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Abstract

The orthogonal polynomials pn satisfy Turán’s inequality if p
2
n(x)−

pn−1(x)pn+1(x) ≥ 0 for n ≥ 1 and for all x in the interval of or-
thogonality. We give general criteria for orthogonal polynomials to
satisfy Turán’s inequality. This yields the known results for classical
orthogonal polynomials as well as new results, for example, for the
q–ultraspherical polynomials.

1 Introduction

In the 1940’s, while studying the zeros of Legendre polynomials Pn(x), Turán
[T] discovered that

P 2
n(x) − Pn−1(x)Pn+1(x) ≥ 0, −1 ≤ x ≤ 1 (1)

with equality only for x = ±1. Szegö [Sz1] gave four different proofs of
(1). Shortly after that, analogous results were obtained for other classical
orthogonal polynomials such as ultraspherical polynomials [Sk, S], Laguerre
and Hermite polynomials [MN], and Bessel functions [Sk, S].

In [KS] Karlin and Szegö raised the question of determining the range of
parameters (α, β) for which (1) holds for Jacobi polynomials of order (α, β);
i.e. denoting R(α,β)

n (x) = P (α,β)
n (x)/P (α,β)

n (1),

[R(α,β)
n (x)]2 − R

(α,β)
n−1 (x)R

(α,β)
n+1 (x) ≥ 0, −1 ≤ x ≤ 1. (2)
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In 1962 Szegö [Sz2] proved (2) for β ≥ |α|, α > −1. In a series of two papers
[G1, G2] Gasper extended Szegö’s result by showing that (2) holds if and
only if β ≥ α > −1.

More recently, attention has also turned to the q-analogues of the classical
polynomials [BI1].

All the results mentioned above were proved using differential equations,
that the classical orthogonal polynomials satisfy. Therefore the methods
cannot be used to extend (1) to more general orthogonal polynomials. In 1970
Askey [A, Thm. 3] gave a general criterion for monic symmetric orthogonal
polynomials to satisfy the Turán type inequality on the entire real line. His
result, however, does not imply (1) for the Legendre polynomials because
the latter are not monic in the standard normalization, and they do not
satisfy Askey’s assumptions in the monic normalization. In this paper we give
general criteria for orthogonal polynomials implying (1) holds for x in the
support of corresponding orthogonality measure. The assumptions are stated
in terms of the coefficients of the recurrence relation that the orthogonal
polynomials satisfy. They admit a very simple form in the case of symmetric
orthogonal polynomials; i.e. the case pn(−x) = (−1)npn(x). In particular,
the results apply to all the ultraspherical polynomials, giving yet another
proof of Turán’s inequality for the Legendre polynomials.

It turns out that the way we normalize the polynomials is essential for
the Turán inequality to hold. The results concerning the classical orthog-
onal polynomials used the normalization at one endpoint of the interval of
orthogonality, e.g. at x = 1 for the Jacobi polynomials and at x = 0 for the
Laguerre polynomials. We will also use this normalization and will show that
this choice is optimal (Proposition 1). However, the recurrence relation for
the polynomials normalized in this way may not be available explicitly. This
is the case of the q–ultraspherical polynomials. We give a way of overcoming
this obstacle (Corollary 1). In particular, we prove the Turán inequality for
all q-ultraspherical polynomials with q > 0. These polynomials have been
studied by Bustoz and Ismail [BI1] but with a normalization other than at
x = 1. The same method is applied to the symmetric Pollaczek polynomials,
studied in [BI2], again with different normalization.

In Section 6 we prove results for nonsymmetric orthogonal polynomials
(Thm. 4). The assumptions again are given in terms of the coefficients in a
three term recurrence relation but they are much more involved.

In Section 7 we state results concerning polynomials orthogonal on the
positive half axis. In particular they can be applied to the Laguerre polyno-
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mials of any order α.

