Positivity of Turan determinants for
orthogonal polynomials

Ryszard Szwarc*

Abstract
The orthogonal polynomials p,, satisfy Turdn’s inequality if p? () —
Prn—1(X)ppt1(xz) > 0 for n > 1 and for all z in the interval of or-
thogonality. We give general criteria for orthogonal polynomials to
satisfy Turan’s inequality. This yields the known results for classical
orthogonal polynomials as well as new results, for example, for the
g—ultraspherical polynomials.

1 Introduction

In the 1940’s, while studying the zeros of Legendre polynomials P, (x), Turdn
[T] discovered that

P%(z) — Py_1(2)Pyp1 () >0, —1<z<1 (1)

with equality only for x = £1. Szegd [Szl] gave four different proofs of
(1). Shortly after that, analogous results were obtained for other classical
orthogonal polynomials such as ultraspherical polynomials [Sk, S|, Laguerre
and Hermite polynomials [MN], and Bessel functions [Sk, S].

In [KS] Karlin and Szego raised the question of determining the range of
parameters (a, (3) for which (1) holds for Jacobi polynomials of order («, [3);
i.e. denoting R(*9) (x) = P\ (z)/P*A (1),

(R (@) = RED (@) R () >0, —1<a <1 2)
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In 1962 Szegd [Sz2] proved (2) for 5 > |a], a > —1. In a series of two papers
[G1, G2] Gasper extended Szegd’s result by showing that (2) holds if and
onlyif 3 > a > —1.

More recently, attention has also turned to the g-analogues of the classical
polynomials [BI1].

All the results mentioned above were proved using differential equations,
that the classical orthogonal polynomials satisfy. Therefore the methods
cannot be used to extend (1) to more general orthogonal polynomials. In 1970
Askey [A, Thm. 3] gave a general criterion for monic symmetric orthogonal
polynomials to satisfy the Turan type inequality on the entire real line. His
result, however, does not imply (1) for the Legendre polynomials because
the latter are not monic in the standard normalization, and they do not
satisfy Askey’s assumptions in the monic normalization. In this paper we give
general criteria for orthogonal polynomials implying (1) holds for x in the
support of corresponding orthogonality measure. The assumptions are stated
in terms of the coefficients of the recurrence relation that the orthogonal
polynomials satisfy. They admit a very simple form in the case of symmetric
orthogonal polynomials; i.e. the case p,(—z) = (—=1)"p,(x). In particular,
the results apply to all the ultraspherical polynomials, giving yet another
proof of Turan’s inequality for the Legendre polynomials.

It turns out that the way we normalize the polynomials is essential for
the Turan inequality to hold. The results concerning the classical orthog-
onal polynomials used the normalization at one endpoint of the interval of
orthogonality, e.g. at x = 1 for the Jacobi polynomials and at x = 0 for the
Laguerre polynomials. We will also use this normalization and will show that
this choice is optimal (Proposition 1). However, the recurrence relation for
the polynomials normalized in this way may not be available explicitly. This
is the case of the g—ultraspherical polynomials. We give a way of overcoming
this obstacle (Corollary 1). In particular, we prove the Turén inequality for
all g-ultraspherical polynomials with ¢ > 0. These polynomials have been
studied by Bustoz and Ismail [BI1] but with a normalization other than at
x = 1. The same method is applied to the symmetric Pollaczek polynomials,
studied in [BI2], again with different normalization.

In Section 6 we prove results for nonsymmetric orthogonal polynomials
(Thm. 4). The assumptions again are given in terms of the coefficients in a
three term recurrence relation but they are much more involved.

In Section 7 we state results concerning polynomials orthogonal on the
positive half axis. In particular they can be applied to the Laguerre polyno-



mials of any order a.

2 Basic formulas.

Let p, be polynomials orthogonal with respect to a probability measure on
IR. The expressions

Ap(z) = po(x) = ppo1(@)pnga(e) n=0,1,.. ., (3)

are called the Turdn determinants. Our goal is to give conditions implying
the nonnegativity of A, (z) for x in the support of the orthogonality measure.

