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Abstract. Let D, be the diameter of a partition of the interval [0, t]
by renewal moments of a standard Poisson process. Then D,/Int — 1 for
t — oo, in probability. Other theorems on diameters are obtained. Jajte’s
theorem on random partitions of the unit segment is used.

1991 Mathematics Subject Classification: 60F10, 60G55.

1. Introduction. The aim of this paper is to describe some connections between
random partitions of the unit segment and the Poisson process. In the first section
we shall present several limit theorems concerning the random partitions of the
segment [0, 1] by the sequence of independent random variables uniformly dis-
tributed on [0, 1]. Next we will show that it is reasonable to search for analogous
theorems for sequences of independent random variables with exponential dis-
tribution (which can be interpreted as time distances between successive renewal

moments in the Poisson process). In the last section we prove some limit theorems

for the Poisson process using analogous theorems for random partitions of the
unit segment. In particular, we obtain some stochastic limits.and limits in law for
normed sequences d;, D,, where

d,=min {0y, 6,—04,...,t—oy,} for t>0,

© -

D, =max {0,, 6,—0¢, ..., t—oy,} for t>0,

for a4, 6,, ... being successive renewal moments for standard Poisson process
{N,, t = 0}. In the theory of queues, let ¢4, o,, ... be moments of arrivals of
successive customers. Let us assume also that customers are served at once.
Then d, and D, are the shortest and the longest time intervals in which no
customer is served, when we observe the queue to the moment ¢.

2. Let &, &,, ... be a sequence of independent random variables uniformly
distributed on the interval [0, 1]. Denote by §, and 4, lengths of the shortest
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and the longest interval, respectively, which we obtain: by partitioning the
segment [0, 1] by the random points &, ..., &,_. It can be easily shown that

lim §, = lim 4, = 0 with probability one.
The following theorem has been proved by Jajte [3]:
THEOREM 2.1. The sequence {(n4,)/ln n} converges 'in probabzhty to umty
One can. also prove the followmg

" ProposITION 2.2. The ]omt dzstrlbutlon of the random vector (8,, 4,),n = 2,
is given by ‘

(1) P(x<0dy 4,<y)

]
M =

x
o

(—l)k'(Z)(l—(n—k)x—'ky)';_% j for 0<x < y<l1,
where z, = max(z, 0). .
Now we can easily prove the following

PROPOSITION 2.3. The sequence {n? 5,,} converges weakly to the exponentzal
distribution. - \ : . : ~

Proof From (1) we get S ‘ )
P((S < x) =. 1 (1 nx) 1. for x>0. .
Hence for x>0 we obtam . B o

@ limPERs <) =1-e

"We' shall find now the disttibution of the random Varlable 0,/A,5 1 =3,

PROPOSITION 2.4, The distribution functlon of the random variable 5,,/A,,,
.n>=3, is given by S S

b)) N E . n! .. ’
Pl-“<s|=1- — ’ - for se(0, 1).
A4, - 1—s/ s S s
L —n+1}—n+2)...{ —n+n)] -
_ . o \I=s 1—s -\1 o

=_S .

Proof By (1) for 0<x<y<1 we get

P(5 < x, A, <y) .i‘(_l)k<k>(1 ky)~

k=0

—.i(—nk " (1—(n—k)x—ky)':17
k
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Differentiating the above distribution functlon we obtain density of the random
vector (d,, 4,): ‘

f6 N =-DE-2) ¥ (—1)"“(Z)k(n—k)(l—(n—k)x—ky)";i

where n = 3, 0 < x < y < 1. After routine calculations we get for s> 1

(A ) ko
3) P(a >s>—£sfxf(x y)dxdy = Z( 1 (Z)#m

Using the following formulas:

3 —ix(}) o

Zj: _ )k( ) 1 n! for x¢{—n,..., —1,0},

x+k x(x+1) (x+ )

we obtaln for se(0, 1)

S, o 4n e -t n\ sn—k)
P(aen)-ra-i)- T (),—sm_w _
5 . SN £ D W) . s S
-1+ B D (zc)‘l—_séo‘?” <k>—+7(1:—)

sn: ' n!

