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Abstrac t  A stronger notion of nonnegative linearization of orthogonal polynomi- 
als is introduced. It requires that also the associated polynomials of 
any order have nonnegative linearization property. This turns out to be 
equivalent to a maximal principle of a discrete boundary value problem 
associated with orthogonal polynomials through the three term recur- 
rence relation. The property is stable for certain perturbations of the 
recurrence relation. Criteria for the strong nonnegative linearization are 
derived. The range of parameters for the Jacobi polynomials satisfying 
this new property is determined. 
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1. Introduction 

One of the main problems in the theory of orthogonal polynomials is 
to determine whether the expansion of the product of two orthogonal 
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polynomials in terms of these polynomials has nonnegative coefficients. 
We want to decide which orthogonal systems { ~ ~ ) r = ~  have the property 

with nonnegative coefficients c(n, m, k) for every n, m and k. 
Numerous classical orthogonal polynomials as well as their q-analogues 

satisfy nonnegative linearization property (Gasper, 1970a; Gasper, 1970b; 
Gasper, 1983), (Gasper and Rahman, 1990), (Ramis, 1992), (Rogers, 
1894), (Szwarc, 1992b; Szwarc, 1995). There are many criteria for non- 
negative linearization given in terms of the coefficients of the recurrence 
relation the orthogonal polynomials satisfy (Askey, 1970), (Mlotkowski 
and Szwarc, 2001), (Szwarc, 1992a; Szwarc, 199213; Szwarc, 2003), that 
can be applied to general orthogonal polynomials systems. These crite- 
ria are based on the connection between the linearization property and 
a certain discrete boundary value problem of hyperbolic type. 

In this paper we are going to show that many polynomials systems 
satisfy even a stronger version of nonnegative linearization. Namely let 

P I  { P , ) ~ ? ~  be an orthogonal polynomial system. Let {pn )r=o denote the 
associated polynomials of order I .  We say that the polynomials {P~},",~ 
satisfy the strong nonnegative linearization property if 

with nonnegative coefficients c(n, m, k) and cl(n, m, k) for any n, m, k 
and I. 

The interesting feature of this property is the fact that it is equivalent 
to a maximum principle of the associated boundary value problem (see 
Theorem 2). Also this property is invariant for certain transformations of 
the recurrence relation (see Proposition 2), unlike the usual nonnegative 
linearization property. 

In the last part of this work we are going to show that the Jacobi 
polynomials have the strong linearization property if and only if either 
a = P > - 1 / 2 o r a > P > - l a n d a + P > O .  

2. Strong nonnegative linearization 

Let pn denote a sequence of orthogonal polynomials, relative to a 
measure p, satisfying the recurrence relation 
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where yn, an+l > 0 and /3n E R. We use the convention that po = 1 and 
111 a0 = p-1 = 0. For any nonnegative integer 1 let pn denote the sequence 

of polynomials satisfying 

111 [I1 For n 2 1 + 1 the polynomial pn is of degree n- 1 - 1. The polynomials pn 
are called the associated polynomial of order 1 + 1. These polynomials are 

- .  

orthogonal, as well. Let pl denote any orthogonality measure associated 
111 00 with. {pn In=,+i - 

For n > m 2 1 + 1 2 0 consider the polynomials pn(x)pm(x) and 
pI1 (x)p;(x) .  We can express these products in terms of p k ( x )  or 
to obtain the following. 

The polynomial pn(x)pm(x) has degree n + m while p!] ( x )p$(x )  has 
degree n + m - 21 - 2. Hence the expansions have finite ranges and by 
the recurrence relation we obtain expansions of the form 

Definition 2.1. The system of orthogonal polynomials pn satisfies the 
strong nonnegative linearization property ( S N L P )  if 

The form of recurrence relation used in (2.1) and (2.2) is suitable for 
applications. For technical reasons we will work with the renormalized 
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polynomials Pn and P! defined as 

Clearly the property of strong nonnegative linearization is equivalent for 
the systems {pn)r=o and {Pn),",o, so we can work with the latter system 
from now on. 

The polynomials Pn satisfy 

[11 where 7-1 = 0. On the other hand the polynomials Pn satisfy 

Moreover by (2.4) and (2.5) we have 

Let L denote a linear operator acting on sequences a = {an)r=O by 
the rule 

For any real number x set 

Let 61 denote the sequence whose terms are equal to zero except for the 
lth term which is equal to 1. The formulas (2.8), (2.9) and the fact that 

PI - - 1 Pl+l - al+l immediately imply that 

L P ( x )  = x P ( x ) ,  (2.13) 

L P [ ~ ]  ( x )  = ZP[" ( x )  + 61. (2.14) 
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3. Hyperbolic boundary value problem and 
basic solutions 

