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" EXPLICIT SOLUTIONS OF MOMENT PROBLEMS, I*

BY

L KUZNEZOVA-SHOLPO (SARATOV) AND S. T. RACHEYV (SANTA BARBARA)

Abstract. The moment problems minimizing (maximizing)
{E|IX, —X,|I: E|IX,{|¢ = api=1,2,j=1,.., n}, where X, takes
values in a scparable norm space, are investigated. Explicit solutions
when n =1 are given for all p >0 and g; 2 0 (0°: =0). If n = 2, the
minimization problem is solved for 1 < ¢, < p < ¢, and the maximi-
zation problem for 0 < p<¢;,1<¢g, <g, or 0 < g, < g, < p. Pos-
sible generalizations and open problems are presented.

1. Introduction. In probability theory the following two measure theoretic
problems are well known (see e.g. [6], [10], [12]-[14], [18] and references
there): . _ '

A. Marginal problem. For fixed probability measures (laws) P, and P, on

a measurable space U and a measurable function ¢ on the product space .

=UxU
(1.1) minimize (maximize) | c(x, y) P(dx, dy),

U2
where the laws P on U? have marginals P, and P,, ie
(1.2) nP=P, i=1,2,.
B. Moment problem. For f xed real numbers ay; and real-valued continuous

functlons fij (i=1,2;j=1,...,n)
(1.3) minimize (maximize) j c(x, y) P(dx, dy),

U2
where the law P on U?. satisfies the marginal moment conditions

(1.4) ‘fﬁdei=aij, i=1;2,j=1,...,n
U . .
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Dual relationships and explicit solutions. of the marginal problem for
different spaces U and criterion functions ¢ are given in [4-6], [10], [13-15],
and [18]. ’

In citing some results concerning duality and explicit solutions of A, we
shall use the following notation:

(1.5) (U, d) is a separable metric space with metric d;

(1.6) 2(U" is the space of all Borel probability measures on the
Cartesian product U*;

(1.7) o is the class.of all convex functions .
" H:[0, 0)=[0,00), H@©) =0, Kg: =supHQt/H({)< o0;

t20

(18) Pyi={PeP(U): [H{d(x, a) Pdx) < 0}, HeH(});

(1.9) ‘ D(x,y):=H (d(x, ) 7
(1.10)  Lip(U): = { f:U >R, sup| f(x)] < o0, Fx(f) > 0:| f (x)—f (¥)|
xelU

<a(f)d(x,y) for all x, yeU};
(L11) %y ={(f; 9):f,9eLip(U), f(x)+g(») < D(x, y), x, yeU}; |

(112)  Fg={(f, 9):f, 9)eLip(U), f(x) 20, g(3) = 0, f(X)+4g(»)
> D(x, ), x, yeU}.

THEOREM A. (i) (Duality solutions of A). Let (U, d) be a separable metric
space He ', P,, P,€Py. Then

(1L13) Z,4(P,, P,): = inf{ | D(x, ) P(dx, dy): PeP(U?), ;P = P, i =1, 2}
U2

= sup {gfdPI'F j.gdpz:(fa g)egH}

and
(1.14) 2Py, P,): = sup{ [ D(x, y) P(dx, dy): PeP(U?, ;P =P, i =1, 2}
el UZ

= inf{{ fdP, + ggdPZ:(f, g9)e% g}
U

(i) (Explicit solutions of A). If (U, d) = (R,|'|) and H is a convex function,
then '

(1.15) Zy(Py, Py) = iD(FI‘(t), F3'(y)dt,
. 0

() 25 does not depend on aeU for any He#.
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(L.16) PPy, P = [D(FFHO, F3* (1—0)ds,
o

where F; is the distribution function corresponding to P; and Fj' is its
inverse, j =1, 2. A
Indication. (i) see Rachev [15]. (ii) see Cambanis, Simons and Stout [5].

Kellerer [107 provides duality solutions of A for general ¢; however, in case
¢ = D, his dual solutions are not as sharp as these in (i).

