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THE SECOND ORDER OPTIMALITY OF TESTS AND ESTIMATORS
FOR MINIMUM CONTRAST FUNCTIONALS. I

BY

J. PFANZAGL (KOLN)

This paper is a continuation of part I (see [7]). It presumes
that the reader is familiar with the concepts and notation introduced
there. Part II contains lemmas and proofs of the results given in part 1.

9. Some auxiliary results. First we derive some asymptotic expansions
which are needed in the proofs. :
Let P,ePand 4 > 0. Let P,eP,neN, be a sequence fulfilling

9.1) 20 (Py) = %o (Py)—n"12 4

and admitting a P,-density

02 pai=1=-n" "ol (Pa) fo(, P+,
such that _

93) | P.(7) = o(n).

Assume that the following regularity conditions are fulfilled:
94) M (Pyxf*(-,%(Py)) for fa] =1,2,
My (Py+£7(+%(Py))  for |o = 3;
95) Ly(x(P),P,) for f= XxT—R if |a] = 2,
Ly(x(P,),P,) for f* XxT-R if o] = 3.

If a fixed p-measure P, is given, we omit the argument P, in expressions
depending on P, if this is convenient. :

We first derive an asymptotic expansion for %(P,), neN. By a Taylor
expansion of ¢t — f¥(x,t) about t = x(P,), we infer from (9.2){9.5) that

(9.6) P,(fO(-, %x(P)+n""*4a)) = o(n™*?)
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for
(9.7) 4= —65¢ Ay Ag;Fy;, 1=0,...,p.
Let g,,neN, be defined by _
gn(t):=Po(f*(, 1).

By condition (9.5), g, is differentiable in some neighborhood V(x(P,))
of »(P,), and the order of differentiation and integration may be inter- -
changed. As P, » P,,neN, in the strong topology, (8.4) implies the
existence of a constant A, >0 and of an e-neighborhood Vo((P,))
<V (x(P,) of x(P,) such that for all sufficiently large ne N

08 16a0-ga.O > dlt=r]  for £, V(x(Py).

By (85), x(P)eV.,,(x(P,) for all sufficiently large neN. Since
Via (2(P,) = Vi(x(P,) and g,(%(P,) =0, (9.8) implies the existence of
a J-neighborhood V;(0) such that g, ! exists on ¥;(0) for all sufficiently
large ne N, and

09 lgt®-a @ < lo=vl for 5,0 e KO,
0

As g,,(x(P*)+n 12 Ag) is in Va(O) for sufﬁmently large neN by (9.6),
it follows from (9.6) and (9.9) that

(9.10) ®(Py) = %(P,)+n""? da+n"'2R,,
where, by (9.1), _
(9.11) R, = o(no) for I =1,. R,o = 0.
(Notice that a5 = —1.)

By a Taylor expansion and (9.10),
Fy; P, = Fij+n~ 12 0501 (1:401; Fij—Au Aop Fy p Fip)+o ("_1/2) »

and therefore

(912) Aoi(P) = Agi+n~ "2 dei+o(n™ 1),

where '

(913) ¢ 1= o-OO AitAOr AOs(qu q,r stp st r) ey P
Furthermore,

(0.14). Fi;(P) = Fivi+"~1/2 Aoog Ao (Asy Fk.p(Ft.jl+Fj.n)+Fi.j,k)+0("_1/2)- '
By (9.12) and (9.14),
(9.15) o0 (Py) = Goo+n~ 12 dc+o(n™'7?),
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“where _
9.16) ¢ = Agi Aoy Aoy (Ay F,g(4F s~ Fiy Ay Fop)—2F ).
From (9.15), by a Taylor expansion of x — x*/> about x = a4,, We get
(9.17) ' 6o(P,) = 6o+in Y2 dogtc+o(n 2.
If in (9.2) we take 7, = A2 h+n~%r, with ’
(9.18) M, (P, +h)
and ' e
9.19) P,(r2) = o(n),
similarly as in (9.6)-(9.11) we obtain
(9.20) %P = x(P)+n 2 da+n "t A?b+o(n"?),

where a, (I = 0, ..., p) are given by (9.7), and
(921) b= —Au((o00 AOka,ijaj+%ajakFijk)+P*(hf(i))), [=0,..,p.