Let u ( n , m )  be a matrix defined for n > m > 0. We introduce the 
operator H acting on the matrices by the rule 

for n > m > 0. By (2.13), if we take u ( n , m )  = Pn(x)Pm(x) for some x ,  
then 

( H u ) ( n ,  m) = 0. (3.2) 

Similarly by (2.14), if we take u ( n ,  m) = P;'] (x)P; ( x ) ,  then 

['I Assume n > m. Then n = I implies Pm ( x )  = 0. Hence 

( H u ) ( n , m )  = - ~ ~ ' ] ( x ) d ~ ( m ) ,  for n > m 2 0. (3.3) 

Proposition 3.1. Given a matrix v = {v(n ,  m))n>m>o - and a sequence 
f = { f  (n))n>o. Let u = { ~ ( n ,  m))n>m>o satisfy 

Hu(n ,  m) = v (n ,  m), for n > m > 0, 

u(n,O) = f(n),  forn  > 0. 

Then 

Proof. The formula (3.1) and the fact that am > 0 imply that u is 
uniquely determined. 

Let uk (n ,  m) = C ( n ,  m, k ) .  By (2.10) we have 

Therefore by (3.2) we obtain 

( H u k ) ( n ,  m) = 0,  for n > m > 0, 

uk (n ,  0 )  = dk(n), for n 2 0. 
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For k > 1 > 0 let ~ k , ~ ( n ,  m) = C l ( n , m ,  k ) .  By (2.11) we have 

Thus by (3.3) we get 

Hence the matrix 

satisfies the assumptions of Proposition 1. By uniqueness we have u = 
u .  0 

Let H* denote the adjoint operator to H with respect to the inner 
product of matrices 

The explicit action of this operator is given by the following. 

For each point (n,m) with n 2 m > 0 ,  let A,,, denote the set of 
lattice points located in the triangle with vertices in (n - m + 1,0),  
(n + m - 1,O) nad (n, m - I ) ,  i.e. 

A,,, = { ( i ,  j )  1 0 5 j 5 i, In - il < m - j} .  

The points of A,,, are marked in the picture below with empty circles. 
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By (Szwarc, 2003, Theorem 1) nonnegative linearization is equivalent to 
the fact that for every (n,m) with n 2 m > 0 there exists a matrix v 
such that 

Definition 3.2. Any matrix v satisfying (3.4) and (3.5) will be called 
a triangle function. 

Definition 3.3. Let v,,, denote a matrix satisfying 

SUPP vn,m c An,,, (3.7) 

(H*vn,m)(n, m) = -1, (3.8) 
( H * v ~ , ~ ) ( ~ ,  j )  = 0,  for 0 < j < m (3.9) 

The matrix vn,, will be called the basic triangle function. 

The main result of this section relates the values of vn,,(k, I )  to the 
coefficients Cl (n, m, k )  . 

Theorem 3.4. For any n > m > 0 and k > 1 2 0 we have 

Moreover 
n+m 
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Proof. Let u ( n ,  m) = piz1 ( x )  P! ( x ) .  We have P!] = 0,  hence by (3.3), 
(3.8) and (3.9) we obtain 

Thus by (2.11) we get vn,,(k,I) = C l ( n , m , k ) .  The second part of the 
statement follows from (Szwarc, 2003, Lemma), but we will recapitulate 
the proof here for completeness. By (3.8) and (3.9) we have 

Let u(n ,  m) = Pn(x) Pm(x). Since H u  = 0,  we have 

Hence dk = C (n, m, k )  . 

4. Main results 

The main result of this paper is the following. 

Theorem 4.1. Let pn be a system of orthogonal polynomials satisfying 
the recurrence relation 

where p-1 = 0 and po = 1. Then the following four conditions are 
equivalent. 

(a) The polynomials pn satisfy the strong nonnegative linearization 
property. 

( H u ) ( n ,  m) I 0, for n > m 2 0, { u(n,O) 2 0. 

Then u(n, m) 2 0 for every n 2 m 2 0.  

(c)  For every n 2 m 2 0 there exists a triangle function v ,  satisfying 
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(i) supp v C &,m 

(ii) (H*v)(n, m) < 0. 

(iii) (H*v)(i, j) > 0 for (i, j) # (n, m). 

(iv) v > 0. 

(d) The basic triangle functions vn,, (see (3.7), (3.8), (3.9)) satisfy 

(i) (H*vn,m)(i, 0) > 0. 

(ii) vn,m > 0. 

Proof. 

(b)=w 
By the proof of Proposition 1 we have that if uk(n, m) = C(n, m, k) 

and U ~ , J  (n, m) = Cl (n, m, k) then 

f o r n > m > O .  ThusC(n,m,k) >OandCl(n,m,k) > O f o r n > m > O .  

(a)=' (dl 
This follows immediately by Theorem 1. 

