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Abstract. Let (X,} be a Lkvy process in Rd, d k 2, with infinite 
L6vy measure. If {X,) has no Gaussian component, then the process 
docs not hit the boundary of Lipschitz domain S c Rd at the first exit 
time of S under mild conditions on (X,}. The conditions are met, e.g., if 
{X,} is rotation invariant. 
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1. Introduction. The paper is concerned with the properties of the har- 
monic measure of Levy process (X,) ,3,  in Rd. Recall that for an open set 
S c  Rd the harmonic measure mi corresponding to {X,),,, is defined as 
w i  (.) = Px (X,, E *), where x E Rd and zs = inf {t > 0: X ,  $ S}. For the Brownian 
motion in Rd the continuity of paths yields wg (8s) = 1 for every domain S and 
all x E S. However, in general, {X,},,, has discontinuous paths and, depending 
on the process and the domain, it may happen that with probability one the 
process does not hit the boundary of S when first leaving it. For example, for 
the rotation invariant stable LCvy process in Rd we have wg(dS) = 0, provided 
S is a bounded domain with the outer cone property (see [2j, Lemma 6). 
If o$(dS) = 0 for XES, then the harmonic measure may be completely de- 
scribed by means of the Green function and LCvy measure via a formula of Ikeda 
and Watanabe [3]. This motivates the search for general conditions on the 
Levy process and the domain guaranteeing the discontinuous exit property: 
U: (as) = o, x E S. 

In the one-dimensional case this exit problem was completely solved in 151 
in the case where S is a half-line. The problem becomes much more difficult to 
handle in Rd for d 2 2 because for some processes the discontinuous exit prop- 
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erty depends on global geometric properties of 8S (see 161 for the example). 
P. W, MilIar gave a general solution of the exit problem in [6], but geometric 
conditions on S imposed there are complicated and rather restrictive. 

The primary purpose of the present paper is to use the methods of [6] to 
formulate simple conditions on the local geometry of d S  which yield the 
discontinuous exit property for a broad class of Ltvy processes including rota- 
tion invariant processes with idnite Lkvy measure and no Gaussian com- 
ponent. We have the following result (for the notation see the Preliminaries): 

T_HEOREM 1. Let S c Wd be a Lipschitz domain. Assume that {X,} ,, satis- 
fies s' ~ n d  its resoluent is strong Feller. If 

for every cone V with vertex 0, then 

Px (X,, E as) = 0 for every x E S. 

The hypotheses on {XtjtBO given in Theorem 1 are satisfied, e.g., by every 
rotation invariant process with the infinite Levy measure and no Gaussian 
component. The same holds true for any transient stable process of type A 
having the scaling property under mild conditions on v (see [6]). 

For more general processes we relax the geometric condition on S im- 
posed in [6] to cover such domains as tori; see Theorem 2 below. We also 
point out that conditions of Millar on S, if imposed at every point of dS, 
characterize Lipschitz domains in Rd. 

2. Preliminaries. For the rest of the paper, let d 2 2. We denote by {X,),,, 
the process with stationary independent increments in Rd and the characteristic 
function 

where 

v denotes the Ltvy measure, a€Rd, and a is a positive semidefinite symmetric 
matrix. As usual, Ex denotes the expectation with respect to the distribution Px 
of the process starting from x€Rd. We always assume that sample paths of 
X, are right-continuous and have left-hand limits a.s. The process is Markov 
with transition probabilities given by P, (x, A) = PX (X, E A) = Po (X, E A- x). It 
is well known that {X,),,, is strong Markov with respect to the so-called 
"standard filtration7', and quasi-left-continuous on [0, a] (see, e.g., [I]). 

For x E Rd and r > 0, we let B(x, r) = ( y  €Rd:  IX  - yt < 7.3 and dist (x, A) = 
inf{lx-yl; Y E A } ,  dist(A, B)=inf{lx-yl; x e A , y ~ B }  for A, B c R d .  As 
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usual, Ac is the complement of A. For A c R"e define T (A) = id{t  > 0; 
X,E A), the first hitting time of A, and 7, = T(Ac),  thefrrst exit time of A. For 
r > O  we put z,=z ,,,,,. 

A cone in HEd with vertex at 0 is any set V that can be constructed as 
follows: take a closed baI1 B of radius r > 0 whose center is at the distance 
ro > r from 0;  then Vconsists of all the points that lie on the rays passing from 
0 through B. The axis of V is the ray from O through the center of the ball, the 
vertex angle is 2 sin- (r/r,). A cone with vertex at x E Rd is a set of the form 
x +  I.: where V is a cone with vertex at 0. An open cone is the interior of 
a closed- cone as just defined. 