2 Basic formulas.

Let pn be polynomials orthogonal with respect to a probability measure on
IR. The expressions

∆n(x) = p2
n(x) − pn−1(x)pn+1(x) n = 0, 1, . . . , (3)

are called the Turán determinants. Our goal is to give conditions implying
the nonnegativity of ∆n(x) for x in the support of the orthogonality measure.

The first problem we encounter is that the orthogonality determines the
polynomials pn up to a nonzero multiple. The sign of ∆n(x) may change
if we multiply each pn by different nonzero constants. We will normalize
the polynomials pn to obtain the sharpest results possible. Namely, we will
assume that

pn(a) = 1

at a point a in the support of the orthogonality measure. In this way the
Turán determinant vanishes at x = a.

Our main interest is focused on the case when the orthogonality measure
is supported in a bounded interval. By an affine change of variables we can
assume that this interval is [−1, 1]. In that case we set a = 1. Since the
polynomials pn do not change sign in the interval [1, +∞) they have positive
leading coefficients.

Assume that the polynomials pn are orthogonal, with positive leading co-
efficients and pn(1) = 1. Then they satisfy the three term recurrence relation

xpn(x) = γnpn+1(x) + βnpn(x) + αnpn−1(x) n = 0, 1, . . . , (4)

with initial conditions p
−1 = 0, p0 = 1, where αn, βn, and γn are given

sequences of real valued coefficients such that

α0 = 0, αn+1 > 0, γn > 0 for n = 0, 1, . . . .

Plugging x = 1 into (4) gives

αn + βn + γn = 1 n = 0, 1, . . . . (5)
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Proposition 1 Let the polynomials pn satisfy (4) and (5). Then

γn∆n = γnp2
n + αnp2

n−1 − (x − βn)pn−1pn, (6)

γn∆n = (pn−1 − pn)[(γn−1 − γn)pn + (αn − αn−1)pn−1] + αn−1∆n−1, (7)

γn∆n = (pn − pn−1)(γnpn − αnpn−1) + (1 − x)pn−1pn, (8)

for n = 1, 2, . . . .

Proof. By (4) we get

γn∆n = γnp2
n − γnpn−1[(x − βn) − αnpn−1]

= γnp2
n + αnp2

n−1 − (x − βn)pn−1pn

= γnp2
n + αnp2

n−1 − (βn−1 − βn)pn−1pn − (x − βn−1)pn−1pn.

Now applying (4), with n replaced by n − 1, to the last term yields

γn∆n = (γn − γn−1)p
2
n + (αn − αn−1)p

2
n−1 − (βn−1 − βn)pn−1pn + αn−1∆n−1.

The use of
βn−1 − βn = (γn − γn−1) + (αn − αn−1)

concludes the proof of (7). In order to get (8) replace βn with 1−αn − γn in
(6). ⊓⊔

3 Symmetric polynomials

We will consider first the symmetric orthogonal polynomials, i.e. the orthog-
onal polynomials satisfying

pn(−x) = (−1)npn(x). (9)

Theorem 1 Let the polynomials pn satisfy

xpn(x) = γnpn+1(x) + αnpn−1(x) n = 0, 1, . . . . (10)

with p
−1 = 0, p0 = 1, where α0 = 0, αn+1 > 0, γn > 0, and

αn + γn = a n = 0, 1, . . . .

Assume that either (i) or (ii) is satisfied where
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(i) αn is nondecreasing and αn ≤ a

2
for n = 1, 2, . . . .

(ii) αn is nonincreasing and αn ≥ a

2
for n = 1, 2, . . . .

Then
∆n(x) ≥ 0, for − a ≤ x ≤ a, n = 0, 1, . . . ,

and the equality holds if and only if n ≥ 1 and x = ±a.
Moreover if (i) is satisfied then

∆n(x) < 0, for |x| > a, n = 1, 2, . . . .

Proof. By changing variable x → ax we can restrict ourselves to the case
a = 1. We prove part (i) only, because the proof of (ii) can be obtained from
that of (i) by obvious modifications.

