ON THE MOMENT THEOREM OF MEERSCHAERT

BY

MARIA KŁOSOWSKA (ŁÓDŹ)

Abstract. Let q be a full operator-stable measure on R^N , and B an exponent of q. Write $m = \min \{Rex\}$ and $M = \max \{Rex\}$, where x ranges over the eigenvalues of B. Suppose that the distribution of a random vector X belongs to the domain of attraction of q, $m \neq \frac{1}{2}$ and $\Theta \in R^N - \{0\}$. The object of this note is to show that some results of Hudson et al. [2] can be proved in a simpler way (and somewhat extended) by using the method presented in Meerschaert [4]. Namely, we prove that $E |\langle X, \Theta \rangle|^{\alpha}$ is finite for $\alpha \in (0, 1/M)$, and infinite for $\alpha > 1/m$. Basing ourselves on this, we can easily obtain a moment theorem which is near the result of Meerschaert [5].

1. Introduction. Let R^N be an N-dimensional Euclidean space with the scalar product $\langle \cdot, \cdot \rangle$ and the norm $\| \cdot \|$. Suppose $\{X_n\}$ is a sequence of independent R^N -valued random vectors with a common distribution p. Consider the sums

$$Y_n = A_n(X_1 + ... + X_n) + x_n,$$

where $x_n \in \mathbb{R}^N$ and $\{A_n\}$ is a sequence of linear operators on \mathbb{R}^N . The distributions of the vectors Y_n may be written in the form

$$(1) A_n p^n * \delta(x_n),$$

where the power p^n is taken in the sense of convolution, $\delta(x)$ denotes the unit mass at $x \in R^N$, and Ap is a measure defined by $Ap(Z) = p(A^{-1}Z)$ for each Borel subset Z of R^N . A probability measure on R^N is said to be *operator-stable* if it is a weak limit of sequence (1). We call a measure on R^N full if its support is not contained in any (N-1)-dimensional subspace of R^N . Sharpe [6] gave a characterization of full operator-stable measures. Namely, a full measure q on R^N is operator-stable if and only if there exists a nonsingular linear operator R^N such that

(2)
$$q^{t} = t^{B} q * \delta(x_{t}) \quad \text{for all } t > 0,$$
 where $t^{B} = \exp(B \log t), x_{t} \in \mathbb{R}^{N}$.

Operator-stable laws are infinitely divisible with the Lévy representation (x_0, D, Φ) , where $x_0 \in \mathbb{R}^N$, D is a linear self-adjoint positive operator on \mathbb{R}^N , and Φ is a Lévy spectral measure. From (2) we have

(3)
$$t\Phi = t^B \Phi \quad \text{for all } t > 0.$$

If all eigenvalues of B have real parts equal to $\frac{1}{2}$, then q is a Gaussian measure with the representation $(x_0, D, 0)$. If they have real parts greater than $\frac{1}{2}$, then q is a purely Poissonian measure with the representation $(x_0, 0, \Phi)$. The class of all distributions p for which (at a suitable choice of operators A_n and vectors x_n) sequence (1) converges weakly to q is called the domain of attraction of q.

2. Lemmas.

LEMMA 1. Suppose that E is a linear operator on \mathbb{R}^N and that all eigenvalues of E have positive real parts. Then there exist positive numbers K, L, ε , κ such that

$$||t^E x|| \ge Kt^{\varepsilon} ||x||$$
 and $||t^{-E} x|| \le Lt^{-\kappa} ||x||$ for all $x \in \mathbb{R}^N$ and $t > 1$, and, consequently,

(4)
$$\lim_{t\to\infty} ||t^E x|| = +\infty, \quad \lim_{t\to 0} ||t^E x|| = 0 \quad \text{for each } x \in \mathbb{R}^N - \{0\}.$$

Proof. The lemma follows from Theorems 1 and 2 in Hirsch and Smale [1].

