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DEFORMATIONS OF ITHE SEMICIRCLE LAW 
I)EWED FROM RANDOM WALKS ON FREE GROUPS 

BY 

Abshwct. New l-parameter families of central limit distributions 
are investigated by means of random walks on trees associated with 
free groups under two kinds of states: one is Haagerup's function and 
the other is a spherical function associated with unitary representa- 
tions of the principal series. Those families give rise to deformations of 
Wigner's semicircle distribution by non-symmetric probability measures. 

I. htraduction. In classical probability theory a significant role is played 
by the central limit theorem which asserts that statistical properties of inde- 
pendent identically distributed random variables are subject to the Gaussian 
distribution. In quantum probability theory (or non-commutative probability 
theory) there have been made a considerable number of studies on quantum 
analogues of the classical central limit theorems. Quantum Brownian motions 
on Fock spaces are subjects for non-commutative central limit theorems. It is 
well known that the Gaussian distribution appears in a quantum Brownian 
motion on the boson Fock space [4], the Fermion distribution appears in one 
on the Fermion Fock space [14] and Wigner's semicircle distribution appears 
in one on the free Fock space [lo]-1121. An interesting new example is studied 
in [I] and [9], where the arcsine distribution appears in a study of a chrono- 
logical Fock space. Random walks on Cayley graphs associated with discrete 
groups offer good motivation to study central limit theorems in a quantum 
context. Typically it is known that the limit distribution obtained from regular 
representations of free Abelian groups is the Gaussian distribution and that 
from free groups Wigner's semicircle distribution 1131. Motivated by generali- 
zing E131, a systematic study for general discrete groups has been initiated 
in [7]. From a cornbinatorial point of view, all these results so far discussed are 
obtained by counting the number of particular type of painvise partitions or, 
equivalently, the number of walks on a graph which start from an origin and 
return to it. As a result, all odd moments of limit distributions vanish, and 
hence the limit distributions are always symmetric with respect to 0. 
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In this paper, we consider random walks on trees associated with free 
groups and investigate their limit distributions under two particular states: one 
is Haagerup's function, which depends exponentially on the length of an 
element of a free group; and the other is a spherical function associated with 
a unitary representation of the principal series. They are defined on finitely 
generated free groups. Under these states, all types of walks on trees contribute 
to the moments of limit distributions. Therefore the limit distributions become 
non-symmetric with respect to 0 (see Figs. A and B). This is a noticeable 
difference from usual noa-commutative central limit theorems. Moreover, since 
these states depend on the number of generators of free groups, there appear 
various limit distributions by changing the proportion of subtrees on which 
random walks wander to whole trees associated with free groups (see Theo- 
rem 2.2). This is also a new phenomenon. 

In Section 2, we introduce preliminary notions and state the main results 
in Theorems 2.1 and 2.2. In Section 3 we prove Theorem 2.1 by calculating all 
moments of limit distributions using a 'non-commutative binomial expansion' 
formula. By modifying the proof of Theorem 2.1, we prove Theorem 2.2 in 
Section 4. 

Acknowledgement. I would like to express my sincere gratitude to 
Professor N. Obata for his suggestive advice and constant encouragements. 

2. Preliminaries and results. Let E;, be the free group generated by 
(gl,g2, ..., 9,). Every element g # e admits a reduced word expression 
g = 9;: 9;;. . .gf;, where cj # 0, il # i2 # . . . # il. We call lgl = lzj1 the bngth of 
g and put lei = 0. We consider a random variable Xk€ C(Fn): 

called a random walk, where k < n, and observe its distribution under the 
following states: 

(a) Haagerup's function: Haagerup [5J proved that for 0 < a < 1 the func- 
tion 4,: F,  + C defined by t j ,(g) : = algl, g E F,, is positive definite, hence 6, is 
considered as a state on C(FJ.  

(b) A spherical function associated with a unitary representation of the 
principal series: Figa-Talamanca and Picardello [3] constructed a l-parameter 
family {n,) of unitary representations of F, called the principal series. We 
consider the state corresponding to z = 1/2, which is given as 

Our goal is to obtain central limit theorems for the random walks (X,) 
under the states (4,) and {$,), so we need to rescale {X,). In the case of (4,), 
since the average is equal to 
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and the variance is 

da ((gi + g; - 24') = 2 (1 -a2), 
it follows that 

is a normalized random walk with average 0 and variance 1 under 4,. Similar- 
ly, as 

$n(gi+g;l) = 2 J Z i / n  
and - 

$.((gr+g;'-2 J2n-1/n)') = 2 ( 1 - ~ ( 2 n - l y n 2 + ( 3 n - 2 ) / n ( 2 n - l ) ) ,  

it follows that 

is a normalized random walk with average 0 and variance 1 under $,. 
The main results are stated as follows. 