Moreover, b, = 0 by (9.1)-

The essential point of the following.lemma is that the power function
of the sequence of cr. {F,(-,%,(P,)—n"*24) > 0} does not depend on
the polynomial M occurring in the stochastic expansion of F,(-, to).

(9.22) LemMA. Let P, e P, ne N, be a sequence fulfilling (9.1)-9.3). Let F,,
neN, be a sequence of test functions for xo of type S which is asymptotically
similar of level a+o(n~'?) for U,;(P,) for every €(0,1).
Then o
Pi{F,(-,%(P)—n"124) > 0} = n,(4, ®)+0(n"*?,

where m,(4,a) is given by (5.7).

This holds true under conditions (9.4) and (9.5).

Proof. We first note . that, by Lemma (9.35), P,eU,,;(P,) for all
sufficiently large ne N if L '

é>2(1—- di(iao“A))
Furthermore, we may assume without loss of generahty that U, ;(P,)
c U, for all neN.
By a Taylor expansion of t - f ( 1) about t =x(P,) for lof =1, we
infer from (9.3) and (9.4) that M%({P, fo(-, P,): ne N}) is fulfilled.
Let

Since fo( P*) and g,( P*) are P -uncorrelated by € 11) 9.3) and
(4.14) we have
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(9.23) —Pn(g.(' P,.))
P.(9:(-, P))=n""24a5q P, (fo (-, P)gi(-, P)+o(m™1?)
P.(a:(", P..))+0(" 1.
Hence P, (g,-( -, P,)) = O implies
(9.24) P.(9:(-, P,) = o(n~12).

Therefore, for §,,(x) :=n"2 ¥ g;.(x,) we have
. &

~

(9:25) Gim -_- g.(+, P)+o(n.

Moreover, by a Taylor expansion of ¢t — f@(-, ) about %, (P,), (9.10)
and (9.12),

(926) *(fo(", P")) = n_”zA—n_lAz(%dja,,Ao,-F,-jk+e,-ajFij)+0(n,—1).
Thus, for Jo,(x) i= n""2 I fo,(x,) we get |
v=1l

(9.27) 70",' = 70(', P,l)—-A+n_1/2Az(%ajakAOiFl-jk+e,-ajFij)+0(n_1/2). .

Using (9.17), (9.25) and (9.27) and the fact that F,(-, %o (P,)—n"4) is
asymptotically similar of level o:+o(n‘1/2) for P,; from (4.8) we obtain

(9.28)  F,(-, xo(P,)~n"12 4)
= fo,,+N Go+A4—n liz(Az(‘fa iy Aoi Fip+e; 0 Fu)+
+7AN,GO c+M(_fo,,,+A,g,,, ’,,)) __
129,(3) with respect to P,.
Let g, := P,( fo,,,)”2 By a Taylor expans1on, from (9.10) and (9.12)
. we obtaln _
(9.29) GF = ago+n~ 12 A(Ao,-AojakFikJ+Aoje,-F-i'j)+'o(n'”2).
Thus, by a Taylor expansion of x — x'/> about x = oo,
(930) 6, = Go+4n" "2 05" A(Ao; Aoj& s+ AojerFi ) +on™112).
- In virtue of conditions (4.10)44.15), Lemma (9.63), Lemma 5.25 in [8], |
p. 20,'and (9. 28) we get
©31)  PL{F,(, % (P)—-n"1"? A) > 0}
= (Moot Ao )0 (Nt Ao ) (b(~ Naag— )
'—I-dv«pzo(v)M(—Naoo,v,P*)+ | |
+A(A(%ajakAOiFijk'*'eiakFik)—%Cao_lNai))‘*'o(n_m),
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where k(f) := 1054 P, (f)(1—0g0 t?) and Z, is the covariance matrix of
P,xg(-,P,).
Using a Taylor expansion, from (9.30) we obtain

9.32) ((N oo +4)a, ) = (N, +dog)—
-~n -1/2 a'o (P(Nu‘l"Ado 1)(N +AO'EI)A(AO,AO_,akFik_,+F”Aoje)+0(n 1/2)

.- For 4=0 and P, =P,, making use of (9.31) and the fact that
Py {F(, x(P*)) >0} = a+o(n'”2) we get

(9.33) ) j'dv @z, (OYM(—Na0o, v, Py) = k(—N,0o).

