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Abstract. The moment problems minimizing (maximizing) 
(EIIX, -X211P: EllX,ll*~ = ai,; i = I ,  2, j = 1 ,  ... , m), where X, takes 
values in a separable norm space, are investigated. Explicit solutions 
when n = 1 are given for all p 3 0 and qi 3 0 (0°: = 0). If n = 2, the 
minimization problem is soIved for 1 6 g, < p < q, and the maximi- 
zation problem for 0 < p < q, ,  1 < q ,  < q, or 0 < q, < q, < p. Pos- 
sible generalizations and open problems are presented. 

1. Intrduction. In probability theory the following two measure theoretic 
problems are well known (see e.g. [6], [ lo] ,  [12]-1141, 1181 and references 
there) : 

A. Marginal problem. For $xed probability measures (laws) PI and Pz on 
a measurable space U  and a measurable function c on the product space 
U Z = U x U  

(1.1) minimize (maximize) 1 c ( x ,  y) P (dx, dy), . 
u= 

where the laws P on U2 have marginals PI and P i ,  i.e. 

B. Moment problem. For fixed real numbers aij and real-valued continuous 
functi~nsf;:~ ( i =  1, 2 ;  j =  1 ,  ... , n) 

(1.3) minimize (maximize) j c ( x ,  y) P (dx, dy), 
U2 

where the law P on U2 satiSfies the marginal moment conditions 
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i 

t 
Dual relationships and explicit solutions of the marginal problem for 

different spaces U and criterion functions c are given in [4-61, [lo], [13-151, 
and [18]. 

In citing some results concerning duality and explicit solutions of A, we 
shall use the following notation: 

I 

(1-5) ( U ,  d )  is a separable metric space with metric d; 

(1.6) 9 ( U k )  is the space of all Bore1 probability measures on the 
Cartesian product Uk; 

- - 
(1.7) X is the class of all convex functions 

H:[O,m)+[O,co), H ( O ) = O ,  KH:=supH(2t)/H(t)<m; 
t 3 O  

(1.10) L i p ( U ) : = ( f : U + R , s u p I f ( x ) l < ~ , ~ ~ ( f ) > o : I f ( x ) - f ( v ) l  
xeU 

<u(f)d(x,y)  for all x, ~ E U ) ;  

(1.12) gR: = {( f, g): f, g)ELip(U), f (4 2 0 ,  g ( y )  2 01 f ( x ) + g ( y )  

> , D ( x , y ) , x ,  Y E U ) .  

THEOREM A. (i) (Duality solutions of A). Let ( U ,  d )  be a separable metric 
space H E X ,  PI, P2 E pH. Then 

and 

(1.14) ~H(~l,P2):=sup{~D(x,y)P(dx,dy):~~4p(~2),.n,P=Pi,i=1,2) 
U2 

= inf{l f dP1 + jgdP, : (  f, g ) ~ @ , } .  
U U 

(ii) (Explicit solutions of A). If (U, d) = (R, 1.1) and H is a conuex function, 
then 

(I) gH does not depend on a€ U for any HE&'. 
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1 

(1.16) =%(PI, f'z) = p ( K 1 ( t ) ,  Fil(l-t))dt,  
0 

where F, is the distribution function corresponding to P j  and FY1 is its 
inverse, j = 1, 2. 

Indica t ion .  (i) see Rachev [IS]. (ii) see Cambanis, Simons and Stout [5 ] .  
Kellerer [lo] provides duality solutions of A for general c; however, in case 

c = D, his dual solutions are not as sharp as these in (i). 
The possible solutions of the marginal problems are related to the dual and 

explicit expressions for the so-called minimal metrics (see [21, 221) and maximal 
distances (see [15]) that are fruitful in the development of a considerable range 
of stability problems for stochastic models (see [22] and [14]). 

Owing to the number of its important applications (see [I, 21, [&9], [ll, , 
121, and [I91 the moment problem can also be treated as an approximation of 
the marginal problem. Indeed, if the laws PI and P ,  (see (1.2)) are not 
determined completely and if only some functionals of PI and P ,  arc given (see 
(1.4)), then one has to solve the problem B instead of A. The significance of the 
moment problem for the theory of probability metrics was also stressed by 
Sholpo [20] and Rachev [IS]. 