Let $q = (0, 0, \Phi)$ be a full operator-stable measure on \mathbb{R}^N , and B an exponent of q. Define a function on $\mathbb{R}^N - \{0\}$ by setting

$$g(\Theta) = \Phi\left\{x \in R^N \colon \left|\langle x, \, \Theta \rangle\right| > 1\right\}.$$

LEMMA 2. The function g defined above is continuous, g > 0, and

$$\lim_{n\to\infty} g(\Theta_n) = +\infty \quad \text{as } \|\Theta_n\| \to +\infty.$$

Proof. The continuity of g is proved in Meerschaert [4]. Suppose $g(\Theta_0) = 0$ for $\Theta_0 \neq 0$. By (4), we have

$$\lim_{n\to\infty} \|t_n^{B^*} \Theta_0\| = +\infty \quad \text{as } t_n \to +\infty.$$

From (3) it follows that $g(t_n^{B^*}\Theta_0) = 0$. Thus, we can find y_0 such that

$$||y_0|| = 1$$
 and $\Phi\{x \in \mathbb{R}^N \colon |\langle x, y_0 \rangle| > 0\} = 0$.

Consequently, $q = (0, 0, \Phi)$ is not a full measure, which contradicts the assumption. Let now $\|\Theta_n\| \to +\infty$. By (4), we can write $\Theta_n = s_n^{B^*} y_n$, where $\|y_n\| = 1$ and $s_n \to +\infty$. Moreover, we have $\inf_n g(y_n) > 0$. Hence

$$\lim_{n\to\infty}g(\Theta_n)=\lim_{n\to\infty}s_ng(y_n)=+\infty.$$

Let γ be a probability measure on the real line R and $\alpha > 0$. We can easily obtain the following equivalence:

LEMMA 3. The integral $\int_{R} |x|^{\alpha} \gamma(dx)$ is finite if and only if the series $\sum_{n=1}^{\infty} \lambda^{n\alpha} \gamma\{x \in R: |x| > \lambda^{n}\}$ is convergent for some $\lambda > 1$.

LEMMA 4. Let $\tau_1, ..., \tau_l \in R$. Then

$$\left(\sum_{j=1}^{l} |\tau_j|\right)^{\alpha} \leqslant C \sum_{j=1}^{l} |\tau_j|^{\alpha},$$

where

$$C = \begin{cases} 1 & \text{if } \alpha \in (0, 1), \\ l^{\alpha - 1} & \text{if } \alpha \geq 1. \end{cases}$$

Proof. This lemma follows from the convexity of the function $y \to y^{\alpha}$ $(y > 0, 0 < \alpha < 1)$ and from the Hölder inequality.

3. Theorems. Let q be a full operator-stable measure on \mathbb{R}^N , and B an exponent of a. We define numbers m and M such that

(5)
$$m = \min \{ \operatorname{Re} x : x \in \operatorname{Sp} B \}, \quad M = \max \{ \operatorname{Re} x : x \in \operatorname{Sp} B \}.$$

Theorem 1. Suppose q is a full operator-stable measure on \mathbb{R}^N , the numbers m and M are given by (5), and $m > \frac{1}{2}$. If a measure p on \mathbb{R}^N belongs to the domain of attraction of q, then, for each $\Theta \in \mathbb{R}^N - \{0\}$, the integral $\int_{\mathbb{R}^N} |\langle x, \Theta \rangle|^{\alpha} p(dx)$ is finite for $\alpha \in (0, 1/M)$, and infinite for $\alpha > 1/m$.

Proof. By assumption, we can find sequences $\{A_n\}$ and $\{x_n\}$ such that

$$\lim_{n \to \infty} A_n p^n * \delta(x_n) = q = (0, 0, \Phi).$$

Thus, by Lemma 2, we have, for all $z \in \mathbb{R}^N - \{0\}$,

(6)
$$\lim_{n\to\infty} np\left\{x\in R^N\colon |\langle A_nx,z\rangle|>1\right\} = \Phi\left\{x\in R^N\colon |\langle x,z\rangle|>1\right\} = g(z)>0,$$

and furthermore this convergence is uniform on compact subsets of $\mathbb{R}^N - \{0\}$. Let $\Theta \in \mathbb{R}^N \setminus \{0\}$ be arbitrarily fixed. We define on a half-line $(r_0, +\infty)$ a function L by setting