‘The assertion of the lemma now follows easily from (9.31)—(9.33). ‘
(9.34) Remark. A result corresponding to (9.22) can be obtained for 4 < 0.
(9.35) LemMmA. Let P,€P, neN, be a sequence admitting a P,-density

(9.36) P = 1+n"1"24g+n"17,.
Assume that 7, = A*h4-n~'3r, with
9.37) ' M3, » h),
(9.38) M%), ({Py s 1,2 neN}).

If @,, neN, is asymptotically of level a+o(n~ 1/2) for P,, then
P" (@) < O(N,+4d0)+
+n"1/2<p(Na+Aa)a-,1A(A(P*(gh)—ép*(g3))+%P*(g3)Naa-l)+
+o(n1),
where g := P,(g*)"2. |
This holds true under the following regularity conditions:
(9.39) M3, (P, »9),
(9.40) : : C(P,=g).

If (9.38), P, (1)) = o(n), g = -—0';01 fo, and (9.1) are fulfilled, we obtain

(9:41) P (p,) < m,(4,0)+o(n" %),
where =, (4, a) is given by (5.7).
Proof. For reR let

D,(r) := {xe X" ﬁ P,(x)<r}, r,,:=inf {reR: Pi(D,() = a}.
v=1]1 N :

We have Pi(D,(r,.) > a.
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Let now ¢,, ne N, be asymptotically of level oc+o(n‘”2) for P,. Let
a, := max {a, Pi(p,)}. We have
a <o, < aton 3.
Sincé ae, L, is of level a, jby the Neyman-Pearson lemma we obtain
Py (0, @) < Py (D, (7).

Therefore .
(942) o Pil@n) < Py(D,y (o)) +0(n 712,
" Let _
943) A, = {dlgl < tn'? and || < in},

B, := A;.

By the definition of P,, Markov’s 1nequahty and Holder’s mequahty,
we obtain for Q, = P, and Q, = P,

044)  Qn(B) < n(Q,{4lgl > in'?}+Q,{Ir| > &n}) = o(n™'?).
Hence for Q, = P, and Q, = P we have

(9.45) Qn(D(r.2) = QnixeB,: Z log p,(x,) < 7} +o(n~1?)

for some suitably chosen r;,,a’eR.
For notational convenience let

(9.46) k,:= Adg+n~12

From a Taylor expansion of log we obtain
(947) logp,=n"1k,—3n k2 +in" 32k 4+n 32 k3 v (n V2 k),
~ where

. .
v(y) = E|;(l—u)z((l—uy)“z—-l)du.

~-For-|y] <% we have :
(9.48) O < 2yl

From (9.46) and (9.47) for xe B, we obtain

n

(9.49) é:l log p,(x,) = n=12 4 Zn_:l g(x,)+n"1 42 ;1 (h(x,)—% g% (x)+

+nT L (5P, Pu(gh)+n7 " T R, (x),
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where
R,=r,+3k3—4n 3212 413 v(n= 12 k,)—
~n"12 Agr,—n~! 4% hr,— A3 (gh— P, (gh)+ P (9%) -1 4*n~ 12 h2,
From Lemmas (9.57) and (9.58) we obtain

(9.50) n=32 Y R,(x)1p,(x) = n~"20,(3)
. v=1 ..
with respect to P, and--with respect to P,, since by (9.48) we have
nT2 Y k3a) o (n M2k, ()| 18, () < 2172 Y k().
v=1 v=1

As n‘m P (gr,) = O(n *?), we infer from (9.37)-(9.40) and Lemma (9.65)
that .

9.51)  Pr{g—4P,(g>)—n"'2 4> P, (gh)+
A= AP, Gh 1)+ AP (@) < s)
=@ (so, )+n 2 p(so, YH(s)+o(n"1?)
uniformly for se R, and
952) P {g+n "2 A(h—%(g*)) < s}
= @(sa™)+n"2@(sa ") H(s)+o(n™'?)
uniformly for se R, where o2 := P,(g*)+n"'"? 4P (g%, and
(9.53)  H(s):= 0P, (g )(1—s*a")+(P,(¢°)~P, (gh)s4).
Therefore, from (9.45) and (9.50) by Lemma (9.63) it follows that for
Q,=P,and g, =P,
(9.54) 02Dy (r0) = Qa(Cpa)+0 (™7,
- where '
Coa i={G+n" "2 4(h—%(@)) < ¢a}
with ' '
Coa 1= Tpa 47 +3 AP (g?)+n" 12 4%(P (gh)—3 P, (g%)).