General dual representations of moment problems on a compact space 
U are given in [6, 11, 121. In a more general case of a completely regular 
topological space U, dual expressions are given in 1121 under a "tightness" 
condition on the pairs (A,  aG), i = 1, 2, j = 1,  . . . , n. 

The present paper is devoted to the explicit solutions of some moment 
problems on separable metric space U with metric d. In this case, considering 
a "rich enough" probability space (0, d, Pr) without atoms and the space 
% = T ( U )  of all U-valued random variables (rv's) X on (Q, d ,  Pr) one can 
rewrite the moment problem B as follows: 

(1.17) minimize (maximize) fEc(X,,X,):E&(XJ=aij ,  

i = l 1 2 ,  j = l , 2  ,... , n ) .  

In fact, the above assumptions guarantee that the set of all Borel 
probability measures on U2 coincides with the set of all joint distributions 

of pairs of rv's X ,  Y (see [16]). The main reason for considering not 
arbitrary but separable space (U, 6) is that we need the measurabilib of d. For 
example, if c(x, y) = d(x, y)  in (1.5) and (U, d) is a metric space of car- 
dinality > 6, then the metric d: U x U -, R is not measurable with respect to 
the product a-algebra B(U) x B ( U )  ($(U) is the Borel a-algebra on (U, d)), 
see [3]. 

In Section 2 explicit solutions are given for the problem (1.17) in the case 
where n = 1, U is a separable norm space with norm II-I[ and 
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In particular, for any p 2 0 .  and q. 2 0 we solve (1.17) with 

(Here and in the sequel O0 means 0). 
In Section 3 we assume that U is again separable norm space but n 3 2. In 

this case, among other results, explicit solutions are given for the moment 
problem (1.17) with 

for 1 < q, < p < qiwhen minimizing in [1.17], and for 0 < p d q,, 1 < q, < q, 
or 0 < q ,  < q,  < p when maximizing in (1.17). Here, we also give the explicit 
solution of the well known moment problem: 

A -  

(1.21) minimize (maximize) {EI[XIIP:EIIX~\~~ = a,, i = 1, 2,) 

for all nonnegative p, q,  and q,. 
In Section 4 we apply the results of Section 3 to obtain precise bounds for 

pH ( P ~ ,  P 2 )  and P,(P,, P,) when the moments J llxllq Pi(dx)  (i = 1, 2) are 
fixed. Some open problems are offered. 

2. Moment problems wiih one fixed pair of marginal moments. Let U be 
a separable norm space with norm I I - I I  and A be the class d all strictly 
increasing continuous functionsf: [ O ,  co] + LO, a], f (0) = 0, f (a) = m. In the 
present section we treat the explicit representations of the following extremal 
functionals : 

(2.1) Ith, g; a, b): = inf(Eh(IIX- VI): X, Y€X(U), EgtllXII) = a, Eg(llYII) = b)? 

where a > 0, b > 0, h EM, g~ A+'. In particular, for all p > 0, q >, 0 the values 

(2.23) I ( p ,  q; a,  b): = I(h, g; a, b)(h(t) = tP, g(t) = tq), 

are calculated. Note that here and in the sequal E((X- YII0 means Pr (X # Y). 
The scheme of the proofs of a11 statements here is as follows: first we prove 

the necessary inequalities that give us the required bounds and then we 
construct pairs of random variables which achieve the bounds or approximate . 
them with arbitrary precision. 

Let f, f,, f, E A  and consider the following conditions (here and in the 
sequel f -' is the inverse function off €A): 

A ( f, , f,): f, 0 f; (t) (t-$0) is convex; - 

Blf ):f -'pf QlX+ rll)) G f  - l (E f  (llXll))+f - l (Ef  (Ilrlll) for any X ,  Y E S ;  
C(f  ):Ef (llx+yll) G E f  (llXlI)+Ef (IlYll) for any X, Y c X ;  
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Wf13 f2): lim (fl(f)/f,(O) = 0; 
t - m  - E ( f,, fi): f1 o f2 (t) (t 2 0) is concave; 

F (fl, f2): fl ib concave and f, is convex; 
G(f17f2): (flItMfz(t)) = a- 

t +  m 

Obviously, if h(t) = tP, g (t) = tq Ip > 0, q > O), then A(h, g) e p  B q, 

B@)*q 2 1, C ( g ) ~ q  G 1, D(h,g)eq > P, E(kg1-q 3 P, J'lh,'g)-p 6 1 < q, 
G(h,g)ep > q, and hence conditions A-G cover a l l  possible values of the pairs (p, q). 