The first problem we encounter is that the orthogonality determines the
polynomials p,, up to a nonzero multiple. The sign of A, (x) may change
if we multiply each p, by different nonzero constants. We will normalize
the polynomials p, to obtain the sharpest results possible. Namely, we will
assume that

pnla) =1

at a point a in the support of the orthogonality measure. In this way the
Turan determinant vanishes at x = a.

Our main interest is focused on the case when the orthogonality measure
is supported in a bounded interval. By an affine change of variables we can
assume that this interval is [—1,1]. In that case we set a = 1. Since the
polynomials p,, do not change sign in the interval [1, +00) they have positive
leading coefficients.

Assume that the polynomials p,, are orthogonal, with positive leading co-
efficients and p,,(1) = 1. Then they satisfy the three term recurrence relation

:L’pn(x) = Vnpn—l—l(x) + @Lpn(x) + Oénpn_1($) n=20,1,..., (4)

with initial conditions p_; = 0, pg = 1, where «,, 3,, and v, are given
sequences of real valued coefficients such that

ao=0, a1 >0, 7,>0 forn=0,1,....
Plugging = = 1 into (4) gives

an+Bnt+vm=1 n=0,1,.... (5)



Proposition 1 Let the polynomials p, satisfy (4) and (5). Then

QLYANS :’Vnpi + O‘npi—l - (x - 6n)pn—1pm (6>

’YnAn - (pn—l - pn)[(’}/n—l - 'Vn)pn + (an - O4n—1)pn—l] + O4n—1An—1> (7)

QLYANES (pn - pn—l)(’ynpn - anpn—l) + (1 - x)pn—lpna (8>
form=1,2,....

Proof. By (4) we get

’VnAn = f)/npi - f)/npn—l[(x - 6n) - anpn—l]
= ’ani + O‘npi—l - (ZIZ' - ﬁn)pn—lpn
= Yl + iy — (Boe1 — Bn)Pn—1Pn — (& = Bu1)Pn-1Dn-

Now applying (4), with n replaced by n — 1, to the last term yields
fYnAn = (7n — f}/n—l)pi + (an - an—l)pi—l - (ﬂn—l - ﬁn)pn—lpn + an—lAn—l-

The use of
/Gn—l - /Gn = (’}/n - 'Vn—l) + (an - an—l)
concludes the proof of (7). In order to get (8) replace (3, with 1 — a,, —~, in

(6). O
3 Symmetric polynomials

We will consider first the symmetric orthogonal polynomials, i.e. the orthog-
onal polynomials satisfying

Pn(=2) = (=1)"pn(z). (9)
Theorem 1 Let the polynomials p, satisfy
Tpn () = YPr1(x) + appn_1(2) n=0,1,.... (10)
with p_1 =0, po = 1, where ag =0, a1 >0, v, > 0, and
Qp + V=0 n=0,1,....

Assume that either (i) or (i1) is satisfied where
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(i) ., is nondecreasing and o, < — forn=1,2, ... .

(i1) «, is nonincreasing and o, > = form=1,2, ....

N o

Then
A, (x) >0, for —a<z<a, n=0,1,...,

and the equality holds if and only if n > 1 and r = +a.
Moreover if (i) is satisfied then

A, (z) <0, for |z >a, n=1,2,....

Proof. By changing variable x — ax we can restrict ourselves to the case
a = 1. We prove part (i) only, because the proof of (ii) can be obtained from
that of (i) by obvious modifications.

By assumption we have p, (1) = 1 and p,(—1) = (—1)". Hence A,,(+ 1) = 0.
Assume now that |z| < 1. By (9) it suffices to consider 0 < z < 1. The proof
will go by induction. We have 11A;(z) = ai(1 — 2%) > 0. Now assume
An—l(z) > 0.