As Py(C,z) = a+o(n~'?), from a uniform version of Lemma 7 in [5],
p. 1016, we obtain

(9.55)  Gux = A(N2o—5n~ 2672 P, () (1-ND)+
+4%(P,(gY)+n" Y2671 N, P, (gh)+n~ "2 43(2P, (gh)+1 P, (g%).
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The assertion of the lemma now follows from (9.42), (9.52), (9.54) and (9.55).
Relation (9.41) follows immediately from (9.21).

(9.56) Remark. In the case 4 < 0 and g = —o4g f,, in the same way as
in Lemma (9.35) one can derive

PL(p,) > m,(4, 0)+o(m™1?).

The following lemma is an immediate consequence of Lemma 6.3 in
[4], p. 152.

(9.57) LemMA. Let-RQ;, ne N, be families of p-measures. Lei se[0, o) and

a>%. Let hy(,Q): X—>R,QeRQ,, neN, be measurable Sfunctions fulfilling _

M(§+1)/a({P*hn(', Q) neN’P5 QEQH})

Assume that one of the following conditions is satisfied:

a>1
or '
a<1l and sup [P, (-, Q)), = o(n""1).
P.QeQ, : ’

Then there exist 6 > 0 and, for every ¢ > 0, a constant B depending on

sup sup P(lh, (-, Q)+ 1*%)  and  sup IP(h,,(v, Q)
PQeQ,

neN P,0eQ,

_ such that

sup P"{xeX" n=a| Z h,,(-,Q)l > ¢} < Bn“’*"’.

PQeR,

(9 58) LEMMA. Let the assumptlons of Lemma (9.57) be satisfied for s =%,

= {P,} and h,(-,Q) = h,. Let P,, neN, be a sequence of p-measures

A admlttmg aP, denszty . 36) such that

(9.59) »  M5(P, *g),
(9.60) M3, ({P, *F,: neN}).
Then

nt 3 ha(x) = 0,04)

‘with respect .to P,.

Proof. Let A, be determined by (9.43). Let a p-measure on &i be
defined by ‘

(9.61) | 0.(4) 1= P,(ANn A)/P, (4,), dest.
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Since Q,(h,) = P (h,,)+0(n‘1’2) if a<1, and the P -dens1ty of Q, is
bounded by 3/2, from Lemma (9.57) we obtain

> ¢} = o(n™?).

0.62) 0 (™| 3, ha(x)

The assertion now follows from (9.44) and (9.62).

(9.63) LemMA. Let Q,, neN, be families of p-measures over s4. Let h,(-, Q): -
X"->R and g,(-,Q): X" >R, neN, QeRQ,, be measurable functions
Sulfilling : ' v
o ‘ ‘hn('ﬁ Q) =_gn(" Q)+n_l/20n(%)
with respect to Q,.

Let H,(-,Q) and G,(:, Q) be the distribution functions of Q"*h ( Q)
and Q"xg,(-, Q), respectively.

If
(9.64) IHy(s, Q)= H,(s', Q) < cls—~s|+0(n"'7?)

uniforn_aly for s,s’eR and Qe RQ,, then

G, (5, Q) = H,(5, Q) +o(n™*?)

uniformly for seR and Qe fQ,. . '
(9.64) is in particular fulfilled if H,(-, Q) admits an Edgeworth expansion
of order n~ 2, uniformly for Qe Q,.

Proof Choose c,, neN, such that c, l_O and
0 {n' (-, =, Q) > ¢} = 0(n™ )
uniformly for Qe Q,.
Then from (9.64) we obtain &
G5, Q) < Q"I (-, Q) < s+n7 2} 40" (W2 (- Q)= g, Q) > ¢}
= H,(s,Q)+o(n™?)

uniformly for seR and Q€ Q,. ' -
In the same way one can show that G,(s, Q) = H, (s, Q)+o(n"172).