We say that a domain (a nonempty, connected and open set) S has the 
outer cone property if there exist a constant H > 0 and a cone Vsuch that for 
every Q E aS there is a cone VQ with vertex Q, isometric with V and satisfying 
VQn B ( Q ,  H) c S. 

A domain S c Rd is called a Lipschitz domain if it is bounded and for each 
Q in its boundary a S  there are: a Lipschitz function re: Rd-I 4 R, an or- 
thonormal coordinate system CS,, and a number R, > 0 such that if 
z = (zl, . . ., zd) in C S ,  coordinates, then 

We note that by compactness of dS, the radii RQ are not less than a constant 
Ro > 0 (the localization radibs of S), and the Lipschitz constants of the func- 
tions rQ are not greater than a constant A < oo (the Lipschitz constant of S). 

From the Lipschitz condition it easily follows that a Lipschitz domain has 
the outer cone property. 

DEFINITION 1. The process is said to satisfy hypothesis N if for each 
a ~ ( 0 ,  TC) there are h(a) > 0 and ro (a) > 0 such that for all cones V of vertex 
angle a and vertex at 0 

for all r E (0, ro (ct)) . 

el. 

E0 1 IV (X,) ds > h (a) E0 z, 
0 / 

Note that (1) is to hold for all cones with the same vertex angle, regardless 
of the direction of the cone. Any isotropic (rotation invariant) process has this 
property as well as processes with genuinely d-dimensional Gaussian compo- 
nent, stable processes of type A, and many others (see [6]) .  

3. Main results. Throughout this section, S denotes a domain in Rd. We 
record some auxiliary results due to MiUar. The proofs can be found in [6]. In 
what follows we assume that if {X,),,, has no Gaussian component, then 
v (Rd)  = a. 
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If aE(0, I), then there is a constant K = K(a)  > 0 such that 

for all r > 0. 
Furthermore, if the resolvent of the process {X , } , 30  is strong Feller, then 

the hnction f (x) = Px (X,, E A) is continuous on S for every Bore1 set A c Rd 
We call a point y E S possible if 

(3) 
- .  -- - - P"(T(BCV, 6))  < 7s) > O  

for-all<,~S and all 6 > 0. If ( X , h , ,  satisfy hypothesis H, then every point in 
S is possible. 

We also introduce a translation property, which is a weakening of the 
translation property defined in [6]. The modification enables us to handle 
a more general class of domains. 

DEFINITION 2. Let V be a cone with vertex at 0 and R > E > 0. We say 
that S has the translation property relative to t.: R,  E if 

(4 OES,  
(b) a S n V n B ( 0 ,  R ) c B ( O ,  R-E), 
(c) for every cone V'c V' # rf with the same axis, 

for all sufficiently small y E K 
(d) there is a constant c > 0 such that for all sufficiently small Y E  V  the 

distance between [aS n V n B (0, R)] - y and 3 s  n V is at least c lyl . 
The following result is a generalization of Theorem 3.1 in [6]. 

THEOREM 2. Let S c Rd be a domain with the outer cone property. Let V be 
an open cone such that S has the translation property relative to t.: R, E for some 
R > E > 0. Assum that (Xt)tB satisfies hypothesis H and its resolvent is strong 

- Feller. If ~ Y n B ~ o , l , ~ O z l r l ~ ( d y )  = m, then 

(4) PO ( x , , E ~ s ~  V n B ( 0 ,  R)) = 0 .  

Proof.  We generally follow the lines of the proof of Theorem 3.1 in [6], 
so we only give a sketch of the proof. 

Assume that (4) does not hold, i.e. there is 6 > 0 such that 

Let W =  (intS9nVnB(O, R). For u ,  v € R d  we define f (u,  v) = l ,(u)lw(v). We 
have 

0 Rd 

(see, e.g., [4] or [6]). 
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Let V' be an open cone contained in V with the same axis and smaller 
vertex angle and such that Po (X, E dS n V' n B(0,  R)) 2 6/2. For fixed y G V we 
define 

U , = [ a S n V 1 n B ( O , R ) ] - y ,  D ,=Sn(W-y) .  

I f  X E  f l y  = [asn V ' n B ( 0 ,  R)] - y, then from the outer cone property and the 
translation property relative to R, E we have 3 (x, c  ]yl) n C, c Dy for some 
cone C, with vertex x  and vertex angle p E (0, n) ( P  independent of x), provided 
y is sufficiently small, say lyl < q for some q. Using this fact, the strong Markov 
property a d  hypothesis-H we find that 

zs 

(5)  E0 Sf tx,, X , + Y ) ~ J  2 h @ E O  tlYl PO (T(Uy1 < zs). 
0 

For n 2 1  we let 

d , = { x ~ S :  dist(x,as)>l/n) and S ; = [ S n V ' n B ( O , R - & ) ] u A n .  