The possible solutions of the marginal problems are related to the dual and
explicit expressions for the so-called minimal metrics (see [21, 22]) and maximal
distances (see [15]) that are fruitful in the development of a considerable range
of stability problems for stochastic models (see [22] and [14]). B

Owing to the number of its important applications (see [1, 2], [6-9], [11, .
127, and [19] the moment problem can also be treated as an approximation of
the marginal problem. Indeed, if the laws P, and P, (see (1.2)) are not
determined completely and if only some functionals of P, and P, are given (see
(1.4)), then one has to solve the problem B instead of A. The significance of the
moment problem for the theory of probability metrics was also stressed by
Sholpo [20] and Rachev [15].

General dual representations of moment problems on a compact space
U are given in [6, 11, 12]. In a more general case of a completely regular
topological space U, dual expressions are given in [12] under a “tightness”
condition on the pairs (f;, a;), i=1,2,j=1,...,n.

The present paper is devoted to the explicit solutions of some moment
problems on separable metric space U with metric 4. In this case, considering
a “rich enough” probability space (2, o/, Pr) without atoms and the space
% = % (U) of all U-valued random variables (rv’s) X on (2, &/, Pr) one can
rewrite the moment problem B as follows:

(1.17)  minimize (maximize) {Ec (X,, X,): E f;;(X) = aj;,
i=1,2,j=1,2,...,n}.

In fact, the above assumptions guarantee that the set of all Borel
probability measures on U? coincides with the set of all joint distributions
Pry,y of pairs of rv’s X, Y (see [16]). The main reason for considering not
arbitrary but separable space (U, d) is that we need the measurability of d. For
example, if c(x, y) =d(x, y) in (1.5) and (U, d) is a metric space of car-
dinality > @, then the metric d: U x U — R is not measurable with respect to
the product o-algebra #(U) x % (U) (#(U) is the Borel o-algebra on (U, d)),
see [3]. A

In Section 2 explicit solutions are given for the problem (1.17) in the case
where n =1, U is a separable norm space with norm ||-|] and

(1.18) el y) =h(x—yll),  fiux):=g(ixl), i=1,2.
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In particular, for any p = 0 and g = 0 we solve (1.17) with
gy - ey ==yl S () =[xl

(Here and in the sequel 0° means 0).

In Section 3 we assume that U is again separable norm space but n>21In
this case, among other results, explicit solutions are given for the moment
problem (1.17) with

(1.20) clx, ) =lx—yll", f;x)=Ixll¥, i=1,2,j=1,2,

for 1 € g, < p < q, when minimizing in [1.17], and for0 < p < ¢q,,1 < g, < ¢q,
or 0 < gq; < g, < p when maximizing in (1.17). Here, we also give the explicit
-solution of the well known moment problem:

(121)  minimize (maximize) {EIX|:E|X|* =a, i=1,2}

for all nonnegative p, q, and g,. -
In Section 4 we apply the results of Section 3 to obtain prec1se bounds for
Py(Py, P,) and £, (P,, P,) when the moments [||x]|?P;(dx) (i =1, 2) are
fixed. Some open problems are offered.

2. Moment problems with one fixed pair of marginal moments. Let U be
a separable norm space with norm ||-|| and .# be the class of all strictly
increasing continuous functions f: [0, c0]—[0, ], f (0} =0, f(c0) = c0. In the
present section we treat the exp11c1t representations of the following extremal
functionals: :

QL) Ik, g;a, b): = inf {Eh(|X — YII) X, YeZ (U), Eg(IX1) = a, Eg(1Y]) = b},
22 S, g;a,b):=sup{ER(IX—Y):X, YeZ (U), Eg(|X]) = a, Eg(IY]) = b},
where a >0, b > 0, he #, ge .#. In particular, for all p > 0, g > 0 the values
7 (2.23) I(p, q; a,b):=1I(h, g;a,b)(h(z) =1, g(t) = t‘f),
(2.4) S(p,q;a,b): = S(h,g;a, b)(h(t) = 22, g(t) = t9)

are calculated. Note that here and in the sequal E||X — Y||° means Pr(X # Y).
The scheme of the proofs of all statements here is as follows: first we prove
the necessary inequalities that give us the required bounds and then we
construct pairs of random variables which achieve the bounds or approximate -
them with arbitrary precision.
Let f, fl, f>€# and consider the following condltlons (here and in the
sequel /™! is the inverse function of fe.#):