In the next theorem we establish explicit solutions of the moment problem 
(1.17) upder conditions--(l.l8) and combinations of requirements A-G on 
h and g. 

T H ~ F L E M  1. Let a 2 0 and b 2 0, a +  b > 0. 
(i) We have - 

(2.5) I(h,g; a, b) = hog-l(la-PI) if A(h,g) and C(g) hold, 1 
(ii) For any u E U, h E A and g E A we have 

( 2 . 7 ) i n f { E h ( I I ~ - Y I ~ ) : P r { X # u } = a , ~ P r f Y # u ) = b ) = O  (a ,b~[O,l]) .  

(iii) We have 

fh(g-l(a)+g-l(b)) if F(h,g) holds or if 8 0  and E(h,g) hold, 

(28) S(h,g; a,b) = { hog-'(ct+B) if C(q) and E(h,g) hold, 

(iv) For any U E U ,  ~ E A ,  ~ E A .  

(2.9) sup(Pr(X # Yy):Eg(llxll)=a, Es(llYII)=b) = 1, 

(2.10) sup{Pr{X#Y) :Pr{X#u)=a ,Pr{Y#u)=b)  
- .  . =min(a+b,l)  (a,b~[O,l]) ,  

(2.11) sup{Eh([lX-Ylj):Pr(X#u)=a,Pr{X#u)=b)=co. 

Proof .  (i) Case 1. Let A(h,g) and B(g) be fulfilled. Write 

q(a,b): = h(Ig-'(a)-g-'(b)l), a 2 0, b 2 0. 

Cla im 1. I(h,g;a,b) 2 rp(a,b) B~ the Jensen's inequality and A(h,g) 
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Taking Z = g(l[X- YII). and using B(g) we obtain 

for any X ,  YE%, which proves the claim. 
Claim 2. There exists an "optimal" pair (X*, Y*) of rvJs such that 

Eg(llX*ll) = a,  Eg(llY*ll) = b y  E(JIX*- Y*[l) = q ( a J  b). Let E here and in the 

a *  
sequel be a hxed point of U with IIElI = 1. Then the required pair (X* ,  Y*) is 
given by 

(2.13) -. 
X* = g-I (ale, Y* = g - l ( b ) P ,  

which proves the claim. 
Case 2. Let A(h,g) and C ( g )  be fulfilled. Write rp, (t): = hog-' (t), t 2 0. As 

in Claim 1 we get I (h, y; a ,  b) 2 c p ,  (la - bl). Suppose that a > b and for each 
E > 0 define a pair (X,, 5) of rv's as follows: 

here 

a-b 
(2.14) 0: = Oe, p,: = --- , c,: = g-I (a-b-t-E), d,: = g-I 

a - b f e  

Then (X,, YJ enjoys the side conditions in (2.1) and 

a-b 
Eh(llX,- KII) = rp, ( a - b f e )  a - b e '  

Letting E+O we claim (2.5). 
Case 3. (i) Let D ( h , g )  be fulfilled. In order to obtain (2.5) it is sufficient to 

define a sequence (X,, Y,), n 2 N, such that 

An example of such a sequence is the following one: 

Pr(X, = 0,  Y, = 0) = 1-c,-d,, 
- - Pr (X, = nae, Y, = 0) = c,, Pr (X, = 0,  Y, = n b ~ ]  = d,, 

where c, = a/g (na), d, = b/g (nb) and N satisfies c, + d, < 1. 
(ii) Define the sequence (X,, Y,), n = 2,  3 , .  .. , such that 

Hence, Eg (llX,ll) = a, Eg (llY,II) = b and Pr ( X ,  # YJ = l /n which shows (2.6). 
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Further suppose a >, b. Without loss of generality we may assume that 
u = 0. Then consider the random pair (z,, <) with the following joint 
distribution: 

-. 
Obviously, (gn, K) .satisfies the side conditions 

~ r ( ~ # O ) = a , ~ r ( ~ # O ) = b ,  and lirnEh(l[X,-&JI)=0, 
n d  m 

which proves (2.7). 
The proofs of (iii) and (iv) are quite analogous to those of (i) and (ii) 

respectively, q.e.d. 
Note that if A ( h , g )  and B(g) hold we have constructed an optimal pair 

(X*, Y*) (see (2.1311, i.e. (X*, Y*) realizes the infimum in (2.1). However, if 
D (h, g) holds and a # b, then optimal pairs do not exist, because E k (((X - Ill) = 0 
implies a = b. 