=1- - .
C(1—=s? s [ s s S
‘1_S.n 1_'Sn+1 1 n+2 1_ n4n

This completes the proof of the proposition. =

In order to investigate asymptotic behaviour of the sequence 5,;/A,,,
n=2,3,..., we shall use the following proposition:

. ProrosiTiON 2.5. If &,=>¢ (by the symbol = we denote weak convergence
of distributions) and n,— c in probability, where ceR, then

(@) Entta=cC,
(11) én/nnzi/c lfC9é0

Now we can easﬂy prove the followmg

- PROPOSITION 2.6. The following formulas hold:
G) lim P(nlnn(6,/4,) <x)=1—e™* for x>0,

(i) iim (6,/4,) =0 in probability.

n—+oo
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Proof. (i) can be obtained immediately from Proposition 2.5, Theo-
rem 2.1 and (2). Formula (i) follows from (i) and the equality

3.Let &, &5, ... be a sequence of independent random variables uniformly
distributed on the interval [0, 1]. By &1.n, &2ins - - -» Enn W denote the sequence
&, &2, ..., &, arranged in increasing order. One can show (see [:2]) that for
k<nandt,..., ;>0 we have ;

D P(Ein > b1y Eam—Ern > Loy er Eem—EGum 1 > 1) = (1=t —.. .= )%

Therefore we obtain

nlgg (nél:n > tls n(éZ:n_ilm) > t2: RS n(ék:n_ék—l:n) > tk) = e_“ e—tk’
which means that random variables né,.,, n(¢2.a—&1:)s -+ os B (Epen— Ex—1:0) CON-
verge weakly to the exponential distribution and are asymptotically indepen-
dent. This fact may suggest some analogies between random partitions of the
unit segment and the Poisson process.

Let 4, 75, ... be a sequence of independent random variables with ex-
ponential distributions. We can interpret #5,, #, ... as time distances between
successive renewal moments for the Poisson process. We shall consider now the
following two random variables:

d,=min{ny, ..., .}, D,=max{n,..., N}

The joint distribution of the random variables d, and D, is given by

“4) Px<d,D,<y)y=@E€ *—e™) for0<x<y.
In particular, we have

O Pd,<x)=1—e"™ for x>0

) and , i
(6) PD,<y)=(1—e?)" for y>0.

We prove the following

PRrOPOSITION 3.1. The sequence {D,/n} converges with probability one to
zero.

Proof. Let us compute the second moment of D,. It is well known that
for any nonnegative random variable ¢ we have

E&=p[y 'P(=y)dy for p>0.
0
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From (6) we have

P(,>)= (—l)k*l(';)e"“

and, consequently,

n 0 n 4 1
o e f e (Jherssfor (e

We put  *

" _.{n\ 1
y721=k21(_1)k 1(,{)?’ n=1927-~-

It can be shown (see [3]) that

w= ) i
1<i<jsn
and
(8) lim 2y2/In%n = 1.

Thus from (7) and (8) we have

and_

) Dn 2 Inn 2 .
o e GG

Since Y., ((Inn)/n)* < oo, (9) implies that

i E(D,/n)?* < .

n=1
Therefore we can deduce that

lim (D,/n) = 0 with probability 1.

n—* oo

This completes the proof of the proposition. &
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It is easily seen from (5) that for x > 0 we have
P(nd, <\x) =1—e"%
Let us consider now thé random variable D,/Inn. From (6) we get
PD,/mn<y)=(1—n""" for y>0.

Now it is easy to verify that

T m(Be)- o v

s \INK 1, ye(l, ).

Thus, we have proved the following
PROPOSITION 3.2. The sequence {D,/Inn} converges in probability to unity.

We shall prove now the following

ProrosiTION 3.3. Distributions of the random variables 6,/4, and d,/D, for
n >3 are identical. o

Proof. Let us put
G=n/dY m fori=1,2,...n,
k=1 '

where 7y, ..., 7, are independent and have exponential distributions.
It is known (see Feller [2]) that distributions of the random vectors

Eim-1> E2m-1—Ctm—15 --0» 1 =&p—1:n—1) and ({4, ..., {,) are identical. From

this the conclusion follows almost immediately.
From Propositions 2.6 and 3.3 we get

PRrROPOSITION 3.4. The following equalities hold: -

@ lim (d,/D,) = 0 in probability,

(ii) lim P(nlnn(d,/D,) <x)=1—e"* for x> 0.

4.Let {N,, t > 0} be a standard Poisson process. Let us remind that d, and
D, are minimal and maximal waiting times given by (0).