(9.65) LemMA. Let P,, neN, be a sequence of p-measureS Julfilling (9. 36)>
(9.59), and (9.60). Let hy: X - R and h,: X - R be measurable functwns
Jor which the following regularity conditions are fulﬁlled

(9.66) P,(h) = P,(h) =0,
(9.67) M; (P* * hy), Ms/z (P* * hy),
(9.68) _ C(P, +hy).

3 — Prob, Math. Statist. 2(2)
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Then :

Py {hy—n"2P, () +n~ 2 (R — AP (ghy)) < s} |

= ®(so; )+n" " p(sc HYH(s)+o(n™ )

uniformly for se R, where '

2= P, (h)+n~ 24P (ki g),

H(s):= 67 3P, (h})(1—s*c~%)—P, (h, hy)s)

with 6% :="P_(h}). o
Proof. Let 4, and Q,, be defined by (9.43) and (9.61), respectively.
By (9.36), (9.59), (9.60), (9.66) and (9.67) we have

0u(h)—Py(h)) = o(n™"),  Q,(hy)—n~"2 AP, (gh;) = o(n~*7).

Thus, from (9.67), (9.68) and from Theorem 1 in [2], p. 650, apphed for
hy—n'2Q, (hy) +n~ Y2 (h, —n'2Q,(h,)), we obtain

969 Qn{hy —n"?P,(h))+n"'(hy— AP, (ghy)) < s}

= 00,7 g sy Hy () +on™ )
uniformly for se R, where ¢)? is the variance of Q, «h,, and
H,(s) := 0,7 (§Q, (h)) (1 = s* 0,7 3)— @, (hy hy)5).

Since o,—o0, =o(n"?) and Q,(h'hy?) - P,(hi'hy?), neN, for all
(xy,a;) such that a; +2a, < 3, the assertion of the lemma fqllows from
(9.69) and (9.44).

(9.70) LemMA. Assume that for some strong neighborhood U, of P, in P
the following regularity conditions are fulfilled: '

9.71) ’ K3, (x(P,), U,) for f: XxT—>R,

072 ME({Pxs*(,%(Q): P,QeU,}) for ol = 1,2,3,

(9.73) A2(cPL),U,)  for f*: XxT—>R if |a| = 3.
Then, for i =0,...,p, '
2 (P —,(P)) = Jo(, P)+n 2 M(J, 7", P)+n""0,(})
with respecf to U,s(P,) for every 6€(0,1), where |
0.74) Mi(J", J*, P) = =} 4yFpu (. P) RGP+ T, PY FOCLP).

Proof The proof follows the pattern of the proof of Theorem 5 in [1],
p- 298ff. The crucial point is to show that

(9.75) % —%(P)| = 0,(})
with respect to U, ;(P,) for every d€(0, 1).

Cnou
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If we copy the proof in [3], p. 79, for the case K = {%(P}, we
obtain immediately

(_9-76) o™ =5 (P = 0,(2)

with respect to U, ;(P,) for every d€ (0, 1).
Since P — % (P) is continuous by General Assumption (8.5), relation (9.76)
implies (9.75).

10. Proofs. In order not to overload the paper with technicalities, the
proofs are given for fixed 4. Uniformity in 4 can be obtained by exactly
the same reasoning if uniform versions of the lemmas are used.

Proof of Theorem (4.16). (i) By General Assumption (8.5), P - % (P)
is continuous. Hence condition (4.21) implies the existence of g with
M%,({P+g: PeU,}) such that, for some strong neighborhood U, = U,
of P,

(10.0) £, (P)=f( , %(P,)
< (e (P) = (P)) F9(, x(P)| + % (P =2 (P g,

(10.2) |£E9 (-, % (P)=f (-, %(P)| < %(P)—%(Pg.

Hence it follows easily that P — F; (P), P — F;;(P) and P — A;;(P) are
continuous at P, in the strong topology.

Thus the coeﬂicients of the polynomials M;(-, , P) defined in (9.74) are
continuous at P,. |

(i) By condition (4.23), for every Pe U/, there exists a P-linearly inde-
pendent subsystem {fo(-, P),g,(",P),...,Gm(", P)} of {fi(:,P),i=0,...,p,
(-, P)~8y;, j=0,..,p, k(-, P)~P(k(-, P))} generating the same space
and fuifilling
(10.3) - C({Pe*(fo(-, P). g (-, P): PeUL}).