A(f1, ) f,0f 71 @) (> 0) is convex; -
B(f):f HESUX+ YD) <f ™ (ESUXD)+/ " ESAYD) for any X, Ye;
C(/):Ef(1X+Y) <ES(XI)+ES(YI) for any X, YeZ;
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D(fy, f): lim (f, (/£ (1) = O;

t—

E(fi, f2):fiof,(t)(t = 0) is concave;
F(f,.f): f1 1§ concave and fz is convex;

G(f1, f): lim (f; (1) f2(8)) =

t—+ o

Obviously, if h(®) =1, g@t)=t* (p>0,9> 0) then A(h,g)< p=>
Bl)=q>1, Clg)=>q<1, D(h,g)<>q>p, E(h,g)=q>p, Flhig)e>p<1< q,
G(h,g)<>p > g, and hence conditions A-G cover all possible values of the pairs (p, g).

In the next theorem we establish explicit solutions of the moment problem
(1.17) under conditions (1.18) and combmatlons .of requirements A-G on
h and g.

THEOREM 1. Let a>0 and b= 0, a+b > 0.
(i) We have = =~

_ h(g™  @—g™* B)) if A(h,g) and B(g) hold,
2.5y I(h,g;a,b)=< hog™'(la—p|) if A(h,g) and C(g) hold,
| 0 if D(h,g) holds.
(i)} For any ue.U he # and ge # we have
(2.6) inf {Pr{X # Y}:Eg(|X|) = a, Eg(|Yl) = b} =0,
Q7inf {(ER(IX —Y|):Pr{X #u} =a, Pr{Y#u} =b} =0 (a, be[O 1]).
(iii) We have o
h(g‘l(a)+g_1(b)) if F(h,g) holds or if B(g) and E(h,g) hold,
(28) S(h,g; a,b) = { hog™'(@+P) if C(g) and E(h,g) hold,
oo if G(h,g) holds.
(iv) For any ueU, he #, ge M. . .
(2.9) sup {Pr{X # Y}:Eg(I|X|) = a, Eg(IYl)) = b} =1,
(2.10) sup {Pr {X # Y}:Pr{X #u} =a, Pr{Y;é u} = b}
. =min(a+b,1) (a,be[0, 1]),
(2.11) Sup {ER(IX — Y||) Pr(X#u)=a, Pr{X # u} = b} = 0.
Proof. (i) Cqse 1. Let A(h,g) and B(g) be fulfilled. Write
@(a,b):=h(lg" (@—g ' ®)),a>0,b>0.
Clalm 1. I(h,g;a,b) = @(a,b) By the Jensen’s inequality and A(h g)
(2.12) hog_l(EZ) < Ehog™1(2).
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Taking Z = g(||X —Y]|). and using B(g) we obtain
“THERWX-YI) =g EgUX—YI)) = g™ (EWXID)—g~ *EWTI))

for any X, YeZ, which proves the claim.
Claim 2. There exists an “optimal” pair (X*, Y*) of rv’s such that
Eg(|X*|) =a, Eg(|Y*]) = b, E(|X*—Y*||) = ¢(a, b). Let & here and in the
sequel be a fixed point of U with ||g]| = 1. Then the required pair (X*, Y*) is
gwen by
@.13) _ X*=g'(@e, Y*=g'(be,

which proves the claim.