COROLLARY 1. FOP any a 2 0 ,  b>O, a + b > , O ,  p 2 0 ,  q > O ,  

Remark. Obviously, if q = 0 in (2.15) or (2.16), the values of I and S make 
sense for a, b E [0, I]. 

3. Moment problems with two f i e d  pairs of marginal moments. The main 
part of this section is devoted to the explicit description of the bounds 

(3.1) I(k9g1,g2; a,, b,, a,,b,): = infEh(llX- YII), 

where h , g , , g , ~ A ,  and the infimum in (3.1) and the supremum in (3.2) are 
taken over the set of all pairs of rv's X, YE%(U) satisfying the moment 
conditions 
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In particular, if h( t )  = tP, g,(t) = P, i = 1 ,2  ( P  2 0 ,  q 2  > q~ 2 01, we write 

(3.4) I(p,q,,  q2; a,, bl,a2,b;): = g1,gz; alYb1,a2,b2), 

The moment problem with two pairs of marginal conditions in considerab- 
ly more complicated and, in the present section, our results are not as complete 
as in the previous one. 

THEOREM 2. Lei the conditions A(g,,g,) and G(g,, g,) hold. Let lai B 0, 
b i 2 0 ,  i =  1,2, a1+a2 > O ,  bl+b2 > 0 and 

(i) If A{h,  g , ) ,  3 (g,) and 3 (k, g,) are fulJilled, then 

(3.7) I(h,g,,  g,; al,bl,a,,b2) = I (h ,g l ;  a,,b,) = h(lgll(al)-g;l(bl) l) .  

(ii) Let D (h ,  g,) be fulfilled. If  F (h,  g )  holds or if B (g) and E (h ,  g )  hold, then 

I (3.8) S ~ h , g , , g , ; a , , b . , , a , , b , ) = ~ ( ~ , ~ l ; a l , b ~ ~ = h ( ~ ~ 1 ~ ~ ~ ~ + ~ ~ 1 ~ b ~ ) ) -  
, (iii) I f  G(h ,  g,) is fuplled and g; l (a,) # g; ' (a,) or g; ' # g, l (b2), then 

(3.9) S(h,gl ,g2; a,,b,,a27b2) = S ( h , g ~ ;  a17b1) = m. 
t 

Proof.  By Theorem 1 (i) we have 

(3.10) I (h7g l7gz ;  a,, b,,a,,b,) 2 W,g , ,a , ,b , )  = da13b1)- 

Further we shall define an appropriate sequence of rv's (X,, x) that satisfy 
the side conditions (3.3) and 

lim Ek(llX,- XI0 = (P ta,, b, ) .  
t - m  

Let f  ( x )  = g,og,-l (x). Then, by the Jensen's inequality and A(g,, g,), 

(3.1 1) f (a,) = f ( 0 1  (IIXII)) G E f o g ~  (IIxII) = a2 

as well as f (b,) < b,. Moreover, lim (f (t)/t) = ao by G (g,  , 9,). 
t + m  

Case 1. Suppose that f  (a,) < a,, f (b,) < b,. 
CLAIM. I f  the functions f~ A and the reals c,, c, possess the properties 

then there exist a positive to and a function k(t),  t  2 to, such that, for any 
t 2 to,  

(3.13) 0  < k ( t )  < c,, 
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and 

Indeed, let us take such to that f ( c ,  + t)/(c, +t)  > c,/c,, t 3 to, and consider 
the equation F ( t ,  x)  = c,, where 

F(tyx): = f (c,-x)t/(x+t)+ f (el+ t)x/(x+t). 