In view of 3, =0 and o, — a1 = Vn—1 — Yn, Proposition 1 implies

Yl = APl + QDA — TP 1P, (11)
T, = (O‘n - O‘n—l)@i—l - pi) + a1 Apy. (12>

By (11) and the positivity of x we may restrict ourselves to the case p,,_1(z)p,(z) > 0.
We will assume that p,_i(x) > 0 and p,(z) > 0 (the case p,_1(z) < 0 and

pn(x) < 0 can be dealt with similarly). By (12) and by the induction hy-
pothesis it suffices to consider the case p,_1(z) < p,(z), since by assumption

(i) we have a,,_1 < . In that case since v, = 1 — a, > % >, we get

YD () — Pp—1(z) > an[pp(x) — pa_i1(z)] > 0.

Now we apply (8) and obtain

Valn 2 (1 = 2)pp-1(z)pa(z) > 0.

The proof of part (i) is thus complete.
We turn to the last part of the statement. Let (i) be satisfied and |z| > 1.
By symmetry we can assume x > 1. As before we proceed by induction. We

have
1A (7) = ay(1 —2°%) < 1.
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Assume now that A,,(z) < 0 for 1 < m < n — 1. Since p,(1) = 1 and the
leading coefficients of p,’s are positive, the polynomials p, are positive for

2 > 1. Thus
An(z) pulr)  pa(e)

Pi—1(2)pm(2)  Pmoi(z)  pmlz)
for 1 <m <n —1. Hence

0>

pn(x)
Poa(@) = pola)

Now by (12) we get
’VnAn S an—lAn—l < 0.

g
Remark. The second part of Theorem 1 is not true under assumption (ii).
Indeed, by (10), the leading coefficient of the Turan determinant 7, A, (z) is
equal to v 2. .. 2 (a1 — a). Thus A, () is positive at infinity for n > 2.
One might expect that in this case A, (z) is nonnegative on the whole real
axis, but this is not true either. Indeed, it can be computed that

Ml (w) = (2% = 1[92 — n)2* — aiyel.
One can verify that under assumption (ii) we have

2
Q772

= > 1.
Y2— N

(Actually r > 1 follows from Theorem 1 (ii).) Hence Ag(z) < Ofor 1 < z < r.

Sometimes we have to deal with polynomials which are orthogonal in
the interval [—1, 1] and normalized at = = 1, but the three term recurrence
relation is not available in explicit form. In such cases the following will be
useful.

Corollary 1 Let the polynomials p, satisfy
TPn = YnPn+1 T+ OpPn—1, n = 07 ]-7 R

with p_1 =0, po = 1 and ag = 0. Assume that the sequences cv, and o, + v,
are nondecreasing and
1 1
lim o, = —a lim v, = §a_1’

n—00 2 n—00



where 0 < a < 1. Then the orthogonality measure for p, is supported in the
interval [—1,1].
Assume that in addition at least one of the following holds

(i) vn is nondecreasing,

(i) o > 1.
Then
An(2) = (@) = D1 (2)Pga(2) 20 = —1 <z <1,
where P, (x) = pu(z)/pa(1).
Proof. First we will show that p,(1) > 0. In view of symmetry of the poly-
nomials this will imply that the support of the orthogonality measure is
contained in [—1, 1].
We will show by induction that p,(1)/p,—1(1) > a > 0. We have

po(l) 1 -1 -1
Y < =(a+a <a .
D 1) 0_2( >_

i
Assume that p,(1)/pn—1(1) > a. Then from recurrence relation we get
1

Prt1(1) _ N Pn-1(1) i —a o
pn(l) B Tn (1 ! pn(l) ) & Tn (1 n)

On the other hand

1
Yo = (o +7m) —a, < §(a+a_1) —

1
< 5(@ +a ') —aa, + (a7 = 1)ay,
1 1
< 5(@ +a ') —aPa, + (a7? — 1)§a
= a'(l-a'ay).
Therefore )
pn—i—l( ) >q
Pa(1)

Now we show that ¢, = p2(1) —pn_1(1)pp41(1) > 0 by induction. Assume
(i). Similarly to the proof of Proposition 1 we obtain

Yl = (Yo = Yno1)P2(1) + (Q — Qn_1)p2_ + Qp_1Cn1. (13)
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This implies ¢, > 0 for every n.