(d)=w 
This is clear by definition. 

(c)=m 
Let u = {u(n, m))nym20 satisfy (Hu)(n, m) 5 0, for n > m > 0 and 

u(n, 0) > 0. We will show that u(n, m) > 0, by induction on m. Assume 
that u(i, j) > 0 for j < m. Let v be a triangle function satisfying the 
assumptions (c) . Then 

0 > (Hu, V) = (u, H*v) = u(n, m)(H*v)(n, m) + u(i, j)(H*v)(i, j) 
Dj20 
j<m 

Therefore 

and the conclusion follows. 0 

Remark 4.2. Theorem 2 should be juxtaposed with the following result 
which can be derived from (Szwarc, 2003, Theorem 1). 
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Theorem 4.3. Let pn be a system of orthogonal polynomials satisfying 
the recurrence relation 

where p-1 = 0 and po = 1. Then the following four conditions are 
equivalent. 

(a )  The polynomials pn satisfy nonnegative linearization property. 

( H u ) ( n ,  m) = 0,  for n > m 2 0 ,  
u(n,O) 2 0. 

Then u ( n ,  m) > 0 for every n > m 2 0 .  

(c )  For every n > m > 0 there exists a triangle function v ,  satisfying 

( i )  ~ U P P  v C An,, . 
(ii) ( H * v ) ( n , m )  < 0. 

(iii) ( H * v )  (i, j )  > 0 for (i, j )  # (n, m). 

( d )  The basic triangle functions vn,, (see (3.7), (3.8), (3.9)) satisfy 

One o f  the  advantages o f  the  strong nonnegative linearization prop- 
erty is its stability for a certain perturbation o f  the coefficients in the  
recurrence relation. Namely the  following holds. 

Proposition 4.4. Assume orthogonal polynomial system { P ~ ) ; . ~  sat- 
isfies (SNLP).  Let E,  be a nondecreasing sequence. Let qn be a sequence 
of polynomials satisfying the perturbed recurrence relation 

for n > 0. Then the system {qn)?=o satisfies (SNLP).  

Proof. W e  will make use o f  Theorem 4.l(c). Let H and H,  denote the  
hyperbolic operators corresponding t o  the  unperturbed and perturbed 
system, respectively. For any matrix v ( i ,  j )  we have 

(H,*v)(i, j )  = ( H * v ) ( i ,  j )  + (E i  - Ej)v(i ,  j ) .  (4.1) 

B y  assumptions for any n >_ m > 0 ,  there exists a triangle function v 
satisfying the  assumptions o f  Theorem 4.l(c)  with respect t o  H .  B y  
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(4.1) the same matrix v satisfies these assumptions with respect to HE.  
Indeed, the assumptions (i) and (iv) do not depend on the perturbation. 
Since v(n, m) = 0 the assumption (ii) is not affected, as well. Concerning 
(iii), since v 2 0 and E, is nondecreasing we have 

for i 2 j 2 0 and j < m. Hence the perturbed system of polynomials 
satisfies (SNLP) . 0 

5. Some necessary and sufficient conditions 
We begin with the following generalization of Theorem 1 of (Szwarc, 

l992a). 

Theorem 5.1. Let orthogonal polynomials {pn}zi0 satisfy (2.1). Let 
{ c , ) ~ = ~  be a fixed sequence of positive numbers with co = 1 and 

Assume that 

(ii) a, 5 a; for m < n. 

(iii) a, + y, 5 a; + y; for m < n. 

Then the system { ~ n ) z = ~  satisfies the strong nonnegative linearization 
property. 

Proof. It suffices to construct a suitable triangle function for every (n, m), 
with n > m, i.e., a matrix v satisfying the assumptions of Theorem 
4.1 (c). Fix (n, m). Define the matrix v according to the following. 

v(i,j) = ci (i, j) E A,,,, (n + m) - (i + j )  odd 
0 otherwise (5.1) 

The points in the support of v,,, are marked by empty circles in the 
picture below. 
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Then supp H*v consists of the points marked by o, o, a, D and o. A 
straightforward computation gives 

Hence H*v satisfies the assumptions of Theorem 4.l(c). 

Applying Theorem 5.1 to the sequences 

gives the following. 

Corollary 5.2. Let orthogonal polynomials { P ~ ) ~ ! ~  satisfy (2.1). If 
the sequences a,, Pn, a, + y, are nondecreasing and a, 5 y, for all 
n, then the system {P,):?~ satisfies the strong nonnegative linearization 
property. 

Corollary 5.3. Let orthogonal polynomials satisfy (2.1). As- 
sume that 

(ii) a, 5 y, for m 5 n 
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(iii) am + Ym 5 an-1 + yn+l for m < n 

(iv) a, 5 an for m 5 n 

Then  the system { ~ n ) r = ~  satisfies the strong nonnegative linearization 
property. 