Case 2. Let A(h,g) and C(g) be fulfilled. Write ¢, (t): = hc_)g'1 (t),t=0. As
in Claim 1 we get I(h,g;a,b) > ¢,(la—b|). Suppose that a > b and for each
¢ >0 define a pair (X,, Y) of rv’s as follows:

Pr{X,=cz Y,=0}=p, Pr{X,=d¢ Y,=d:e=1-p;

here

= a—b b
14) 0:=02,p:=—2""  c.=g '(a—b+e),d:=g"" .
214) 0O e, p, T pag =9 (a—b+e),d:=g (1 Ps)

Then (X,, Y)) enjoys the side conditions in (2.1) and

a—>b
—b+e

Eh(IX,~Y]) = ¢, (a—b+o)~

Letting ¢—-0 we claim (2.5). .
Case 3. (i) Let D (h, g) be fulfilled. In order to obtain (2.5) it is sufficient to
define a sequence (X,,Y), n> N, such that ‘

n? “nh

hmEh(llX Yl)=0, Eg(X,l)=a, Eg(Iyi)=>

An example of such a sequence is the following one:
Pr{X =0,Y,=0}=1—c,—d,,
“ ~Pr{X,=nae, Y,=0}=c,, Pr{X,=0,Y,=nbe}=4d,

where ¢, = a/g(na), d, = b/g(nb) and N satisfies cN+dN <1
(i) Define the sequence (X,,, Y), n=2,3,..., such that

n—1
—

Pr{X,=g""(na)e, Y, =g ' (nb)} = E’ Pr{X,=0,Y,=0} =

* Hence, Eg(||X,|[) = a, Eg(||Y,]) = b and Pr(X, # Y,) = 1/n which shows (2.6).
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Further suppose a > b. Without loss of generality we may assume that
u=0. Then consider the random pair (X,, ¥) with the following joint
distribution:

Pr{X,=0,Y¥,=0}=1-gq, Pr{XN,,:%é, f’,,=6}=a~—b,

Gl 1

Obviously, (X,, ¥) satisfies the side conditions _
Pr(¥#0)=a,Pr(¥. #0)=b, and lim ER(|X,—Y])=0,

n— oo

=|'—*

which proves (2.7).

The proofs of (i) and (iv) are quite analogous to those of (i) and (ii)
respectively, g.e.d.

Note that if A(h,g) and B(g) hold we have constructed an optimal pair
(X*,Y*) (see (2.13)), ie. (X*, Y*) realizes the infimum in (2.1). However, 1f
D (h,g) holds and a # b, then optlrna.l pairs do not exist, because Eh (|| X —Y])) =
implies a = b.

COROLLARY 1. For any a=20,b20,a+b>0,p>20,920,

late—bYap  if p>gq>

. _ Jla—blPe ifp)'q,0<.q<1,
@215 Ip.g;a.b)=1 if0<Sp<qorq=0,p>0,
la—b| if p=q=0.
(aV/e 4 pliay ifOSPS‘L =1,
(@+byt F0<p<a<1,q#0,
2.1 a,b) = ‘
(2.16)  S(,g;a.b) ifp>q=>0, '

min(a+b,1) if p=g=0.

Remark. Obviously, if ¢ = 0 in (2.15) or (2.16), the values of I and S make
sense for a,be[0,1]. ‘

3. Moment problems with two fixed pairs of marginal moments. The main
part of this section is devoted to the exp11c1t description of the bounds

(3.1) I(h.gy.95; a1, by,a,,by): = inf ER(|| X —Y])),
(3.2 S(h,g1:92; a1,by,a,,b,): = sup ER (|| X —Y])),

where h,g,,g,€ #, and the infimum in (3.1) and the supremum in (3.2} are
taken over the set of all pairs of rv’s X, Ye% (U) satisfying the moment
conditions
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(33) Eg(Xl)=a, Eg(YD=b. i=1,2.
In particular, if () =%, g;,() =t*,i=1,2(p=20,q9, > q, = 0) we write

(34) . I(I’q‘l1a‘12§ a1a_b1:a2s z) = I(hagpgz; a,, b15a23 bz),

(3.5) S(P.41:425 al:bl’aéabz): = S(h,g1,92; a1,by,a5,b)).