THEOREM 2.1. Let paVk be the distribution associated with the random walk 
Y, E C(F,,) ( k  < n) under the state Assume that a x A(2k)* as k + co. Then: 

(i) If a < - 1/2, d , ~ ~ , ~  converges weakly to the normalized semicircle 
distribution: 

1 
lim (x )  = -XI-,,,, (x)d=dx. 
k+ m 2TC 

(ii) If a = - 1/2 and 0 < A < 1, dpaSk converges weakly to a probability 
measure with a parlameter A: 

1 , / (2+A+x)(2-A-x)  
(2.4) 1 i m d ~ a , k ( x ) = - ~ [ - 2 - ~ , 2 - ~ ] ( x )  dx. 

k+ m 231 1-AX 

Remark. (1) Denote the right-hand side of (2.4) by dp,(x). Note that po is 
the semicircle distribution which maximizes Voiculescu's free entropy among 
the probability measures supported in R with jx2 dp(x) < 1, and T .  p1 also 
maximizes the entropy among the probability measures supported in Ra0 with 
J xdp (x )  < 1, where T (x) = 1 - x (see [7]). 

(2) Note also that T, p1 is a kind of 'one-sided' UIlman distributions. The 
density function of ,UA is plotted in Fig. A. 

(3) In [2], we see the 1-parameter family p~ in a different context. Boiejko 
et al. [2] found a 2-parameter family n a , ~  which is derived from the 'c-free' 
Poisson law. The relation is given as 

np.p = PS* p~ + (1 - B) Go, where S (x )  = (1 - x ) / d &  
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Fig. A. The density function of y, 

THEOREM 2.2. Let vmSk be the distribution associated with the random walk 
2, E C (F,) ( k  < n) under the state $,. Assume that n x B~ kfl as k + ao. 
Then: 

(i) If > 1, dvn,k converges weakly to the normalized semicircle distribution: 

1 
lirn d ~ . , ~  (x)  = --XI- z,,~ (x)  Jm dx. 
k-rm 2.n 

(ii) If = 1 and B > 1 ,  dv,,, converges weakly to a probability measure with 
a parameter 3: 

(2.6) lirn d v , ,  (x )  
k- rm 

Remark. Denote the right-hand side of (2.6) by dv,(x). Note that, as 
B + co, vs converges to the normalized semicjrcle distribution. On the other 
hand, as B L 1, v~ converges to the Dirac measure concentrated at 0. The 
density function of v, is plotted in Fig. B. 
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Fig. B. The density function of v, 

3. Prorsf of Theorem 2.1. We first compute 4, (Xi) explicitly. Lef N (I, r)  be 
the number of reduced words with length r  appearing in the expansion of Xi, 
putting N (0,O) = 1  and N (1, r)  = 0 for I < r or r < 0. Then we consider a poly- 
nomial 1 

Alw) = C NO, dw'. 
r = O  

By the definition of 4,, we see that 4, (Xi) = f, (a). Note also that {N (1, r ) )  
satisfy the recursion formula 

(3.1) ( Z ,  r) = ( 2 - 1 ) - 1  r - ) + ( - 1  1 for l > 1 

with N ( 1 , l )  = 2k and N (1,O) = 0. Let S ,  D : C [w] -, C [w] be linear opera- 
tors defined by D [I] = 0, D [w'] = w'-' and S [w'] = wl+l .  Then (3.1) yields 
another expression of fi, 

We call a sequence S = (el, e,, . . . , EJ E (0, 11' Cafalanian if x;=, ej > r/2 
for all 1 < r  < 1.  Let C,,, be the number of Catalanian sequences of length 

1 I = p + q  with = p. It is known (see, e-g., [8]) that 

called the Catalan number. 
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LEMMA 3.1. For 26, U E C ,  

Proof. Let T 1  : = S, To : = D. For a sequence d = ( E ~ ,  . . . , E ~ ) ,  

w P  if B is Catalanian with zi=, 9 = p, 
TE1 TE" . . . TEi [I-, = i0 

otherwise. 
. . 