By assumption we have pn(1) = 1 and pn(−1) = (−1)n. Hence ∆n(± 1) = 0.
Assume now that |x| < 1. By (9) it suffices to consider 0 ≤ x < 1. The proof
will go by induction. We have γ1∆1(x) = α1(1 − x2) ≥ 0. Now assume
∆n−1(x) > 0.

In view of βn = 0 and αn − αn−1 = γn−1 − γn, Proposition 1 implies

γn∆n = γnp2
n + αnp2

n−1 − xpn−1pn, (11)

γn∆n = (αn − αn−1)(p
2
n−1 − p2

n) + αn−1∆n−1. (12)

By (11) and the positivity of x we may restrict ourselves to the case pn−1(x)pn(x) > 0.
We will assume that pn−1(x) > 0 and pn(x) > 0 (the case pn−1(x) < 0 and
pn(x) < 0 can be dealt with similarly). By (12) and by the induction hy-
pothesis it suffices to consider the case pn−1(x) < pn(x), since by assumption
(i) we have αn−1 ≤ αn. In that case since γn = 1 − αn ≥ 1

2
≥ αn we get

γnpn(x) − αnpn−1(x) ≥ αn[pn(x) − pn−1(x)] ≥ 0.

Now we apply (8) and obtain

γn∆n ≥ (1 − x)pn−1(x)pn(x) > 0.

The proof of part (i) is thus complete.
We turn to the last part of the statement. Let (i) be satisfied and |x| > 1.

By symmetry we can assume x > 1. As before we proceed by induction. We
have

γ1∆1(x) = α1(1 − x2) < 1.
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Assume now that ∆m(x) < 0 for 1 ≤ m ≤ n − 1. Since pn(1) = 1 and the
leading coefficients of pn’s are positive, the polynomials pn are positive for
x > 1. Thus

0 >
∆m(x)

pm−1(x)pm(x)
=

pm(x)

pm−1(x)
− pm+1(x)

pm(x)
.

for 1 ≤ m ≤ n − 1. Hence

pn(x)

pn−1(x)
≥ . . . ≥ p1(x)

p0(x)
= x > 1.

Now by (12) we get
γn∆n ≤ αn−1∆n−1 < 0.

⊓⊔
Remark. The second part of Theorem 1 is not true under assumption (ii).
Indeed, by (10), the leading coefficient of the Turán determinant γn∆n(x) is
equal to γ−2

1 . . . γ−2
n−1(αn−1−αn). Thus ∆n(x) is positive at infinity for n ≥ 2.

One might expect that in this case ∆n(x) is nonnegative on the whole real
axis, but this is not true either. Indeed, it can be computed that

γ2
1γ2∆2(x) = (x2 − 1)[(γ2 − γ1)x

2 − α2
1γ2].

One can verify that under assumption (ii) we have

r :=
α2

1γ2

γ2 − γ1
> 1.

(Actually r ≥ 1 follows from Theorem 1 (ii).) Hence ∆2(x) < 0 for 1 < x < r.
Sometimes we have to deal with polynomials which are orthogonal in

the interval [−1, 1] and normalized at x = 1, but the three term recurrence
relation is not available in explicit form. In such cases the following will be
useful.

Corollary 1 Let the polynomials pn satisfy

xpn = γnpn+1 + αnpn−1, n = 0, 1, . . . ,

with p
−1 = 0, p0 = 1 and α0 = 0. Assume that the sequences αn and αn + γn

are nondecreasing and

lim
n→∞

αn =
1

2
a lim

n→∞

γn =
1

2
a−1,
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where 0 < a < 1. Then the orthogonality measure for pn is supported in the
interval [−1, 1].

Assume that in addition at least one of the following holds

(i) γn is nondecreasing,

(ii) γ0 ≥ 1.

Then
∆n(x) = p̃2

n(x) − p̃n−1(x)p̃n+1(x) ≥ 0 ⇐⇒ −1 ≤ x ≤ 1,

where p̃n(x) = pn(x)/pn(1).