Assume now that (i) holds and that ¢, > 0 for m < n — 1. Hence
the sequence p,,11(1)/pm(1) is positive and nonincreasing for m < n — 1.
In particular p,(1)/p,_1(1) < p1(1)/po(1) = 75+ < 1. Therefore p,(1) <
Pn—1(1). Rewrite (13) in the form

YnCn = [(an + 'Vn) - (an—l + 'Vn—l)]pi(l)
+Han — an1)[ph_ (1) = ph(D)] + an_1ca1.

Thus ¢, > 0.

We have shown that, in both cases (i) and (ii), we have ¢, > 0 and hence
the sequence p,_1(1)/p,(1) is nondecreasing. Denote its limit by r. Now
plugging x = 1 into the recurrence relation for p,, dividing both sides by
pn(1) and taking the limits gives

1 -1
1= 5[@7“ + (ar)™].

Thus 7 = a~!. Let

. Pa(7)
pn(z) = .
Pa(1)
From the recurrence relation for p,, we obtain

zﬁn = ﬁnﬁn-ﬁ-l + &nﬁn—b (14)

where
~ pn—l(l) ~ pn+1(1>

aTL - anu fYTL - fyn~
pn(1) pa(1)
By plugging z = 1 into (14) we get

an + 7, = 1.

Since both p,—1(1)/pn(1) and «,, are nondecreasing, so is @,. Moreover it
tends to 1/2 at infinity because the first of its factors tends to a=* while the
second tends to a/2. Therefore the polynomials p,, satisfy the assumptions
of Theorem 1 (i). This completes the proof. O



4 The best normalization.

Assume that the polynomials p, satisfy (4) and (5). By multiplying each
pn by a positive constant ¢, we obtain polynomials p{«)(z) = 0,,p,(z). The
positivity of Turan’s determinant for the polynomials p, is not equivalent
to that for the polynomials p(®»). However, it is possible that the positivity
of Turan’s determinants in one normalization implies the positivity in other
normalizations. It turns out that the normalization at the right most end of
the interval of orthogonality has this feature.

Proposition 2 Let the polynomials p, satisfy (4) and (5). Assume that
Pa(@) = po1(@)psa(z) 20, 1<z <1, n>1
Let p9)(z) = 0,p,(x), where o, is a sequence of positive constants. Then
(@)} = p(@)pTh (@) >0, —1<z<1, n>1

if and only iof
Ui —0p_10p41 >0, n>1.
Proof. We have
P (@) = (@pi ()
= (0 = 0n-10041)P (%) + 01041 (P (2) = D1 (2)Pns1 (2)).-

This shows the ”if” part. On the other hand, since (3) is equivalent to
pn(1) =1 for n > 0, we obtain

{7 (1)) = P (VP (1) = 0% = 0u-100s1.

This shows the ”only if” part. O

Remark. Proposition 2 says that if the Turan inequality holds for the
polynomials normalized at x = 1 then it remains true for any other normal-
ization if and only if it holds only at the point 2 = 1, because p{”) (1) = o,,.

5 Applications to special symmetric polyno-
mials.

We will test Theorem 1 on three classes of polynomials: ultraspherical, q —
ultraspherical and symmetric Pollaczek polynomials.
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The positivity of Turan’s determinants for the first case is well known
(see [E, p. 209]). The ultraspherical polynomials C* are orthogonal in the
interval (—1,1) with respect to the measure (1 — 22)* =~ (/2 dx, where
A > —%. When normalized at © = 1 they satisfy the recurrence relation

~ —|—2)\ ~(\ n ~(N)
con ) oW
SR Ry S s I

It can be checked easily that Theorem 1 (i) or (ii) applies according to A > 0
or A <0.

Let us turn to the g—ultraspherical polynomials. They have been studied
by Bustoz and Ismail [BI1] but with a normalization other than the one
at the right end of the interval of orthogonality. We will exhibit that our
normalization is sharper in the sense that we can derive the results of [BI1]
from ours. Moreover, we will have no restrictions on the parameters other
than that ¢ be positive.