For each t 2 b ,  we have F(t ,  c,) > c,, F (t, 0) = f (c,) < c,. Hence, for each 
t 2 to there exists such an x = k( t )  that k (t)  ~(0, c l )  and F(t ,  k (t)) = c,, which 
provides (3.13) and (3.14). Further, (3.14) implies (3.15) as well as (3.13) and 
(3.15) imply (3.16). The claim is established. 

From the claim we see that there exist to > 0 and functions E(t) and m(t) 
t g E,, such that for .all t > to we have 

(3.17) 0 < l( t)  < a,, 0 < m(t)  < b , ,  

(3.18) tf(.l-j(t))+l(t)f(al+f)=a,(l(t)+t), 

(3.1 9)  t f ( b l  -m(t))+m(t)f  (bl +t) = b,(m(t)+t), 

(3.20) Iim E(t) = 0 ,  lim m(t) = 0. 
t - r m  t +  m 

By (3.17H3.20) and the conditions A (h, g,), D (h, g,) and G ( g , ,  g ,) one can 
easily check that the rv's (X,, x), t > to, determined b y  the equalities 

where 

p 2 1 ( 4 :  = t l ( N t ) f  t ) - -Pl l ( t ) ,  

P z z  (t): = { E  (tll(i ( t )  + t), m (t)l(m ( t )  + t ) )  

have all the desired properties. 



306 I. Kuznezova-Sholpo  and S. T. R a c h e v  

Case 2. Suppose f (a,) = a,(i.e. g l l  (a,) = s;' (a,)), f (b,) < b,. Then we 
determine (X, ,  E;) by the equalities 

Case 3. The cases (f (a l )  < a,, f (b,) = b,), (f (a,) = a,, f (b,) = b,) are 
considered in the same way as in Case 2. 

. (ii) and (iii) are proved by the analogous arguments, q.e.d. 
COROLLARY 2. . k t  a, 2 0, b, 2 0, al +aa > 0, b1 -k b2-< 0, a:"' < a:''" 

b:/9" < bt/42, 

(i) If 1 < q, 4 P < 42, then 

(ii) If 0 < p < q , ,  1 < q l  < q 2 ,  then 
1 / 4 1  P a  (3.22) S(p,q,,q,; a,,bl,a2, b,) = SIp,ql;  a l ,b l )  = (d141+b1 ) 

I (iii) If 0 < q, < q ,  < p and 4 / 4 '  = aiiqz or b:lq1 = bi/qz, then 

Corollary 2 describes situations in which the "additional moment infor- 
mation'' a, = EllX1]q2, b,  = EllY1142 does not affect the bounds 

S(P,ql,q2; al,bl,a2,b2) = S ( ~ , q l , a l , a 2 )  

(and likewise Theorem 2). 
We conclude this section by giving the explicit solution of the following 

moment problem: determine the extremal values 

(3.23) 1": = T(p,ql ,q2,a, ,  a,): = inf(EIIXIIP:EllXllql = a,, EllX11q2 = a,), 

(3.24) f: = $~"dp, q,, q,,al,a2): = sup {EIIXIIP:E11x1Iq1 = a l ,  EllXllq2 = a2) 

for all p > 0, 0 < ql d q 2 .  
THEOREM 3. k t  p 2 0 ,  0 < ql < q2. Then 

i f O < p < q l < q , ,  

I a t ~ - 4 1 ) 1 ( 4 2 - 4 1 )  
2 
( -42)/(42-41) i f o < q l  < q , < p ,  f= a? 

aPI4 1 
1 $ 0  < q ,  < p  < q, or aiiql = ailq2, 0 < q1 <q2,  

" i  i f p  = q,, i = 1 br 2, 
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and 

i f p = q i ,  i =  1 or 2, 

[ ': $ 0  < q, < 9,  < p, a:/ql + ~ : j 4 ~ ,  

.. . if p = 0 ,  0 < q ,  < q,  or a:/ql = a;/q2. 

Proof.  If a:1q1 = a11q2, then it i s  easy to see that llXll = a:/ql with 
probability I .  Hence, 

(3.25) 
M - 
I = S = afial if p < 0,O < ql < q,, a:/ql = a:/qz. 