The moment problem with two pairs of marginal conditions in considerab-
ly more complicated and, in the present section, our results are not as complete
as in the previous one.

THEOREM 2. Let the conditions A(g,.9,) and G(gz, gl) hold Let a; 20,
b;20,i=1,2, a,+a,>0, b;+b, >0 and

(39 — gil(a) < g3t (@), git () <g3t(dy).

(@) If A(h,g,), B(g,) and D(h,g,) are fulfilled, then ,
(37) ,I(hsg13 92; alyb1alal2,7 bz) = I(hag1: alabl) = (|gl ! (al) gl ! (bl)l)

(ii) Let D(h,g,) be fulfilled. If F (h,g) holds or if B(g) and E(h,g) hold, then
(38) S(haglagz; a15b1’a2sbl) = S(hagls alalbl) = h(gfl (a1)+gl_1(b1)) '

(iii) If G (h,g,) is fulfilled and g7 (a,) # g5 * (ay) or g1 * (by) # g5 * (b,), then

(39) S(h,gngz; a19b19a27b2) = S(h7gl’ al’bl) = o0
Proof By Thebrem 1 (i) we have )
(310) I(hagDQZ; a13b17a2’b2) = I(h’glaalabl) = (P(al’bl)'

Further we shall define an appropriate sequence of rv’s (X,, ) that satisfy
the side conditions (3.3) and

lim Eh(1X,~ Y = ¢(a,,b,).

t—> o

Let f(x) =g,09, (%) Then, by the Jensen’s inequality and A(g,,4,),

311 f(aA1) = f(Eg, (IXI)) < E fog, (IXI) =a,
as,_yytcl_l_a_ls f(by) < b, Moreover lim (f(t)/t) © by G(g;,9,)-

Case 1. Suppose that f(a)) <a,, f(b))<b,.
Cram. If the functions fe # and the reals c,, c, possess the properties

(3.12) fley)< c2, lim (f (#)/t) = o0

' t—> oo :
then there exist a posmve to and a function k(t) t 2=ty such that, for any
t>=t,,

(3.13) . o 0<k(@®) <ey,



Moment problems 305

(3.14) Ctf(ey—k@)+k(@) f(cy+1) = ¢, (kD) +1),
k(t) €

(313 KO+t S fe D)

and '

(3.16) - lim k() = 0.

t—

Indeed, let us take such ¢, that f(c, + t)/(c +t) > cz/cl, t=> to, and consider .-
the equatlon F(t,x) = ¢;, where :

Ft,x): = flc;—x)t/(x+t)+ f (¢, +Ox/(x+1).

For each t '3 t, we have F(t,c,) > c,, F(t,0) = f(c,) < c,. Hence, for each
t > t, there exists such an x = k() that k(¢)e(0,¢,) and F(¢,k(t)) = c,, which
provides (3.13) and (3.14). Further, (3.14) implies (3.15) as well as (3.13) and
(3.15) imply (3.16). The claim is established.

From the claim we see that. there exist ¢, > 0 and functions I(t) and m(f)
t > t,, such that-for-all ¢t > t, we-have -

(3.17) 0<I@)<a, 0<m(t) <b,,
(3.18) o tf (@ — @)+ £ @ +D) = a1+,
(3.19) _ tf (by—m@)+m(@) f(by+1t) = b, (m(t)+1),
(3.20) "~ lim I() =0, lim m(z) = 0.

By (3.17)«3.20) and the conditions A (h,g,), D(h,g,) and G(g,,9,) 6ne can
easily check that the rv’s (X, Y), t > t,, determined by the equalities

) Pr {Xr =x;(8), ;= J’j(t)} =p;(t), iLj=12,
where -
x, (0): = g1 Ha, — 1) &, x, (): = g1 ' (a; +1)e,
V10 = g7t (by—m@)e, y,0): = g7 * (b, + )2,
P11 (): = min {t/({() +1), ¢/ (m(D)+1)},

