwarc, 2003, Theorem 1).
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Theorem 4.3. Let p, be a system of orthogonal polynomials satisfying
the recurrence relation

TPn = YnPnt+l + ﬁnpn + anpn—1,

where p_1 = 0 and pg = 1. Then the following four conditions are
equivalent.

(a) The polynomials py, satisfy nonnegative linearization property.
(b) Let u= {u(n,m)}n>m>0 satisfy

{ (Hu)(n, m

0, forn>m >0,
0.

Then u(n,m) > 0 for every n > m > 0.
(c) For every n > m > 0 there exists a triangle function v, satisfying
(i) suppv C Apm.
(ii)y (H*v)(n,m) < 0.
(i) (H*v)(i,5) 2 0 for (3,5) # (n,m).
(d) The basic triangle functions v, m (see (3.7), (3.8), (3.9)) satisfy
(i) (H*vnm)(4,0) > 0.

One of the advantages of the strong nonnegative linearization prop-
erty is its stability for a certain perturbation of the coeflicients in the
recurrence relation. Namely the following holds.

Proposition 4.4. Assume orthogonal polynomial system {p,}>>, sat-
isfies (SNLP). Let ,, be a nondecreasing sequence. Let g, be a sequence
of polynomials satisfying the perturbed recurrence relation

TGn = Ynln+1 + (ﬁn + en)Qn + OnQn-1,
for n > 0. Then the system {qn}>2, satisfies (SNLP).

Proof. We will make use of Theorem 4.1(c). Let H and H, denote the
hyperbolic operators corresponding to the unperturbed and perturbed
system, respectively. For any matrix v(4,j) we have

(Hzv)(6, 7) = (H™0) (%, 5) + (e: — €5)v(, 5)- (4.1)

By assumptions for any n > m > 0, there exists a triangle function v
satisfying the assumptions of Theorem 4.1(c) with respect to H. By
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(4.1) the same matrix v satisfies these assumptions with respect to H,.
Indeed, the assumptions (i) and (iv) do not depend on the perturbation.
Since v(n, m) = 0 the assumption (ii) is not affected, as well. Concerning
(iii), since v > 0 and &, is nondecreasing we have

(Hev)(67) 2 (H™)(E, 5) 2 0,

for ¢ > j > 0 and j < m. Hence the perturbed system of polynomials
satisfies (SNLP). O

5. Some necessary and sufficient conditions

We begin with the following generalization of Theorem 1 of (Szwarc,
1992a).

Theorem 5.1. Let orthogonal polynomials {p,}5° satisfy (2.1). Let
{cn}S2 be a fized sequence of positive numbers with co = 1 and

Cn~1 Cn+1
! n / n
an = Oén, 711, = fYn) fO’f' n Z ]-
Cn n

Assume that
(i) Bm < Bn for m < n.
(i) am < af, form <n.
(1) am +ym < ol + ), for m < n.

v a’m<’)/ for m < n.
n —_—
o0

Then the system {p,}52 satisfies the strong nonnegative linearization
property.

Proof. 1t suffices to construct a suitable triangle function for every (n, m),
with n > m, i.e., a matrix v satisfying the assumptions of Theorem
4.1(c). Fix (n,m). Define the matrix v according to the following.

. J e (5,5) € Apm, (n+m)—(2+ ) odd
v(i, j) = { 0 otherwise (5.1)

The points in the support of vy, ,,, are marked by empty circles in the
picture below.
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Then supp H*v consists of the points marked by o,e,<,> and o. A
straightforward computation gives

~QmCn ( J) - (’I’L, m)
(Bi — Bj)ei (i,5) —
(H*v)(3,5) = { @icim1+ viciy1 — agei —viei (i,5) — @
QiCi—1 — QG (2,]) - b
ViCit1 — Q5Ci (3,j) — «
Hence H*v satisfies the assumptions of Theorem 4.1(c). a

Applying Theorem 5.1 to the sequences

a9 ... 0y
ecn=1 or ¢p=—=""—"—-
YoV -+ Y1

gives the following.

Corollary 5.2. Let orthogonal polynomials {pn}S2, satisfy (2.1). If
the sequences auy,, Bn, Qn + Y are nondecreasing and o, < 7, for all
n, then the system {pn 2 o satisfies the strong nonnegative linearization

property.

Corollary 5.3. Let orthogonal polynomials {p,}5 satisfy (2.1). As-
sume that

(i) Bm < Bn form <m

(i) am <y form<n
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(iil) m +Ym < @ne1+ Yne1 form <n

(iv) am < an form<n

Then the system {pn}o2, satisfies the strong nonnegative linearization
property.

Now we turn to necessary conditions for (SNLP).

Proposition 5.4. Assume a system {p,}5° satisfies the strong non-
negative linearization property. Then the sequence [3, is nondecreasing.

Proof. By (2.2) we can compute that for n > 2 we have
1
[n=2(2) = ———(z — Ba-1).
£@) = ——(@ = fu-)
But by (2.1) we have

(@~ Bae)Pl ™ = bl + (Bn = B )P + cnpn 2,
Thus G, > B,_1 for n > 2. On the other hand
1
pi(z) = —(z — Bo)
Yo
and
(z — Bo)p1 = 11p2 + (61 — Bo)p1 + aapo.
Hence B1 > fp. O
6. Jacobi polynomials

8)

The Jacobi polynomials Jr(ba’ satisfy the recurrence relation

pgef) - 2ntlntatpf+l) (e8)
" 2n+a+B+1D)(2n+a+B+2) "

n g — o 7(aB) (6.1)
Cn+a+p)2n+a+p+2) "
2(n + &) (n + B) (e)

2n+a+p)@2n+a+p+1) "1

Theorem 6.1. The Jacobi polynomials satisfy the strong nonnegative
linearization property if and only if either « > 8> -1 and o+ 8 >0
ora=02> —%.