Further, suppose that attq1 # For any r > 1 and any real-valued 
t and ? 

by the Holder's inequality. 
Let 0 c rl < r2 < r3, r = (r3-rl)/(r3-rd, { = llXtrh-*-rl) , ? = pq3(~-rl~(n-rd 

Then, by (3.26), 

(3.27) ~llXllr2 6 ( ~ I I X I I ~ I ) ~ ~ ~  -rz)I(r3 - r l )  (EllXll)n)(r2 -r1)/(?3 -r2) 

Taking r1 = p, r, = q,, r ,  = q,  in (3.37), we obtain 

(3.28) EllXl14t < (EllX/lP)(q2-q1)I(q2-p) ( ~ 1  I X ~ I ~ Z ) ( ~ I  - P ) / ( ~ z  - P I  

which implies, for 0 < q ,  < q,, 

(3.29) 1" > a\9z-~)/(92-41) a$ ( -41)/(92-41).  

Taking r ,  = q,, r ,  =q, ,  r ,  = p in (3.7), we obtain 

(3.30) f2 a ~ - g l ) / t q z - q l )  a4  ( -4z ) / (q2-41)  for q 1  < qz < P- 
Finally, putting r ,  = q , ,  r ,  = p, r ,  = q,  in (3.27), we have 

(3.31) f < a\q2 - P ) / ( ~ z - ~ I )  a$ ( - q ~ ) / ( q z - q ~ )  for q1 < p < q z -  

The "optimal" rv X* (for all inequalities (3.29H3.31) and p # 0) is given by 

pr {X* = a i / ( 4 2 - 9 1 )  a;1/(92-41)~} = a p 3 / ( 4 2 - 4 1 ) a ; 4 ~ / ( 4 ~ - 4 t ) .  = b 

PriX* = 0)  = l -b .  
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Thus the equalities 

and the inequality 

(3,34) j'< ap/(~~-q~l a lq l I (qz -4 i )  if p = 0, ql  < q, 

are claimed. 
Further, Ljapunov's inequality implies 

(3.35) f a a f f q i  for q , < p  

and 

(3.36) f<af"J1 for p < q , .  

Thus, it is sufficient to determine a sequence of rv's (X,), ,, such that 

(3.37) EIIX,114L = a,, EIIXtllq2 = a2, lim EllXJIP = a{l4', 
t + m  

Now we can use the claim in the proof of Theorem 2 with f (t) = tq2/q1, 
ci = ai(i = 1,2) and define the sequenoe (X,), ,, by 

Pr {X, = (a, - k (t))lhl 2) = k(t)+t7 

k (0 Pr (x, = (a, + t)l/ql,-) = - 
k(t)+t7 

where k(t) satisfies (3.13H3.16). By (3.35H3.373, it follows that 

(3.41) S"= aflql if 0 < p < q l  < q,. 

If p > q,, then the sequence {X,), t 2 0, has the property lirn kIIXtIIp = m.  
I -  m 

so, - 
(3.42) S = c a  if O < q , < q , < p .  

Putting r = r,/r, ,  5 = IIXIIm and q = I (X # 0) in (3.6), we obtain 

(3.43) EIIXIIn < (Ell~1['~)'~/'~ (Pr (X # O))('1-'i)1'2. 

Taking r, = q ,  and r ,  = q,, we get 

(3.44) f 2  Q72/(42-q1) 2 )  for 0 = p < ql < q2. a2 
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- By (3.34) and (3.43), 
- 

(3.45) ~ = ~ q z / ( s z - q r )  a2 - ~ I / ( ~ z - ~ I I  for ~ = j < ~ ~ < ~ ~ *  

Analogously, letting r, = p and r2 = q, in (3.43), we get 

(3.46) $<a(142-~)/42 a2 Plq2 if O = q 1 < q 2 < p ,  

Also (3.3) with r ,  = q,, r ,  = p implies 

(3.47)- - 1"> 45/42  a!.p-42)/42 if 0 = ql < q2 < p .  

The 'bptimal" rv X*" for the last two cases is given by 

Thus, 

(3.48) $ = a(P2-~)142  a5/42, r= a5j42 121(p-42)14z if 0 = ql < q2 < p. 