P12 (®): = t/(1 @)+ t)— P11 (©),

p21(®):=t/m (t).+t)—P11 ®,

P22 (¢t): = min {{@)/(1(©)+1), m@)/(m(©)+1)}

have all the desired properties.
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Case 2. Suppose f(a,) = a,(ie. g1 ' (a;) = g7 * (a,)), f(by) < b,. Then we

determine (X,, Y}) by the equalities
Pr {Xz = 91_1 (al)’ Y; =¥ (t)} = t/(m(t)+t)9
Pr {Xt = gfl (ay), ;= yz(t)} = m(t)/(m(t)+t)-

Case 3. The cases (f(a,) < a,,f (b)) =b,), (fla,) =a,,f(b;) =b,) are

considered in the same way as in Case 2.
- (i) and (iii) are proved by the analogous arguments, qed

COROLLARY 2. Let a;20, b;>0, a,+a, >0, b,+b, >0, al/® < al/®
b%/lil < bé/lh_

() If 1<q,<p<gq,, then
(3:21) 7 I(p,q44,955 @1,by,a5,b)) = I1(p,qy; ay,by) = (ai/® —bi' ).

(i) I[f 0 <p<q,, 1 <4qy <4y, then
(322)  S(p,dy.dy; 81,by,8.b5) = S(p,4y; ay,by) = (al@ +bYay.

(iii) If 0 < q; < q, < p and a}/® = a}/%? or b}/ = bi/%2, then

S(P.41,-92; a1,by,a,5,b,) = S(p.qy; a,,b;) = o0
Corollary 2 describes situations in which the “additional moment infor-
mation” a, = E||X||*?, b, = E||Y||** does not affect the bounds
I1(p,q:,95; a1,by,a,5,b5) = 1(p,4y,4,,a,),
S(P qlaqza alsblaaza ) S(p ‘115‘11,‘12)

(and likewise Theorem 2).
We conclude this section by giving the explicit solution of the following
moment problem: determine the extremal values

(3.23) I = [(p,4:,45, 94, 4,): = inf {E|| X|I?: EIX|[** = ay, EIX||** = a,},
(3.24) §: = S(p, 41,92, 1, 0): = sup {E|X|": E||X||"* = a,, E||X||** = a,}
for all p=20, 0<q, <q,. ' :

THEOREM 3. Let p 20, 0<gq, <q, Then

(a(lllz—P)/(qz—qﬂ .
afi—PI@=ay f0<p<4q;<g,
a&p—ql)/(qz—tn)

f— J a(lp—llz)/(qz—fu) lf 0< 91 <42 <P,
atla if0<q,<p<gq, or a1"“ = a”qz 0< 91 <y
a; ifp=q,i=10r2,

L0 fO0=gq, <p<gq,
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and

ra(lqrp)/(qz—qx)
a1~ Plaz=a1) if0<q,<p<q,, q <q,,

af® f0<p<g,<gq, 0r0=p<ql<q2
§ =< or ail™ =g}/, 0<gq, <gq,,
a; fp=gq;,i=1or 2,
o0 if0<q,<q,<p, at/" #aj®,
& e i p=0,0<g, <q, or a}/s = ajm,

Proof. If aj/® = ai/®, then it is 'easy to see that || X|| =al/? with
probability- 1. -Hence,

(3.25) I=8=at ifp<0,0<q, <q,, alt =gl

Further, suppose that a{/® s aj/®>. For any r > 1 and any real-valued
& and g ' ‘ o

(3.26) E|n| < (EIEr)Y (Epplrte = Dy =i

by the Holder’s inequality. , :
Let 0 <7y <1, <rs,r = (r3—1frs =), & = X405~y — | X]poa=rites=ra)