Proof. First we will show that pn(1) > 0. In view of symmetry of the poly-
nomials this will imply that the support of the orthogonality measure is
contained in [−1, 1].

We will show by induction that pn(1)/pn−1(1) ≥ a > 0. We have

p0(1)

p1(1)
= γ0 ≤

1

2
(a + a−1) ≤ a−1.

Assume that pn(1)/pn−1(1) ≥ a. Then from recurrence relation we get

pn+1(1)

pn(1)
=

1

γn

(
1 − αn

pn−1(1)

pn(1)

)
≥ 1

γn

(
1 − a−1αn

)
.

On the other hand

γn = (αn + γn) − αn ≤ 1

2
(a + a−1) − αn

≤ 1

2
(a + a−1) − a−2αn + (a−2 − 1)αn

≤ 1

2
(a + a−1) − a−2αn + (a−2 − 1)

1

2
a

= a−1(1 − a−1αn).

Therefore
pn+1(1)

pn(1)
≥ a.

Now we show that cn = p2
n(1)−pn−1(1)pn+1(1) > 0 by induction. Assume

(i). Similarly to the proof of Proposition 1 we obtain

γncn = (γn − γn−1)p
2
n(1) + (αn − αn−1)p2

n−1 + αn−1cn−1. (13)
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This implies cn > 0 for every n.
Assume now that (ii) holds and that cm > 0 for m ≤ n − 1. Hence

the sequence pm+1(1)/pm(1) is positive and nonincreasing for m ≤ n − 1.
In particular pn(1)/pn−1(1) ≤ p1(1)/p0(1) = γ−1

0 ≤ 1. Therefore pn(1) ≤
pn−1(1). Rewrite (13) in the form

γncn = [(αn + γn) − (αn−1 + γn−1)]p
2
n(1)

+(αn − αn−1)[p
2
n−1(1) − p2

n(1)] + αn−1cn−1.

Thus cn > 0.
We have shown that, in both cases (i) and (ii), we have cn > 0 and hence

the sequence pn−1(1)/pn(1) is nondecreasing. Denote its limit by r. Now
plugging x = 1 into the recurrence relation for pn, dividing both sides by
pn(1) and taking the limits gives

1 =
1

2
[ar + (ar)−1].

Thus r = a−1. Let

p̃n(x) =
pn(x)

pn(1)
.

From the recurrence relation for pn we obtain

xp̃n = γ̃np̃n+1 + α̃np̃n−1, (14)

where

α̃n =
pn−1(1)

pn(1)
αn, γ̃n =

pn+1(1)

pn(1)
γn.

By plugging x = 1 into (14) we get

α̃n + γ̃n = 1.

Since both pn−1(1)/pn(1) and αn are nondecreasing, so is α̃n. Moreover it
tends to 1/2 at infinity because the first of its factors tends to a−1 while the
second tends to a/2. Therefore the polynomials p̃n satisfy the assumptions
of Theorem 1 (i). This completes the proof. ⊓⊔
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4 The best normalization.

Assume that the polynomials pn satisfy (4) and (5). By multiplying each
pn by a positive constant σn we obtain polynomials p(σn)

n (x) = σnpn(x). The
positivity of Turán’s determinant for the polynomials pn is not equivalent
to that for the polynomials p(σn)

n . However, it is possible that the positivity
of Turan’s determinants in one normalization implies the positivity in other
normalizations. It turns out that the normalization at the right most end of
the interval of orthogonality has this feature.

Proposition 2 Let the polynomials pn satisfy (4) and (5). Assume that

p2
n(x) − pn−1(x)pn+1(x) ≥ 0, −1 ≤ x ≤ 1, n ≥ 1.

Let p(σ)
n (x) = σnpn(x), where σn is a sequence of positive constants. Then

{p(σ)
n (x)}2 − p

(σ)
n−1(x)p

(σ)
n+1(x) ≥ 0, −1 ≤ x ≤ 1, n ≥ 1

if and only if
σ2

n − σn−1σn+1 ≥ 0, n ≥ 1.