Further, the sequence {X,), , defined by 

Pr {X, = (w, - = l/n, 

P r ' { X , = ( n a a - l ) - l ~ ~ ~ ~ } = a l - l / n ,  Pr{X,=8)=1-a ,  

possesses the properties: 

Pr {X, # 0) = a,, EIJX,JIq2 = a,, 

Hence, 
- 

(3 -49) S = m  if O = q , < q , < p ,  - 

(3.50) I "=o  i € O = q , < p < q , .  

Finally, i€ p = q,, then 
- - 

(3.5 1) I = S = a i ,  i = l , 2 .  
- - -  _. 

Summarizing (3.32), (3.33), (3.40)-(3.42), (3.43, and (3.48H3.51) we obtain 
the desired explicit representations for I" and f. 

4. General remarks. Combining Theorems A and 1 we obtain the following 
precise estimates of the extremaI functionals pH (P, Q) ( P ,  Q E 9' (U) )  and 
p,(P,  Q) (see Theorem A) in terms of the moments: 
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! 
THEOREM 4. kt (U, II-II) be a separabie norrned space and HE A@ (see (1.7)). , 
(i) If A ( H , g )  and B(g) hold, then 

(ii) If B (g) and E ( H , q )  hold, then 

Moreover, there exist Pi, Qi E P (U), i = 1,2, with 

a-=-Sg(~)Pi(dx), b=fg(x)QiIdx)> 
U U 

such that & H ( ~ l , ~ , )  = H(lg-l(a)-g-l(b)l) and PH(p, ,Q,)  = H@-l(a)+g-'(b)). 
The following theorem is an extension for p = q = 1 of Theorem 1 to 

a non-normed space U such as the Skorokhod space D [O,l], which is of 
special interest in probability and statistics (see [3]). 

THEOREM 5 .  k t  (U, d) be a separable metric space, 22" = 3 (U) the space of all 
U-valued rv's, er E U, a 2 0, b 2 0. Assume that there exists a z E U such that 
d (2, u) 2 max (a, 6). Then 

and 

Proof.  Let a < b, y = d (z, u). By the triangle inequ'ality the minimum in 
(4.4) is greater than b-a. On the other hand, if Pr(X = u, Y= u) = 1 -b/y, 
P r ( X = u ,  Y=z) =(b-a)/y, P r ( Z = z ,  Y=u)=O, P r ( X = z ,  Y= z)=  a/y, 
then E d  (X, u) = a, E d(Y, u) = b, Ed  (X, Y) = b - a, which proves (4.4). Analo- 
gously, one shows (4.5). 

We conclude by stating explicitly the following open problems. 

(i) Find the explicit expression of I(a,q,,q,; a,,b,,a,,b,) and S(p,q,,q,; 
a,, b,, a,, b,) for all p 2 0, q, > 0, q ,  2 0 (see (3.4), Corollary 2 and Theorem 3). 

One could start with the following one-dimensional version of (i). Let 
gi: [0, ao) + R (i = 1,2) and h: R + R be given continuous functions with h sym- 
metric and strictly increasing on [0, a ) .  Let further X and Y be nonnegative 
random variables having given moments ai = E gi (x) and bi = E g, (Y), i = 1,2. 

The problem is to evaluate. 

If desired, one could think of X = X(t) and Y= Y( t )  as functions on the 
unit interval (with Lebesque measure), see [9], Chapter 3, and 1171. 
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The five moments a,, a,, b,, b ,  and E h(X f Y) depend only on the joint 
distribution of the pair (X, Y), and the extremal values in (4.5) are realized by 
a probability measure supported by 6 points (see [17], Theorem 1, E91, Chapter 
3, and [12]). Thus the problem can also be formulated as a nonlinear 
progamming problem to find 

I = inf pj h (uj- v j ) ,  S = sup pjh (uj- vj), 
j =  1 j =  1 

subject- to . - 

Such a problem becomes simpler when the functions gi and h on R+ are 
convex (see, for example, [9J, Chapter XIV). 

(ii) Find the explicit solutions of moment problems with one fixed pair of 
marginal moments for rv's with values in a separable metric space U. (See 
Theorem 5). 

Note that in the case where U is a normed space, the moment problem was 
easily reduced to the one-dimensional moment problem (U = R). This is no 
longer possible for general (non-normed) spaces U rendering the moment 
problem (ii) quite different for that considered in Sections 2 and 3. 
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