In standard normalization the g—ultraspherical polynomials are denoted
by C,(z; 5|q) and they satisfy the recurrence relation

n+1 1— ﬁ2qn—1
Chr1(z; Blg) + =G

The orthogonality measure is known explicitly (see [AI], [AW, Thm. 2.2 and
Sect. 4] or [GR, Sect. 7.4]). When ||, |¢| < 1 it is absolutely continuous
with respect to the Lebesgue measure on the interval [—1, 1].

200, (2 flq) =

—q |
1= 3" Cnoa(x:6]g).  (15)

Theorem 2 Let 0 < g < 1 and |B| < 1. Let C,(x;08|q) denote the q —
ultraspherical polynomaials normalized at x = 1, i.e.

~ Cn ;
Cul:810) = &~ 1. 5100 Ef,g:g;
Let B B B
A (73 Blq) = C2(x; Blq) — Crei(w; Blq) Crya (3 Blq).
Then

An(@:flq) >0 if and onlyif —1<z<1,
with equality only for v = £1.
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Proof. The main obstacle in applying Theorem 1 lies in the fact that the
values €, (1; B|q) are not given explicitly. Therefore, we cannot give explicitly
the recurrence relation for C,(z; 3|q).

We will break the proof into two subcases.

i)0<pg<1.
Introduce the polynomials

n 1_ﬁ2m1

ﬂn/2 1__[

——————C(w; 8lq).

Then by (15) we obtain

TPn = VnPn+1 T OnPn—1,

1/2 —q" _ p-1/2 1 -3¢
-8

Observe that |
Qp + Vo = 5(51/2 + 5_1/2)-

Moreover «,, is nondecreasing and converges to %ﬂl/ 2. Finally
1 _
20 =587+ 57 > 1

Therefore we can apply Corollary 1(ii) with a = 3'/2.

(ii) =1 < 5 <0.
Introduce the polynomials

n 62 m—1
~ 5w lg).
m=1

Then by (15) we obtain

TPn = VYnPn+1 T OnPn—1,

1-3%q" 1—q"
571 AN Yn = 5775 -
2(1 - Bq™) 2(1 — Bq™)

Since both «,, and 7, are increasing sequences convergent to 1 we can apply
Corollary 1(i) with a = 1. O

ay, =

11



We turn now to the symmetric Pollaczek polynomials P} (z;a). They are
orthogonal in the interval [—1, 1] and satisfy the recurrence relation

n+2\—1
2(n+ A +a)

n+1

PMzja) = ——————
b (;0) 2(n+ A +a)

Pri\+1($§a)+ Pr?—l(x%a)a
where the parameters satisfy a > 0, A > 0. We cannot compute the value
P)M1;a) in order to pass directly to normalization at = 1. Instead, we

consider another auxiliary normalization. Let

n!

where (p)n, = p(pp+1)...(w+n —1). Then the polynomials p,, satisfy the
recurrence relation

n -+ 2\ n

P S ara)

2(n+ A+ a)pn_l’

Observe that the assumptions of Corollary 1 (i) or (ii) are fulfilled according
to A > a or A\ < a. Therefore we have the following.

Theorem 3 Let A > 0, a > 0. Let P)Nz; a) denote the Pollaczek polynomials
normalized at x =1, i.e.

~ P
PMx;a) = =22
Then

{PMx;a)}? — P} (z;a0)P) (v;0) >0 if and only if — 1<z <1,

with equality only for x = +1.

6 Nonsymmetric polynomials orthogonal in
[‘171]

In this section we assume that polynomials p,, satisfy (4) and (5) with (,, not
necessarily equal to 0 for all n.
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Theorem 4 Let polynomials p,, satisfy (4) and (5). Let

70 =l < @170 — (0 — 71) (1 = 70)- (16)
Assume that for each n > 2 one of the following four conditions is satisfied.
(1)

Un—1 < O < Y < V-1,

ﬁn +1+ \/(ﬁn + 1)2 - 40‘71771 < Oy — Op—q
2%n

< or (B, +1)? — 4o,y < 0.
Tn—1 — Tn

(it)
Ap—1 Z (079 Z Tn Z Yn—1,

P+ 1 - \/(6n + 1) = 4o > Qp—1 — Qp
29,

> or (B, +1)* — 4oy, < 0.
Tn — Tn—-1

(iii)

1 1
Qn—1 Z Qn =2 57 Tn—1 Z Tn > =

_2?