Without loss of generality we may assume that f,(-,P,) and g;(-, P,)
are P -uncorrelated. Otherwise, we replace g;(-, P) by

gi(+, P) := gi(’aP)_P*(fo("P*)gi(‘,P*))O'Eol fo( ,P)“
Notice that (10.3) and the following statements remain valid for gj( , P).
Moreover, there exists a polynomial M( ,-, P) the coeﬁ]c:lents of which
are continuous at P, such that

(104)  M(o(-» P).g(-, P), P) = Mo(F", J, P)+K(-, P) Pae.
From Lemma (9.70), (4.3), (4.6), and (10.4) we get
F(-.0(P) = Jo (", P)+ Nago(P)+
+n_1/2M(f0( ) P)a g( s P)a P)—“n_l/zcz (P)+n_1/2 On('%")
with respect to U, ;(P,).
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By Lemma 3 in [6], p. 245, we see from the choice of ¢, (cf. (4.5)) that
F,, neN, is asymptotically similar of level a+o(n~1/?).

-Proof of Proposition (4.25) (i). '

(®) Let V(x(P,)) be given by condition (4. 30) Then we infer from (9.76)
that for every de(0, 1) :

(10.5) P {x(") (x)¢ V(x(P,)} =om '

.uniformly for Pe U, ;(P,).

Furthermore, it follows from General Assumption (8.5) that there exists
a .strong neighborhood U!, < U, such that x(P)eV(x(P,)) for PeU’

‘Thus - for %™ (x)e V(x (P*)) and PeU),, by a Taylor expansion of

t—nt Z f(x,, t) about »(P), we obtain

(10.6) F{—F;(P) =n"""? f‘”’-(', #(P))+F 5 (P) (o — 2. (P) + Ry, (-, P),
where ' .
(10.7) . |R(x, P)

n

< % @)= (P (17 X S (s 2(P) = Fine @) o

1 (1)~ (P2 ! z 9(x,),

g béing the function which occurs in L, (x(P,), U,) for f* if |of = 3.
By Lemma (9.57), (9.75) and General Assumption (8.5) we have

108 " =x(P)] = n"0,(3)

with respect to 'U,,,,; (P,,L) for every 0€(0,1) and some sufficiently small
e >0, and : '

with respect to U, ;(P;) for every 6€(0, 1).
Thus, by Lemma (9. 57) (10.5), (10. 6), (10.8), and (10.9), we get

(1010) g R,(,P) = n""?0,(3)

with respect to U,,,;(P*) for every 5¢€(0,1).
Let :

9y P) = [,k (B) = Fy(B)— Fype(B) fu(+ P).
Using Lemma (9.57), we obtain

(1011) B F,,(P)—n ”Zcﬁ,,( P)+n"Y20,(3)

with respect to U,,,;(P*) for every 66(0 1).



The second order optimality. 11 . 121

In a similar way as above one can show that
(10.12) F{M—F,;(P) :
= n 2 ((£O fO) (-, 2 (P)+(Fipe )+ Fy e PYF (-, P)) 02 0,(3)
with respect to U, ;(P,) for every Se(O, ).

(B) Let |
= {xeX™ F{}(x) is invertible}.

As P - F, ;(P) is continuous because of condition (4.29) and the
continuity of P — % (P), we have .

G, < {JI( F(") Fiy(P)j=o,. p“

for some d.>-0 and for aIl P in some nelghborhood Uy S U
Thus

 (10.13) P'(C) = o(n™'7?)

uniformly for all Pe U,;(P,) for every d€(0, 1).
Putting ' _
aij(" P) = —Aiz(P)Ajk(P)(sz(‘, pP)
we obtain from (10.11)
(10.14) FO(Ay(P)+n~Y2q,(, P)) = 5,,+n'1/20 ( )
with respect to U, ; (P*) for every é'e(O, 1) and, therefore, by (10.13),

(10.15) . A = Ay (P)+n 125y (, P Ponh) |

with respect to U, ;(P,) for every d€(0, 1). o : _
From (10.12), (10. 15) and a Taylor expansion of x — x”2 about x = oy,
- we Obtain '

(10.16) o = oo (P)+n~2E(-, P)tn~120,(3)
with réspect to U, s(P,) for every 6 €(0, 1), where k(-, P) is given by (4.27).