Let &,, &,, ... be a sequence of independent random variables uniformly
distributed on the interval [0, t] for t > 0. Denote by 6%-and A® lengths of the
shortest and the longest interval, which we obtain by partitioning the segment
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[0, t] by the random points &, ..., £,_;. By 4, we shall denote a random
variable 4A(". One can easily see that random vectors (49/t, 69/t) and (4,, 6,)
have the same distributions. It is known (see [2]) that if N, = n—1, then the
random vector (¢;, 6,—074, ..., Oy, —0Oy,—1) has a conditional uniform distri-
bution on the set {(sy, ..., $,-1): 0 < $;+...+8,-71 < t}. Since the distribution
Qf the random vector (él:n—la éz:n—l_él:n—la s gn—l:n—l_in—z:n—l) is the
same, we conclude that if N, = n—1, then the conditional distribution of the
random vector (D,, d) is the same as the distribution of (4%, §¥).
Let us prove now the following lemma:

LEMMA 41. Let F,, n=20, 1, ..., be a sequence of distribution functions
weakly convergent to the distribution function F. If for every t >0 a given se-
quence p,(t),n=0,1, ..., satisfies the following two conditions:

@) X2 p® =1 p(®=0,n=0,1,...

(i) for every € >0 and k=0, 1, ... there exists T > 0 such that
(10) Y > 1—¢  for every t > T,
n=k

then distribution functions F, = Zm

n—o FnDa(t) are weakly convergent to F.

Remark. Condition (ii) is equivalent to the following:

limp,()=0 for n=0.

t— 00

Proof of Lemma 4.1. Let xe R be a continuity point of F. Take ¢ > 0.
We can choose ke N such that

|Fo(x)—F(x)l <& for every n=k.
Let T>0 satisfy (10); then for every t > T we have
k—1 o0 ’ }
CF()= Y Fa()p. )+ X Fa(¥)pa(®) <&+ F(x)+e=F(x)+2¢
n=0 n=k
and
k-1 @ '
Fi(x)= ), Fa(X)pa(t)+ ), Fu(x)pa(t) = (F (x)—e)(1—¢).
n=0 n=k

Thus

(F(x)—&)(1—¢) < liminf F, (x) < lim sup F, (x) < F (x)+ 2¢.
t—w t— o
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Letting ¢ » 0 we get
lim F,(x) = F (x). .
t—

This completes the proof of the lemma. m

We shall use the above lemma to investigate asymptotic behaviour of the
random variables d, and D,. Let us prove the following theorem:

THEOREM 4.2. The sequence {D,/Int}, converges in prqbabil@'iy to unity.
"Proof. Let us consider first the random variable

Nt Dt
InN, ¢ W1

For x > 0 we have

N, D i D, e ' t"
P(lnN ttl‘N‘M} = ) ; (lnN t 7 lovny < x| N = n) n!

""ttﬂ
—e"+te“‘+z P(nA"+1<x)e .

e Inn n!

It is easy to see that the sequence {e "~ /(n—1)!}, t > 0, satisfies the as-
sumptions of Lemma 4.1. By this, Lemma 4.1 and Theorem 2.1 we conclude
that

N, D 0, xe(,1),
lim P 1 >
e (1 N, o “<x) {1, xe(l, w),

that is,

N,
tllrg N, 1(N,>1} 1in probablhty

It is known that lim,., , (N,/t) = 1 with probability one (and, in consequence,

also lim,, ., (InN,/In?) = 1 with probability one). From this, Proposition 2.5

and the equality 7
D, 1 _(tInN,\ N, D,1
Int ™" \N, Int /InN, ¢t ™V

we deduce also that

I{Nt>1] =1 in probability,




Random partitions of the unit segment 381

but as the sequence {N, > 1}, , increases and lim,.,, P(N, > 1) = 1, we finally
get
lim (D,/Int) = 1 in probability.

t—> o0
This completes the proof of the theorem. m

In the same way, using analogous formulas for random partitions of the
unit segment, we can prove the following

-

PRrROPOSITION 4.3. The_following formulas hold:

1)

(i) lim P(td, < x) =1—e™* for x >0,

=0
(ii) lim (d,/D,} = 0 in probability,
10
(iti) lim P(¢tInt(d/D)<x)=1—e* for x > 0.
t—+ a0
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