Ay — Apy— (8% Ay — Ay (8%
ninlg_"<1 or ninlz_n>1.
%—%—1 ’Vn

Tn — Tn—-1 Tn o

(iv)

Q1 S Qp, Tn—1 S 8y
{an < Y

{an > Y
or
Qp — Q1 Z Tn — Tn—1

Qp — Op—1 S Yn — Vn—1
Then

A, (7) = p2(2) — pp1(2)ppia(z) >0 for —1 <z <1,
Proof. The proof will go by induction. Combining (8) and (4) for n = 1 gives
wnAi(z) = (1—2)[(v0 — 1)z = Bo) + aro).

Now using (5) gives that the positivity of Ai(x) in the interval [—1,1] is
equivalent to (16).
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Fix x in [—1,1] and assume that A,(z) > 0. Consider two quadratic
functions

Alt) = (t+ D{(m — -1t = (a1 —an)},
B(ﬂ t) = ’Ynt2 - (ﬁn - I)t + an.

Set
. pn(l’)

Pn-1(x)
By Proposition 1 it suffices to show that for any ¢ the values A(t) and B(z;t)
cannot be both negative. In order to achieve this we have to look at the roots
of these functions. The roots of A(t) are —1 and (,—1 — @)/ (Vn — Yn-1);
hence they are independent of x. The roots of B(t) have always the same
sign and are equal to

t =

ﬂn — T — \/(ﬁn - LU)2 - 4an7n

W) = . , (17)
rﬁf)(x) _ ﬁn — T+ \/(62”7_ $)2 — 40énf7n‘ (18)

Since the function u — u + vu? — a?, a > 0, is decreasing for u < —a and
increasing for u > a we have

provided that (3, — z)* — 4,7y, > 0. Thus B(z;t) < 0 implies B(1;¢) < 0
(B(—1;t) < 0 respectively) if 3, —x <0 (5, —x > 0 respectively). Hence it
suffices to show that the values A(t) and B(1;t) (the values A(t) and B(—1;1t)
respectively) cannot be both negative if 5, —z < 0 (5, —x > 0 respectively).
We will break the proof into two subcases.

(a) B, —z < =2,/ V.
In view of (8) and (6 )the roots of B(1;¢) are —1 and —£*. By analysing
the positions of these numbers with respect to the roots of A(t) one can

easily verify that under each of the four assumptions (i) through (iv) the
values A(t) and B(1;t) cannot be both negative.

(b) Bn — 2z < =2/ 7n.
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We examine the signs of A(t) and B(—1;t). Consider (i), (ii) and (iii). By
analysing the mutual position of the roots of B(—1;t) and A(t) one can verify
that A(t) and B(—1;t) cannot be both negative.

In case (iv) we have that B(—1;t) > 0 because

(1+ ﬁn)z —dap =2 —a, — %L)2 — 4o,y < 0.

(]
Remark 1. The assumption (iv) in Theorem 4 does not imply that the
support of the orthogonality measure corresponding to the polynomials p,, is
contained in [—1, 1]. By (5) we have p, (1) = 1 which implies that the support
is located to the left of 1. However, it can extend to the left side beyond —1.
Remark 2. If we assume that 3, = 0 for n > 0, then Theorem 4 reduces

to Theorem 1. Indeed, in this case we have

— 2 _ 4

27, Tn
ﬁn +1+ \/(/Gn + 1)2 - 40%771 ( « )
= max|(1,—].
27, Tn
Example. Set
1 1 1 n 1 3 1
On =2 — —) n = 5 a/ . o\ n =™ N7/ o\
2 nt2 T2 om+2) 2(n + 2)

We can check easily that condition (16) is satisfied. We will check that
also the assumptions (iii) are satisfied for every n > 2. Clearly we have
A1 < &y < Y < Y1 Moreover

/Gn +1+ \/(1 + ﬁn)2 - 4an7n

@ (-1) =
T
< Dtl g mzann
Tn Tn—-1 — Vn

Let p,(z) satisfy (4). By Theorem 4(iii)
P2(2) = ppo1(@2)ppsr(z) >0 for —1<2<1.