Proof. We have
{p(σ)

n (x)}2 − p
(σ)
n−1(x)p

(σ)
n+1(x)

= (σ2
n − σn−1σn+1)p

2
n(x) + σn−1σn+1(p2

n(x) − pn−1(x)pn+1(x)).

This shows the ”if” part. On the other hand, since (3) is equivalent to
pn(1) = 1 for n ≥ 0, we obtain

{p(σn)
n (1)}2 − p

(σn)
n−1(1)p

(σn)
n+1(1) = σ2

n − σn−1σn+1.

This shows the ”only if” part. ⊓⊔
Remark. Proposition 2 says that if the Turán inequality holds for the

polynomials normalized at x = 1 then it remains true for any other normal-
ization if and only if it holds only at the point x = 1, because p(σ)

n (1) = σn.

5 Applications to special symmetric polyno-

mials.

We will test Theorem 1 on three classes of polynomials: ultraspherical, q –
ultraspherical and symmetric Pollaczek polynomials.
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The positivity of Turán’s determinants for the first case is well known
(see [E, p. 209]). The ultraspherical polynomials C(λ)

n are orthogonal in the
interval (−1, 1) with respect to the measure (1 − x2)λ − (1/2) dx, where
λ > −1

2
. When normalized at x = 1 they satisfy the recurrence relation

xC̃(λ)
n =

n + 2λ

2n + 2λ
C̃

(λ)
n+1 +

n

2n + 2λ
C̃

(λ)
n−1.

It can be checked easily that Theorem 1 (i) or (ii) applies according to λ ≥ 0
or λ ≤ 0.

Let us turn to the q–ultraspherical polynomials. They have been studied
by Bustoz and Ismail [BI1] but with a normalization other than the one
at the right end of the interval of orthogonality. We will exhibit that our
normalization is sharper in the sense that we can derive the results of [BI1]
from ours. Moreover, we will have no restrictions on the parameters other
than that q be positive.

In standard normalization the q–ultraspherical polynomials are denoted
by Cn(x; β|q) and they satisfy the recurrence relation

2xCn(x; β|q) =
1 − qn+1

1 − βqn
Cn+1(x; β|q) +

1 − β2qn−1

1 − βqn
Cn−1(x; β|q). (15)

The orthogonality measure is known explicitly (see [AI], [AW, Thm. 2.2 and
Sect. 4] or [GR, Sect. 7.4]). When |β|, |q| < 1 it is absolutely continuous
with respect to the Lebesgue measure on the interval [−1, 1].

Theorem 2 Let 0 < q < 1 and |β| < 1. Let C̃n(x; β|q) denote the q –
ultraspherical polynomials normalized at x = 1, i.e.

C̃n(x; β|q) =
Cn(x; β|q)

Cn(1; β|q)
.

Let
∆n(x; β|q) = C̃2

n(x; β|q) − C̃n−1(x; β|q)C̃n+1(x; β|q).

Then
∆n(x; β|q) ≥ 0 if and only if − 1 ≤ x ≤ 1,

with equality only for x = ±1.
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Proof. The main obstacle in applying Theorem 1 lies in the fact that the
values Cn(1; β|q) are not given explicitly. Therefore, we cannot give explicitly
the recurrence relation for C̃n(x; β|q).

We will break the proof into two subcases.

(i) 0 < β < 1.
Introduce the polynomials

pn(x) = βn/2
n∏

m=1

1 − β2qm−1

1 − qm
C2

n(x; β|q).

Then by (15) we obtain

xpn = γnpn+1 + αnpn−1,

αn = β1/2 1 − qn

2(1 − βqn)
γn = β−1/2 1 − β2qn

2(1 − βqn)
.

Observe that

αn + γn =
1

2
(β1/2 + β−1/2).