Proof. Assume the Jacobi polynomials satisfy (SNLP). In particular
they have nonnegative linearization property. By (Gasper, 1970a) we
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know that the condition o > § is necessary for nonnegative linearization
to hold. Also if @« = @ then the condition o > —% is necessary (see
(Askey, 1975)). Let @ > 8. By Proposition 5.4 the sequence

52—-012
Cn+a+p)(2n+a+8+2)

should be nondecreasing, which holds only if o + 3 > 0. Hence the
conditions on o and [ are necessary for (SNLP).

Now we are going to show that the conditions on the parameters are
also sufficient for (SNLP). Assume first that o = 8 > —1/2. Let

T (g
Jn (1)

Then by (Koekeok and Swarttouw, 1998, (1.8.1), (1.8.3)) the polynomi-
als satisfy

ﬁn:

n+2a+1 n

TR -
mtaa+1 @t o
Hence by Corollary 5.2 the polynomials satisfy (SNLP).

Assume now that o > 8 > —1 and a + 3 > 0. Let p,(z) denote the
monic version of Jacobi polynomials, i.e., let

pul) = 1 <2n +a+ ﬁ) @) (),

zR,(z) = R,_i(x).

PAL 7

By (Askey, 1970) the polynomials p,, satisfy the assumptions of Corollary
5.2 iff &+ 8 > 1. Hence they satisfy (SNLP).

We have to consider the remaining case when o > 3 > —1 and
0 < a+ f < 1. By (6.1) we have

_ 2(n + a)(n + B)
an_(2n—l—a+,8)(2n+a-l—ﬂ+1)’ n >0, (6.2)

= g = o 6.3)
'Bn*(2n+a+,8)(2n+a+ﬂ+2)’ (6.

_ 2+ 1)(n+a+p+1)
T BntatBrD)ntatftl)

These numbers satisfy the assumptions of Corollary 5.3 for o > 8 and
0 < a + B < 1. Indeed, observe that for n > 0 we have

__ (a=p)? (e=p)32 -1
2a"_1—_2n+a+ﬁ n+a+pB+1’

(e+p)?-1 (a+B)?
n+a+pPB-1 2n+a+p’

(6.4)

291 —1=—
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and

2(an+’)/n)_2

_ —4af 2(a — B)?

T Cnta+B+)(2n+a+f+2) (2nta+B)2n+a+B+2)
_ dap 2(a + B)?

T (nt+a+pB)nta+B+1) (2n+a+B)(2n+a+pB+2)

(6.5)

These calculations are valid only for n > 0, because ag = 0 does not
coincide with (6.2). The formulas (6.2) and (6.4) show that o, is non-
decreasing and <, is nonincreasing when o + 8 < 1. Both sequences
tend to 3. This gives the conditions (ii) and (iv) of Corollary 5.3. The
formula (6.5) shows that ay, + 4, is nondecreasing for n > 0, regardless
the sign of a8. This and the fact that a, is nondecreasing imply

am +Ym S 0n—1+Yn-1 < Optl + Tn-1, 0<m<n-—1

Thus the condition (iii) of Corollary 5.3 is satisfied for 0 < m < n — 1.
It remains to show the condition (iii) for m =0, i.e.

2

— 1.
2+a+/8_an+1+7n 1

op Y =" =

By (6.2) and (6.4) the above inequality is equivalent to the following.

_(@=8* | (a-p?-1
n+a+p4+2 2n4+a+B+3
CER (@+8? _ _ 2a+h

2Zn+a+pB-1 2n+a+pB~ 2+4+a+8

(6.6)

Observe that the left hand side of (6.6) is a decreasing function of o — .
Therefore we can assume that a — 8 attains the maximal possible value,
ie,B8=—-1. Let 3=—1and z = 2n+a+pB+1. Thenz > 2+a+5+1 >
3. The left hand side of (6.6) can be now written as follows.

_(a+1)2+(a+1)2—1~(a—1)2—1+(a—1)2—1

z+1 T+ 2 r—2 z—1
4@t (a1
S (z-2(z+2) (z+1)(z+2) (z- 1)(z—2)
4 4 4—(a+1)2 (@ —1)2

T @-2@+2) GEiDE1Y) @ Det?) @-De-2)
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The first two terms of the last expression give a positive contribution to
the sum because z > 2. Hence it suffices to show that
_ 2 _ 12 _

4—(a+1)*  (a-1) > _2(a 1)‘ 67)

(z+1D(z+2) (z—1)(z-2) a+1
Note that « —1 >0 (as = —1). Thusa+1>2and 4 — (a+1)2 <
0. Hence the left hand side of (6.7) is a nondecreasing function of =.
Therefore we can verify (6.7) only for the smallest value of z, that is for
=2+ a+B+1=24 «. Under substitution z = 2 + « the inequality
(6.7) takes the form

4~ (a+1)2 B (a—1)2 S 2(04—1)'

(a+3)(a+4) (a+l)a™ a+1
After simple transformations it reduces to
1 1
< N
a+4 7 «a
which is true because « is nonnegative. Summarizing, Corollary 5.3
yields that for « > 8 and 0 < a + 8 < 1 we get (SNLP). a
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