Now we turn to necessary conditions for (SNLP). 

Proposition 5.4. Assume a system {pn)F==O satisfies the strong non- 
negative linearization property. Then  the sequence ,On is  nondecreasing. 

Proof. By (2.2) we can compute that for n 2 2 we have 

But by (2.1) we have 

(X - @n-l)pk-21 = YnPn+l [n- 21 (Pn -Pn- l )~k-~]  +%Pn-l [n-21 

Thus Pn 2 for n 2 2. On the other hand 

and 

(x - P 0 ) ~ l  = YlP2 + (PI - P0)p1 + a1po. 

Hence pl 2 Po. 

6. Jacobi polynomials 

The Jacobi polynomials J P ' ~ )  satisfy the recurrence relation 

Theorem 6.1. The Jacobi polynomials satisfy the strong nonnegative 
linearization property if and only i f  eeither a > P > -1 and a + ,!3 2 0 

1 ~ r a = p > - ~ .  

Proof. Assume the Jacobi polynomials satisfy (SNLP). In particular 
they have nonnegative linearization property. By (Gasper, 1970a) we 
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know that the condition a 2 > is necessary for nonnegative linearization 
to hold. Also if a = ,O then the condition a 2 -; is necessary (see 
(Askey, 1975)). Let a > P. By Proposition 5.4 the sequence 

should be nondecreasing, which holds only if a + ,O 2 0. Hence the 
conditions on a and p are necessary for (SNLP). 

Now we are going to show that the conditions on the parameters are 
also sufficient for (SNLP). Assume first that a = P > -112. Let 

J?'" (x) 
Rn (x) = J?@' (1) ' 

Then by (Koekeok and Swarttouw, 1998, (1.8.1)) (1.8.3)) the polynomi- 
als satisfy 

Hence by Corollary 5.2 the polynomials satisfy (SNLP). 
Assume now that a > ,8 > -1 and a + p > 0. Let pn(x) denote the 

monic version of Jacobi polynomials, i.e., let 

By (Askey, 1970) the polynomials pn satisfy the assumptions of Corollary 
5.2 if a + P 2 1. Hence they satisfy (SNLP). 

We have to  consider the remaining case when a > P > -1 and 
0 5 a + ,!3 < 1. By (6.1) we have 

These numbers satisfy the assumptions of Corollary 5.3 for a 2 /3 and 
0 5 a + ,B 5 1. Indeed, observe that for n > 0 we have 
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and 

These calculations are valid only for n > 0, because a0 = 0 does not 
coincide with (6.2). The formulas (6.2) and (6.4) show that an is non- 
decreasing and yn is nonincreasing when a + P 5 1. Both sequences 
tend to i. This gives the conditions (ii) and (iv) of Corollary 5.3. The 
formula (6.5) shows that an + yn is nondecreasing for n > 0, regardless 
the sign of ap. This and the fact that an is nondecreasing imply 

Thus the condition (iii) of Corollary 5.3 is satisfied for 0 < m < n - 1. 
It remains to show the condition (iii) for m = 0, i.e. 

By (6.2) and (6.4) the above inequality is equivalent to the following. 

Observe that the left hand side of (6.6) is a decreasing function of a - P. 
Therefore we can assume that a - P attains the maximal possible value, 
i.e., p = -1. Let /3 = -1 and x  = 2n+a+P+1. Then x  2 2+a+P+1> 
3. The left hand side of (6.6) can be now written as follows. 

- (a+  1)2 + (a+ 1)2 - 1  (a  - 1)2 - 1  ( a -  1I2 - 1  - 
x + l  x + 2  x  - 2  

+ 
x - 1  

- - 4  - (a + q2 - (a - 1)2 
( x - 2 ) ( x + 2 )  ( x + l ) ( x + 2 )  ( x - l ) ( x - 2 )  

- 4  - 4  4  - (a + 1)2 (a - 1)2 + 
( x - 2 ) ( x + 2 )  ( x + l ) ( x + 2 )  ( x + l ) ( x + 2 )  ( x - l ) ( x - 2 ) .  
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The first two terms of the last expression give a positive contribution to 
the sum because x > 2. Hence it suffices to show that 

Note that a - 1 2 0 (as /3 = -1). Thus a + 1 2 2 and 4 - (a  + 1)2 5 
0. Hence the left hand side of (6.7) is a nondecreasing function of x. 
Therefore we can verify (6.7) only for the smallest value of x, that is for 
x = 2 + a + ,G' + 1 = 2 + a. Under substitution x = 2 + a the inequality 
(6.7) takes the form 

After simple transformations it reduces to 

which is true because a is nonnegative. Summarizing, Corollary 5.3 
yields that for a > P and 0 5 a + P 5 1 we get (SNLP). 0 
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