(7)
$$L(r) = \max\{n: \|A_n^{*-1}\Theta\| \le r\}.$$

We know that $||A_n|| \to 0$, and that $||A_{n+1}A_n^{-1}||$ remains bounded away from zero and infinity as $n \to \infty$. Hence $\lim_{r \to +\infty} L(r) = +\infty$ and the set $\{A_{L(r)}^{*-1}(\Theta/r): r \ge r_0\}$ is compactly contained in $R^N - \{0\}$. Let \mathscr{D} denote the set of all points y such that

$$\lim_{n\to\infty} A_{L(r_n)}^{*-1}(\Theta/r_n) = y \quad \text{for a sequence } r_n \to +\infty.$$

From (6) we then have

$$\lim_{n \to +\infty} L(r_n) p\{x \in \mathbb{R}^N : |\langle x, \lambda \Theta \rangle| > r_n\} = g(\lambda y) \quad \text{for each } \lambda > 0.$$

Consequently, if we put $f(\Theta) = p\{x \in \mathbb{R}^N : |\langle x, \Theta \rangle| > 1\}$, we get

(8)
$$\lim_{n \to +\infty} \frac{\lambda^{\alpha} f(r_n^{-1} \Theta)}{f(\lambda r_n^{-1} \Theta)} = \frac{\lambda^{\alpha} g(y)}{g(\lambda y)} = \frac{g(y)}{g(\lambda^{I - \alpha B^*} y)},$$

where I denotes the identity operator on \mathbb{R}^{N} .

For given $\alpha > 0$ and $\lambda > 1$, consider the following function:

(9)
$$r \to \frac{\lambda^{\alpha} f(r^{-1} \Theta)}{f(\lambda r^{-1} \Theta)}, \quad r \geqslant r_0.$$

By (8), the set of all limit points of (9) at $+\infty$ takes the form

$$\left\{\frac{g(y)}{g(\lambda^{I-\alpha B^*}y)}: y \in \mathscr{D}\right\}.$$

Let now $\alpha \in (0, 1/M)$. In this case, the spectrum of the operator $I - \alpha B^*$ is contained in the half-plane Re z > 0. Thus, by Lemma 1, we have immediately

$$\lim_{\lambda \to +\infty} \inf_{y \in \mathscr{D}} \|\lambda^{I-\alpha B^*}y\| = +\infty,$$

and consequently, by Lemma 2,

$$\lim_{\lambda \to +\infty} \inf_{y \in \mathscr{D}} g(\lambda^{I-\alpha B^*} y) = +\infty.$$

Hence we can find $\lambda_0 > 1$ such that

$$\inf_{y\in\mathscr{D}}g\left(\lambda_0^{I-\alpha B^*}y\right)>\sup_{y\in\mathscr{D}}g\left(y\right).$$

This means that

$$\limsup_{r \to +\infty} \frac{\lambda_0^{\alpha} f(r^{-1} \Theta)}{f(\lambda_0 r^{-1} \Theta)} < 1.$$

In particular, if we put λ_0^n instead of r, we obtain the sufficient condition for the series $\sum_{n=1}^{\infty} \lambda_0^{n\alpha} f(\lambda_0^{-n} \Theta)$ to be convergent. By Lemma 3, the first part of the theorem is proved.

We now consider the function

$$r \to \frac{\lambda^{\alpha} f(\lambda^{-1} r^{-1} \Theta)}{f(r^{-1} \Theta)}, \quad r \geqslant r_0.$$

The set of all its limit points at $+\infty$ takes the form

$$\left\{\frac{g\left(\lambda^{\alpha B^*-I}y\right)}{g\left(y\right)}\colon\ y\in\mathcal{D}\right\}.$$

Suppose $\alpha > 1/m$. Then the spectrum of the operator $\alpha B^* - I$ lies in the half-plane Re z > 0. In the same way as in the first part we can find $\gamma_0 > 1$ such that

$$\lim_{r \to +\infty} \inf \frac{\gamma_0^{\alpha} f(\gamma_0^{-1} r^{-1} \Theta)}{f(r^{-1} \Theta)} < 1.$$

Putting y_0^n instead of r, we obtain

$$\liminf_{n\to+\infty}\frac{\gamma_0^{\alpha}f(\gamma_0^{-n-1}\Theta)}{f(\gamma_0^{-n}\Theta)}<1.$$

It now suffices to make use of the d'Alembert criterion and Lemma 3. The theorem is proved.