Then, by (3.26), . _
(B2 EIXIP < (BIX|P e B Xy,
Taking r, = p, r, = q,, ry = q, in (3.37), we obtain
(3:28) E|IX|[* < (E[[X][7)e2= 900D (B X [eas -z =),
which implies, for .0 <q, < qz,‘
(3.29) f} a(lqz—p)/(qz—qx) a(f—qx)/(qz—qx)_
| Taking r, = q,, r, =q,, r% = p in (3.7), we obtain v
(3.30) I'> ap~wla=a0 gp-adia-a)  for g < g, < p.
Finally, putting r, = q,, r, = p, r, = g, in (327), we have
(331) § < afppplama) gp=adie=a)  for g < p<g,.
The “optimal” rv X* (for all inequalities (3.29)«3.31) and p # 0) is given by
Pr{X* = a}/@~a ] Uiaz-arg) — ;lti;/(Qz—ql)az-qxl(qz—ql): = b,

Pr{X* =0} = 1—b.
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Thus the equalities
: (a2—p)az—a1) ;= (@1 —p)(a2—q1) i
- aff as f0<p<gq,<4qg,,
(332 = ten
a(f_(Il)/(QZ_‘II) ar (p—4q2)/(a2 —q1) if 0 < q, < qz‘ <p,
(3.33) §= a(lqz-p)/(qz—zn)a(f—qx)/(qz“tn). if 0 < 4, <p < q,
and the inequality _
(3:34) [ g gppl@z— gznla2=40  if p=0, g, <gq,

are claimed.
Further, Ljapunov’s inequality implies

(335 I>at4 for q,<p
and _ -
(3.36)  §<atm for p<a,.
Thus, it is safficient to determine a sequence of rv’s {X,},»,, such that
(3.37) E|X)*=a,, E|X)?=a,, lmE|X]|’= ajln,
: t- o

Now we can use the claim in the proof of Theorem 2 with f () = ta2/as
c;=a;(i=1,2) and define the sequence {X,}i>e by

(3.38) Pr{X, = (a,—k()""&} = - (t;H,
63 Pr{X, = (a, +H)&} = k’:g)ﬁ
where k(t) satisfies (3.13)—(3.1A6). By (3.35H3.37), it follows that
- (3.40) f=at if0<q,<p<qy
- (3.41) S=atlr f0<p<q,<q,-
If p > q,, then the sequence {X,}, ¢ > 0, has the property lim E||X]” = oo.
So; - - o |
(3.42) | S—w if0<gq,<q,<p.
Putting r = r,/r,, £ = || X|I"* and n=1{X #0} in (3.6), we obtain

(343) E|IX|I" < (E|IX|l2y = (Pr{X # O})r2=ror.
" Taking r, =¢q, and r, = q,, We get I
(344) . f; a‘iz/(qz—th)az'ln/(n—th) for 0=p< q, < g5
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By (3.34) and (3.43),
(3.45) ['=aple-ag,~af@2-a)  for 0 =p < q, <q,.
Analogously, letting r, = p aﬁd r, =g, in (3.43), we get
 (3.46) §<apPegge  if 0=g, <gq, <p.
Also (3.3) with r, = qz,lr2 =p impﬁes
347 . ... > aB2qp-®a2 if 0 =gq, < g, <p.
,The_ “optimal” rv X* for the last two cases is given by
Pr {X* - (5—2)”‘"} —a, Pr{X*=0}=1-a
Thus, o . .
(348) §=apPhgge o agug-oe  if 0=q, <q, <p.
Further, the sequence {X,}, i, defined by
Pr{X, = (na,—1)"%2e} = 1/n,
Pr{X,=(na,—1)"'""¢} =a,—1/n, Pr{X, - 0} =1-—aqa,
possesses the properties:

Pr{X,#0}=a,, E|X,"=a,,

"iirr:o E|X, |17 = {80 ﬁ Zz<<qu
Hence,
(3.49) ' §=oo if0>=ql<‘12<P’
(3.50) =0 f0=g,<p<4q,

Finally, if p = g;, then
(3.51) : f=8§=a, i=1,2.