Moreover αn is nondecreasing and converges to 1
2
β1/2. Finally

γ0 =
1

2
(β1/2 + β−1/2) > 1.

Therefore we can apply Corollary 1(ii) with a = β1/2.

(ii) −1 < β ≤ 0.
Introduce the polynomials

pn(x) =
n∏

m=1

1 − β2qm−1

1 − qm
C2

n(x; β|q).

Then by (15) we obtain

xpn = γnpn+1 + αnpn−1,

αn =
1 − β2qn

2(1 − βqn)
γn =

1 − qn

2(1 − βqn)
.

Since both αn and γn are increasing sequences convergent to 1 we can apply
Corollary 1(i) with a = 1. ⊓⊔
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We turn now to the symmetric Pollaczek polynomials P λ
n (x; a). They are

orthogonal in the interval [−1, 1] and satisfy the recurrence relation

xP λ
n (x; a) =

n + 1

2(n + λ + a)
P λ

n+1(x; a) +
n + 2λ − 1

2(n + λ + a)
P λ

n−1(x; a),

where the parameters satisfy a > 0, λ > 0. We cannot compute the value
P λ

n (1; a) in order to pass directly to normalization at x = 1. Instead, we
consider another auxiliary normalization. Let

pn(x) =
n!

(2λ)n
P λ

n (x; a),

where (µ)n = µ(µ + 1) . . . (µ + n − 1). Then the polynomials pn satisfy the
recurrence relation

xpn =
n + 2λ

2(n + λ + a)
pn+1 +

n

2(n + λ + a)
pn−1.

Observe that the assumptions of Corollary 1 (i) or (ii) are fulfilled according
to λ ≥ a or λ ≤ a. Therefore we have the following.

Theorem 3 Let λ > 0, a > 0. Let P̃ λ
n (x; a) denote the Pollaczek polynomials

normalized at x = 1, i.e.

P̃ λ
n (x; a) =

P λ
n (x; a)

P λ
n (1; a)

.

Then

{P̃ λ
n (x; a)}2 − P̃ λ

n−1(x; a)P̃ λ
n+1(x; a) ≥ 0 if and only if − 1 ≤ x ≤ 1,

with equality only for x = ±1.

6 Nonsymmetric polynomials orthogonal in

[-1,1]

In this section we assume that polynomials pn satisfy (4) and (5) with βn not
necessarily equal to 0 for all n.
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Theorem 4 Let polynomials pn satisfy (4) and (5). Let

|γ0 − γ1| ≤ α1γ0 − (γ0 − γ1)(1 − γ0). (16)

Assume that for each n ≥ 2 one of the following four conditions is satisfied.

(i)

αn−1 ≤ αn ≤ γn ≤ γn−1,

βn + 1 +
√

(βn + 1)2 − 4αnγn

2γn
≤ αn − αn−1

γn−1 − γn
or (βn + 1)2 − 4αnγn < 0.

(ii)

αn−1 ≥ αn ≥ γn ≥ γn−1,

βn + 1 −
√

(βn + 1)2 − 4αnγn

2γn

≥ αn−1 − αn

γn − γn−1

or (βn + 1)2 − 4αnγn < 0.

(iii)

αn−1 ≥ αn ≥ 1

2
, γn−1 ≥ γn ≥ 1

2
,

αn − αn−1

γn − γn−1

≤ αn

γn

≤ 1 or
αn − αn−1

γn − γn−1

≥ αn

γn

≥ 1.

(iv)

αn−1 ≤ αn, γn−1 ≤ γn,{
αn ≤ γn

αn − αn−1 ≥ γn − γn−1
or

{
αn ≥ γn

αn − αn−1 ≤ γn − γn−1

Then
∆n(x) = p2

n(x) − pn−1(x)pn+1(x) ≥ 0 for − 1 ≤ x ≤ 1.

Proof. The proof will go by induction. Combining (8) and (4) for n = 1 gives

γ2
0γ1∆1(x) = (1 − x)[(γ0 − γ1)(x − β0) + α1γ0].