~ b e n  the assertion follows immediately. rn 

By this lemma, (3.2) becomes 

Now, we obtain an explicit formula of the moments of By (3.2), 

1 
= & z0 ( Y )  (- 2ka)"-' fi (a) 

1 m 

[(2k - 1) S + D - 2kalm [I] (a) 

-2ka " 
. 

Hence by (3.3) we obtain 

Suppose that a is a function of k such that lim,,, a/ka = A < co. Then, 
each term on the right-hand side of (3.5) is of order (1 +2a)(m/2 + p -  I) or 
( 1  + 201) 4 2 -  1 in k. Therefore, we need a < - 1/2 in order to obtain a mean- 
ingful limit. 
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Now we prove Theorem 2.1, We first discuss the case of ol = - 1/2. With- 
out loss of generality, we can assume a = A/&. From (3.4) it follows that 

Since the multiplication operator commutes with S and D, we have 

Then, using (3.3), 

2k itA " 1 it 111 S eitx (x) = - 
a 2k- 1 

Letting k + oo, we have 

Se"dpA(X)= e-'t* C " - (it)" C Cp,,AP-q.  
R rn=0 "1 p + q = n ~  

p a 4  

We here need the Bessel functions Jr(z ) :  

The following integral formula is well known: 

(3.9) 
1 "  

J (z )  = - j eizcose cos redo. 
ni' 
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Since 

the series ~ r w m o  C'J. (z) converges absolutely for any C E C. 
Now we return to (3.7). Since 

. . 

we see easily that the right-hand side converges absolutely for all A. Then we 
can decompose the sum (3.7) as 

" (it)" m (it)2rn+r C - C Cp,q = C A' C C m + r , m  
n = ~  m! ~ + q = m  I. = , = , (2m + r)! 

pa&? 

In view of (3.8) and (3.9), the last expression equals to 

With the help of the formula 
m 1 -Acos9 x ArcosrO = for IAl < 1, 

r = O  1-2Acos9+A2 
we see easily 

and the series is absolutely convergent. Consequently, we have 

- 1 - e - i tA  J eitx - d x =  eitx- 1 J ( ~ + A + x ) ( ~ - A - X )  d x .  
- 2 n l - ~ x + A '  - 2 - A  271 I-Ax 

Now we consider the case of A = 1. We return to (3.10). In this case, we see that 

which coincides with (3.12) with A = 1. We have thus completed the proof 
of (ii). 
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Next we show (i). Assume m < - 1/2 and go back to (3.5). Then only the 
terms with I = rn = 2 p  = 2q remain in the limit as k + coy that is, 

when m =2p, 
lirn #,, ( ITm) = 

k + m  when m is an odd number, 

which is reduced to (ii) with A = 0. We have established Theorem 2.1. 

4. Pwof of Theorem 2.2. We prove Theorem 2.2 by modifying the proof in 
Section 3. We first consider the polynomial 

.. . 

where N ( i ,  r) is defined in the previous section. The relation between hl (w) and 
J ( w )  is given by 

Then, by (3.2) and {3.3), 

Let 

b,, = J-n and c,, = 2 ( 1  - 2  (2n - l)/n2 + (3n - 2)/n (2n - 1)). 

From the definition of I). we see that $,,(Xi) = h, ( l / , / n ) .  We also obtain 
explicit formulae for the moments of vnSk, 
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Suppose that n is a function of k and lim,,, n/ka = oo. Then, repeating an 
argument similar to that in Section 3, we obtain the condition 1. 

First we show (ii) of Theorem 2.2. We can assume n = B2 k. Applying 
a method as in (3.6) and using (4.2) and (4.1), we have 

2k ( "-1 " ( 2) j eitX d ~ , , ~  (x )  = - I+-w- exp -it- 
R 2k-1 n dw 

Then, letting k + m, we have 

In a manner as in the previous section, we have 

1" m 
{ e i t ~  dVB (X) = e-(2")/B - J' e2itcme (1 fr)  B-'(cosr8-cos(rf2) 0)dB. 
R R O  r = o  

For B > 1 we apply (3.11) to obtain 
rn 

(1 +r)~-~(cosrQ-cos(r+2)8)  
r = O  

Therefore, 
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In the case of B = 1, since 

we see from (4.4) that 

Namely, v ,  is the Dirac .measure concentrated at 0. 
Now we show (i). Assuming f l >  1, from (4.3) we see that 

lim $a = {p when m = 2p, 
k - r m  when m is an odd number, 

which turns out to be the case of (ii) with B = co. This completes the proof. 
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