Summarizing (3.32), (3.33), (3.40)<3.42), (3.45), and (3.48)(3.51) we obtain
the desired explicit representations for I and §

4. General remarks. Combining Theorems A and 1 we obtain the following
prec1se estimates of the extremal functionals Z,(P,Q) (P, Qe?(U)) and
Z4(P,0) (see Theorem A) in terms of the moments:

(41 ca=[gx)P@dx), b=/{g(x)Q(dx).
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THEOREM 4. Let (U, |||)) be a separabie normed space and He # (see (1.7)). .
(i) If A(H,g) and B(g)- hold, then

(‘_1-2) Zy(P,Q) = H(g *(@)—g ' B)).
(i) If B(g) and E(H,g) hold, then N
4.3) Z.(P,Q) < H(g (@) +g1 (b).

Moreover, there exist P, Q;eZ?(U), i=1,2, with
a=[g()P;(dx), b=/[g(x)Q:dx),
U U

such that Z4(P,,0,) = Hg™* @ —g™ ' ) and L(P,,0) = Hg  (@+g~" ().
The following theorem is an extension for p=4¢ =1 of Theorem 1 to
a non-normed space U such as the Skorokhod space D[0,1], which is of
special interest in probability and statistics (see [3]).
THEOREM 5. Let (U, d) be a separable metric space, % = % (U) the space of all
U-valued rv's, ucU, a >0, b > 0. Assume that there exists a ze U such that
d(z,u) > max(a,b). Then '

(@44 min{Ed(X,Y):X,Ye%, Ed(X,w) = a, Ed(Y,u) = b} = la—b|
and ‘
@45 max{Ed(X,Y):X,YeZ, Ed(X,u)=a, Ed(Y,u)=b} = a+b.

Proof. Let a < b, y = d(z,u). By the triangle inequality the minimum in
(4.4) is greater than b—a. On the other hand, if Pr(X =u, Y=u)=1-b/y,
Pr(X=u,Y=2)=(b—a)y, Pr(Z=z2,Y=u)=0, Pr(X =z Y=2z)=afy,
then Ed(X,u) = a, Ed(Y,u) = b, Ed(X,Y) = b—a, which proves (4.4). Analo-
gously, one shows (4.5). _ '

We conclude by stating explicitly the following open problems.

(i) Find the explicit expression of 1(a,q,,4,; a,,b,,a,,b,) and S(p,4,,4,;
a;,by,a,,b,)forallp =20, q, >0, g, > 0(see (3.4), Corollary 2 and Theorem 3).

One could start with the following one-dimensional version of (i). Let
9;:[0,00)—>R(i = 1,2) and h: R— R be given continuous functions with h sym-
metric and strictly increasing on [0, o0). Let further X and Y be nonnegative
random variables having given moments a; = Eg;(x) and b, = Eg,(Y),i = 1,2.
"~ The problem is to evaluate.

@5 - I=infER(X-Y), S=supEh(X+Y).

If desired, one could think of X = X () and Y= Y (t) as functions on the
_ unit interval (with Lebesque measure), see [9], Chapter 3, and [17].
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The five moments a,, a,, b,, b, and Eh(X + Y) depend only on the joint
distribution of the pair (X, Y), and the extremal values in (4.5) are realized by
a probability measure supported by 6 points (see [17], Theorem 1, [9], Chapter
3, and [12]). Thus the problem can also be formulated as a nonlinear
progamming problem to find

6 6
=inf ) p;h(u;—v), S=sup Y ph(u;—v),

i=1 i=1
subject-to - .
PR _
p;=0, ) pj=1,u4;20,v,20, j=1,...,6,
i=1
Y pjg:(u) = a;, Z p;g:v)=b;, i=1,2.
i=1 i=1

Such a problem becomes s1mpler when the functions g, and hon R, are
convex (see, for example, [9], Chapter XIV).

(i) Find the explicit solutions of moment problems wzth one fixed pair of
marginal moments for rv’s with values in a separable metric space U. (See
‘Theorem 5).

Note that in the case where U is a normed space, the moment problem was
easily reduced to the one-dimensional moment problem (U = R). This is no
longer possible for general (non-normed) spaces U rendering the moment
problem (ii) quite different for that considered in Sections 2 and 3.
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