Now using (5) gives that the positivity of ∆1(x) in the interval [−1, 1] is
equivalent to (16).
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Fix x in [−1, 1] and assume that ∆n(x) ≥ 0. Consider two quadratic
functions

A(t) = (t + 1){(γn − γn−1)t − (αn−1 − αn)},
B(x; t) = γnt

2 − (βn − x)t + αn.

Set

t = − pn(x)

pn−1(x)
.

By Proposition 1 it suffices to show that for any t the values A(t) and B(x; t)
cannot be both negative. In order to achieve this we have to look at the roots
of these functions. The roots of A(t) are −1 and (αn−1 − αn)/(γn − γn−1);
hence they are independent of x. The roots of B(t) have always the same
sign and are equal to

r(1)
n (x) =

βn − x −
√

(βn − x)2 − 4αnγn

2γn

, (17)

r(2)
n (x) =

βn − x +
√

(βn − x)2 − 4αnγn

2γn
. (18)

Since the function u 7→ u +
√

u2 − a2, a > 0, is decreasing for u ≤ −a and
increasing for u ≥ a we have

r(1)
n (1) ≤ r(1)

n (x) ≤ r(2)
n (x) ≤ r(2)

n (1) if βn − x ≤ 0, (19)

r(1)
n (−1) ≤ r(1)

n (x) ≤ r(2)
n (x) ≤ r(2)

n (−1) if βn − x ≥ 0, (20)

provided that (βn − x)2 − 4αnγn ≥ 0. Thus B(x; t) < 0 implies B(1; t) < 0
(B(−1; t) < 0 respectively) if βn − x ≤ 0 (βn − x ≥ 0 respectively). Hence it
suffices to show that the values A(t) and B(1; t) (the values A(t) and B(−1; t)
respectively) cannot be both negative if βn−x ≤ 0 (βn−x ≥ 0 respectively).
We will break the proof into two subcases.

(a) βn − x ≤ −2
√

αnγn.
In view of (8) and (6 )the roots of B(1; t) are −1 and −αn

γn

. By analysing

the positions of these numbers with respect to the roots of A(t) one can
easily verify that under each of the four assumptions (i) through (iv) the
values A(t) and B(1; t) cannot be both negative.

(b) βn − x ≤ −2
√

αnγn.
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We examine the signs of A(t) and B(−1; t). Consider (i), (ii) and (iii). By
analysing the mutual position of the roots of B(−1; t) and A(t) one can verify
that A(t) and B(−1; t) cannot be both negative.

In case (iv) we have that B(−1; t) ≥ 0 because

(1 + βn)2 − 4αnγn = (2 − αn − γn)2 − 4αnγn ≤ 0.

⊓⊔
Remark 1. The assumption (iv) in Theorem 4 does not imply that the

support of the orthogonality measure corresponding to the polynomials pn is
contained in [−1, 1]. By (5) we have pn(1) = 1 which implies that the support
is located to the left of 1. However, it can extend to the left side beyond −1.

Remark 2. If we assume that βn = 0 for n ≥ 0, then Theorem 4 reduces
to Theorem 1. Indeed, in this case we have

βn + 1 −
√

(βn + 1)2 − 4αnγn

2γn
= min

(
1,

αn

γn

)
,

βn + 1 +
√

(βn + 1)2 − 4αnγn

2γn
= max

(
1,

αn

γn

)
.

Example. Set

αn =
1

2
− 1

n + 2
, γn =

1

2
+

1

2(n + 2)
, βn =

1

2(n + 2)
.

We can check easily that condition (16) is satisfied. We will check that
also the assumptions (iii) are satisfied for every n ≥ 2. Clearly we have
αn−1 ≤ αn ≤ γn ≤ γn−1. Moreover

r(2)
n (−1) =

βn + 1 +
√

(1 + βn)2 − 4αnγn

2γn

≤ βn + 1

γn
≤ 2 =

αn − αn−1

γn−1 − γn
.