Let us determine the interval of orthogonality. Since oy, + 5, + 7, = 1 we
have p,, (1) = 1. Thus the support of the corresponding orthogonality measure

15



is located to the left of 1. Actually the support is contained in the interval
[—1,1]. Indeed, it suffices to show that ¢, = (—1)"p,(—1) > 0. We will show
that ¢, > ¢,_1 > 0 by induction. We have ¢y = 1. Assume ¢, > ¢,_1 > 0.
Then by (4)

TnCn+1 = (1 + /Gn)cn — OpCp—1 2 (]- + ﬁn - an)cn
2 (1 - /Gn - an)cn = TYnCn-

Thus ¢,e1 > ¢, > 0.

7 Polynomials orthogonal in the interval [0, +00).

Let p, be polynomials orthogonal in the positive half axis normalized at
x =0, ie. p,(0) = 1. Then they satisfy the recurrence relation of the form

TPn = —YnPn+1 + (Oén + 'Yn)pn — QpPp-1, n=0,1,..., (21)

with initial conditions p_; = 0, py = 1, where «a,, and ~,, are given sequences
of real coefficients such that

ar=0, %=1, a1 >0, v, >0, forn=0,1, .... (22)
Theorem 5 Let polynomials p,, satisfy (21) and (22), and let
U1 < Qpy, Vo1 <Y, forn > 1
Assume that one of the following two conditions is satisfied.
(1) an < Op — Q1 > Y — Vool

(“') (079 2 Yn Ap — Op—q S Yn — Tn—1-

Then
A, (7) = p2(z) = ppo1(2)ppia(z) >0 for x > 0.

Proof. Let ¢,(x) = p,(1 — x). Then by (21) we obtain

Tqn = VnGnt1 + (1 — Qp — ’}/n)pn + angn-1-

We have ¢, (1) = 1. Thus the assumptions (iv) of Theorem 4 are satisfied for
every n. From the proof of Theorem 4 (iv) it follows that ¢2(x) — ¢,_1(2)gns1(xz) > 0
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for x < 1 (the assumption z > —1 is inessential). Taking into account the
relation between p,, and ¢, gives the conclusion. O

A special case of Theorem 5 is when «,, — a,,_1 = ¥, — Yn_1 for every n.
In this case, applying (8) gives the following.

Proposition 3 Let polynomials p,, satisfy (21) and (22), and let
Op — Op_1 = Yn — Vn-1, n > 1.

Then

n A — Op—1 )OO RN 6 7o
P(2) — s (@)pr () = 3 1)1 L (i) — proa(@))?.
=1 YEVk+1 -+ In

In particular, if o, > c,—1 forn > 1, then
pi(l’) — Pn1(T)ppy1(z) >0 for —oo <z < o0,

where equality holds only for x = 0.

Example.
Let p,(z) = L& (x)/L%(1), where L(z) denote the Laguerre polynomials
of order & > —1. Then the polynomials p,, satisfy

xpn=—n+a+ )pyr1 + 2n+a+ 1)p, — np,.
Then
O‘n_an—lzf)/n_fyn—lzla n > 1.

Thus Proposition 3 applies. The formula for p2 — p,,_1p,+1 in this case is not
new. It has been discovered by V. R. Thiruvenkatachar and T. S. Nanjundiah
[TN] (see also [AC, 4.7].

Acknowledgement. I am grateful to J. Bustoz and M. E. H. Ismail for
kindly sending me a preprint of [BI2]. I thank George Gasper for pointing
out the references [AC, TN].
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