Let V be a subspace of \mathbb{R}^N , and W the dual space of V. Theorem 1 is also true if we consider the spaces V and W, respectively, instead of \mathbb{R}^N . In particular, we obtain the following corollary:

COROLLARY 1. Suppose q is a full operator-stable measure on V with an exponent B and $\{\operatorname{Re} x\colon x\in\operatorname{Sp} B\}=\{a\}$. If a measure p on V belongs to the domain of attraction of q, then, for each $\Theta\in W-\{0\}$, the integral $\int_V |\langle x,\Theta\rangle|^\alpha p(dx)$ is finite for $\alpha\in(0,1/a)$, and infinite for $\alpha>1/a$ and $a>\frac12$.

Proof. The case $a > \frac{1}{2}$ needs no proof. If $a = \frac{1}{2}$, then q is a Gaussian measure. Let p_{Θ} be a distribution defined by $p_{\Theta}(Z) = p\{x \in V: \langle x, \Theta \rangle \in Z\}$ for each Borel subset Z of the real line R. The result of Kłosowska [3] states that, for all $\Theta \in W - \{0\}$, the measure p_{Θ} belongs to the domain of attraction of the nondegenerate Gaussian law on R. Thus p_{Θ} has absolute moments of order α if $\alpha \in (0, 2)$.

We now give a few preliminaries and some notation which will be needed in the next theorem. Let q be again a full operator-stable measure on R^N with an exponent B. We put $\{\operatorname{Re} x\colon x\in\operatorname{Sp} B\}=\{a_1,\ldots,a_s\}$ and assume that $1/a_1<1/a_2<\ldots<1/a_s$. Basing ourselves on the results from Hirsch and Smale [1], we can find a basis $\{b_1,\ldots,b_N\}$ with respect to which the matrix representing B has a block diagonal form. Due to this form, we obtain a direct sum decomposition of R^N into B-invariant subspaces V_1,\ldots,V_s such that

$$\{a_j\} = \{\operatorname{Re} x \colon x \in \operatorname{Sp} B |V_j|\}.$$

Furthermore, there exists a dual basis $\{c_1, ..., c_N\}$ $(\langle b_i, c_j \rangle = 1$ if i = j and 0 otherwise) with respect to which the matrix representing B^* is just the transpose of the matrix for B with respect to $\{b_1, ..., b_N\}$. If $\{b_r, ..., b_l\}$

span V_j , then the subspace $W_j = \text{Span}\{c_r, ..., c_l\}$ is the dual space for V_j , W_j is B^* -invariant,

$$R^N = W_1 \oplus \ldots \oplus W_s$$
 and $\{a_j\} = \{\operatorname{Re} x \colon x \in \operatorname{Sp} B | W_j\}.$

Now, for $x \in \mathbb{R}^N - \{0\}$, we can write $x = x_1 + \ldots + x_s$ — the unique direct sum decomposition with respect to $\{V_j\}$, and $x = x_1^* + \ldots + x_s^*$ — the same with respect to $\{W_j\}$. Suppose that p belongs to the domain of attraction of q, and that we can find norming operators A_n which are V_j -invariant $(j = 1, 2, \ldots, s)$. We shall then say that p belongs to the domain of direct attraction of q. Define now the function α^* as in Meerschaert $\lceil 5 \rceil$ by setting

(10)
$$\alpha^*(x) = \min\{1/a_j: x_j^* \neq 0\}, \quad x \in \mathbb{R}^N - \{0\}.$$

As a consequence of Corollary 1 we obtain

THEOREM 2. Suppose p belongs to the domain of direct attraction of a full operator-stable measure q on R^N with an exponent B. Define a^* as in (10). Then, for all $\Theta \in R^N - \{0\}$, the integral $\int_{R^N} |\langle x, \Theta \rangle|^{\alpha} p(dx)$ is finite if $\alpha \in (0, \alpha^*(\Theta))$, and infinite if $\alpha > \alpha^*(\Theta)$ and $\alpha^*(\Theta) < 2$.