Let pn(x) satisfy (4). By Theorem 4(iii)

p2
n(x) − pn−1(x)pn+1(x) ≥ 0 for − 1 ≤ x ≤ 1.

Let us determine the interval of orthogonality. Since αn + βn + γn = 1 we
have pn(1) = 1. Thus the support of the corresponding orthogonality measure

15



is located to the left of 1. Actually the support is contained in the interval
[−1, 1]. Indeed, it suffices to show that cn = (−1)npn(−1) > 0. We will show
that cn ≥ cn−1 > 0 by induction. We have c0 = 1. Assume cn ≥ cn−1 > 0.
Then by (4)

γncn+1 = (1 + βn)cn − αncn−1 ≥ (1 + βn − αn)cn

≥ (1 − βn − αn)cn = γncn.

Thus cn+1 ≥ cn > 0.

7 Polynomials orthogonal in the interval [0, +∞).

Let pn be polynomials orthogonal in the positive half axis normalized at
x = 0, i.e. pn(0) = 1. Then they satisfy the recurrence relation of the form

xpn = −γnpn+1 + (αn + γn)pn − αnpn−1, n = 0, 1, . . . , (21)

with initial conditions p
−1 = 0, p0 = 1, where αn, and γn are given sequences

of real coefficients such that

α0 = 0, γ0 = 1, αn+1 > 0, γn > 0, for n = 0, 1, . . . . (22)

Theorem 5 Let polynomials pn satisfy (21) and (22), and let

αn−1 ≤ αn, γn−1 ≤ γn for n ≥ 1.

Assume that one of the following two conditions is satisfied.

(i) αn ≤ γn αn − αn−1 ≥ γn − γn−1.

(ii) αn ≥ γn αn − αn−1 ≤ γn − γn−1.

Then
∆n(x) = p2

n(x) − pn−1(x)pn+1(x) ≥ 0 for x ≥ 0.

Proof. Let qn(x) = pn(1 − x). Then by (21) we obtain

xqn = γnqn+1 + (1 − αn − γn)pn + αnqn−1.

We have qn(1) = 1. Thus the assumptions (iv) of Theorem 4 are satisfied for
every n. From the proof of Theorem 4 (iv) it follows that q2

n(x) − qn−1(x)qn+1(x) ≥ 0
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for x ≤ 1 (the assumption x ≥ −1 is inessential). Taking into account the
relation between pn and qn gives the conclusion. ⊓⊔

A special case of Theorem 5 is when αn − αn−1 = γn − γn−1 for every n.
In this case, applying (8) gives the following.

Proposition 3 Let polynomials pn satisfy (21) and (22), and let

αn − αn−1 = γn − γn−1, n ≥ 1.

Then

p2
n(x) − pn−1(x)pn+1(x) =

n∑

k=1

(αk − αk−1)αkαk+1 . . . αn−1

γkγk+1 . . . γn
(pk(x) − pk−1(x))2.

In particular, if αn ≥ αn−1 for n ≥ 1, then

p2
n(x) − pn−1(x)pn+1(x) ≥ 0 for −∞ < x < ∞,

where equality holds only for x = 0.

Example.
Let pn(x) = Lα

n(x)/Lα
n(1), where Lα

n(x) denote the Laguerre polynomials
of order α > −1. Then the polynomials pn satisfy

xpn = −(n + α + 1)pn+1 + (2n + α + 1)pn − npn.

Then
αn − αn−1 = γn − γn−1 = 1, n ≥ 1.

Thus Proposition 3 applies. The formula for p2
n −pn−1pn+1 in this case is not

new. It has been discovered by V. R. Thiruvenkatachar and T. S. Nanjundiah
[TN] (see also [AC, 4.7].

Acknowledgement. I am grateful to J. Bustoz and M. E. H. Ismail for
kindly sending me a preprint of [BI2]. I thank George Gasper for pointing
out the references [AC, TN].
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