Proof of PropOSItlon (4.25) (ii). The proof is a simple apphcatlon of
Lemma (9.57) and will be omitted.

Proof of Theorem (5.1). The theorem follows 1mmed1ately from
Lemmas (9.22) and (9.35) applied for P, 4, neN, 0 < 4 < 4,.

Proof of Corollary (5.11). The corollary- follows: immediately from
Theorems (4.16) and (5.1) if we establish that for every 4 (0 < 4 € 4,)
there exists a sequence P, e®P, neN, fulfilling (5.2)-(5.5). We restrict
ourselves to prove the assertion for fixed 4 > 0.
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By (5.12), there exists £€(0,1) such that M(QH),Z(P « f*(- ,x(P*))) is
fulfilled for |x| = 1. Let

3+¢/4
6+3¢/4

Since P, (f®) = 0, we obtain
(10.17) o P*‘(k;,,,-) = o(n~ 3.

Let, furthermore, k,; := k;, ;— P, (k,;) and let a be deﬁned by (9.7).
.From (10.17) and a Taylor expansion of - f9(-, 1) about x(P*) we

ﬁ = (0 ’2) and k;!.i = f(i) lflf(i}\sﬂﬁ}-‘

- obtain

(1018) - - Py((fO—kn) fO(- 2P Y+n" P a)) = O(n™Y).
Let F, be a matrix deﬁned by _
Foiji=Py(kni fO(, %(P)+n""2 4a)), i,j=0,...,p.
By a Taylor expansion and (10.18) we have
Fyiy = Fiy+n~ 2 4a F, 3, +0(n™").

Thus, F, is invertible if n is sufficiently large, and the inverse, say B,,
admits the expansion :

(10.19) B

n,ij

= B+n " "e;4+0(n™), "
where (B;j); j-o,..,p is the inverse of (F; ;) =o,...p>

_B}k Bii F[,kp ap.

(1020) : e, 1=

;o
Let now a,;, neN, j=0,...,p, be defined by
a,;:=n"?B, ;P (fO(-, x(P,)+n" ' 4a)).
From (10.19) we obtain .
(10.21) a4, ; = dagg A0j+n‘_1/2A2(ej;‘Fikak+Bj,~F,-k,akal)+n_1R,,,j,

where R, ; = 0(n°).
As a, ; is bounded, the signed measure P,, defined by the P -den51ty
= 1+n""%q, ;k,;, belongs to P if n is sufficiently large.
Furthermore by a simple calculation we obtain

P(fO(, #(PY+n~ 2 4a)) = 0, i=0,...,p,

provided n is sufficiently large.
Thus
%(P,) = x(P)+n 1 Aa.
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It follows from (10.21) and the definition of k,; that p, can be written
in the form (5.3) with ‘

h = e-i(Fl'kak_'-B"Fiklakal)f(j)
Foa = nl.’zA(n”2 050 Aoj+ A€ (Fy a+ By Fyyay ) £ L osmr

+ an,i K;u,j —ndy, ; P* (Kn.j) .
Condition (5.4) holds trivially.
By the choice of B,

I ’f(i)l(s/.z.+s)/8 ltlf(”|>nﬁ}dP* =0 (n*(3/2 +€)/8),

jrot 1) s>, 4Ps = 0(@77).
Hence condition (5.5) is fulfilled.

Proof of Corollary (5.15). Let 4 > 0 and q; := —Agg Ag;, i = 0,...,p
Then for sufficiently large ne N we have 6,+n"'? dae @, and the sequence
P,:=P,, i, fulfils (5.2)

We have

(10.22)  p(-, 0*+n"12 da)/p(-, 0%
= 1+n‘”2Aa p“’( 0*)/p(-, 0%)+3n~ 1 A% a,a;p" P (-, 0*)p (-, 6%)+

+n aa,j'[(l u)(p(”’( 0*+un1? Aa)—p“P (-, *)/p (-, 0*)] du.

Hence (5.3)-(5.5) follow easily: by conditions (5.12) and (5.16).
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