Proof. Let V denote one of the spaces V_1, \ldots, V_s , let the space W be the dual space of V, and the number a be the real part of all eigenvalues of $B \mid V$ and $B^* \mid W$. Denote by Π_V the natural projection map onto V. Since Π_V commutes with A_n , we have

$$\lim_{n\to\infty} (A_n | V) \Pi_V p^n * \delta(y_n) = \Pi_V q, \quad \text{where } y_n \in V.$$

The measure $\Pi_{V}q$ is a full operator-stable measure on V with the exponent B|V and $\{\text{Re }x\colon x\in \text{Sp }B|V\}=\{a\}$. Moreover, for all $y\in W$, we have the equality

$$\int_{\mathbb{R}^N} |\langle x, y \rangle|^{\alpha} \, p(dx) = \int_{\mathbb{R}^N} |\langle x, y \rangle|^{\alpha} \, \Pi_{\mathbb{R}^N} \, p(dx).$$

Using Corollary 1, we infer that, for all $y \in W - \{0\}$, the integral $\int_{\mathbb{R}^N} |\langle x, y \rangle|^{\alpha} p(dx)$ is finite if $\alpha \in (0, 1/a)$, and infinite if $\alpha > 1/a$ and $a > \frac{1}{2}$. Taking $\Theta \in \mathbb{R}^N - \{0\}$, we can write $\Theta = \Theta_1^* + \ldots + \Theta_s^*$, where $\Theta_j^* \in W_j$. Without loss of generality we may assume that $\Theta_j^* \neq 0$ for $j = 1, 2, \ldots, l$ $(l = 2, 3, \ldots, s)$ and $\Theta_j^* = 0$ for $j = l+1, \ldots, s$. In this case,

$$\alpha^*(\Theta) = \min\{1/a_1, ..., 1/a_l\} = 1/a_1.$$

Let $\alpha \in (0, 1/a_1)$. It is seen that then

$$\int_{\mathbb{R}^N} |\langle x, \Theta_j^* \rangle|^{\alpha} p(dx) < +\infty \quad \text{for all } j = 1, 2, ..., l$$

and, by Lemma 4, also

$$\int_{\mathbb{R}^N} |\langle x, \Theta \rangle|^{\alpha} \, p(dx) < +\infty.$$

Let $\alpha \in (1/a_1, 1/a_2)$ and $1/a_1 < 2$. We notice that now

$$\int_{\mathbb{R}^N} |\langle x, \, \Theta_1^* \rangle|^{\alpha} \, p(dx) = + \infty \quad \text{and} \quad \sum_{j=2}^l \int_{\mathbb{R}^N} |\langle x, \, \Theta_j^* \rangle|^{\alpha} \, p(dx) < + \infty.$$

Using Lemma 4 once again, we can find numbers K, L > 0 such that

$$|\langle x, \Theta_1^* \rangle|^{\alpha} \leqslant K |\langle x, \Theta \rangle|^{\alpha} + L \sum_{j=2}^{l} |\langle x, \Theta_j^* \rangle|^{\alpha},$$

and, consequently, we obtain $\int_{\mathbb{R}^N} |\langle x, \Theta \rangle|^{\alpha} p(dx) = +\infty$. The Hölder inequality implies that the above integral is infinite for all $\alpha > 1/a_1$. The theorem has thus been proved.

REFERENCES

- [1] M. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York 1974.
- [2] W. Hudson, J. Veeh and D. Weiner, Moments of distributions attracted to operator stable laws, J. Multivariate Anal. 24 (1988), pp. 1-10.
- [3] M. Kłosowska, Domain of operator attraction of a Gaussian measure in \mathbb{R}^N , Comment. Math. 22 (1980), pp. 73–80.
- [4] M. Meerschaert, Domains of attraction of nonnormal operator-stable laws, J. Multivariate Anal. 19 (1986), pp. 342-347.
- [5] Moments of random vectors which belong to some domain of normal attraction, Ann. Probab. 18 (1990), pp. 870-876.
- [6] M. Sharpe, Operator-stable probability distributions on vector groups, Trans. Amer. Math. Soc. 136 (1969), pp. 51-65.

Institute of Mathematics, Łódź University ul. Stefana Banacha 22, 90-238 Łódź, Poland

Received on 19.4.1994