By quasi-left-continuity we have Po (X,," E 8S n V' n B (0 ,  R)) 2 S/4 if n is suf- 
ficiently large. For such fixed n we have Sn-y c S provided q  < l/n, which we 
may and do assume. 

The function y  w PY (X,," E 8s n V' n 3 (0, R)) is continuous at 0, so, by 
taking smaller q we infer that, for y E V and lyl < q-, 

(6) Po (T(U,) < ~ s )  2 Po (T(U,) = T(~, , -y )7  T(Uy) < a)) 
2 PY(X, , ,~dSnV'nB(O,  R)) 2 6/8 

because the resolvent of {X,),,, is strong Feller. 
Let = V n B ( 0 ,  q). From (5), (6)  and (2) we have 

This.- is the required contradiction. The proof of (4) is complete. ra 

We now digress on the consequences of the translation property, if im- 
posed at every point of 8s. 

DEFINITION 3. A domain S  c Rd is called a Millar domain if it is bounded, 
has the outer cone property, and for each Q E ~ S  there are: an open cone 
T/, with vertex x  E S  and numbers R, E such that R > E > 0, Q E T/,n B ( x ,  R)  and 
S-  x  has the translation property relative to T/,- x ,  R, E. 

LEMMA 1. A set is a Millar domain if and only if it is a Lipschitz domain. 

Throughout the proof, for z  = ( z l ,  . . ., zd- zd) we write z" = ( z l ,  . . ., z,,- 
2 and 112"112 = ~ : + . . . + z ~ - ~ .  
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Pro of. Let S be a Lipschitz domain - with localization radius Ro  and Lip- 
schitz constant R. Choose Q E 83. We may and d o  assume Q- = (0,  . . ., 0 ,  - Ro/2). 
k t  rq denote the Lipschitz function such that 

S n B ( Q ,  Ro)  = { z :  zd > r ( Z " ) ) n B ( Q ,  Ro).  

Set V = { z :  zd < 0, llill < s lz,l), where q = J;l";i- 1. The set V is an open 
cone with vertex 0. Let R = ~ , / j 9 2 f l + ~ , / 2 ,  E = Ro/2. 

We have Q E Vn B (0 ,  R). We will check that S has the translati& property 
.- 

relativr to V, R ,  E .  

(a) b E S. 
(b) Let w E d S n  V n  B (0 ,  R). Then w = t0, where t E (0, R) and 0 E V, 

101 = 1. We get 

(7) a S n V n B ( 0 ,  R )  c B ( Q ,  R,), 

and hence wd = rQ(G) .  We have Iwd+R0/21 = Ir,(6)-TQ(0)I < AllGll and 
\ l $ l l  < - Y / w ~ .  From this we conclude that 

and lwI2 = 11G1I2 + w i  < R$(l +q2) = (R-E)' ,  SO 

(c) Fix y  E V; lyl < Ro/2 and w E a S n  V n  B (0, R). The same method as for (7) 
shows that d S n V n B ( 0 ,  R-E)  c B(Q,  Ro/2), and this yields w - y € B ( Q ,  R,). 

-We have ( ) - ( - ] A ,  so r Q ( G - ~ < w d + l q l y d l < w d - y d .  
Hence w - y E S. 

(d) Let ~ E K  IyI < &/2 and w ~ d S n v n B ( 0 ,  R). We have w - y ~ B ( 0 ,  R - ~ / 2 ) ,  
so -  

dist (w - y, as n V n  Bc (0 ,  R)) > 4 2  > [yl. 

Let 2, = (2: Izd- wdl $ ?.llZ"-Gll). We have dS n V n  B (0 ,  R )  c 2, and 
w-y$Z,.  Hence 

dist(w-Y,  d S n V n B ( 0 ,  R)) 2 dist(w-y,  aZ,). 

I A n  easy computation shows that 
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so we may put 

The first part of the proof is complete. 
Now, let S denote a Millar domain. 
Choose Q E dS and let a cone K with vertex x and R, E, R > E > 0, be such 

that Q E F / , ~ B ( x ,  R) and S-x has the translation property relative to 
V, -x,  R, &.-We may and--do assume that x = 0, Q = (0, . . ., 0, qd), q, <- 0 and 
K =  (2: -2, 11fl1 < ~lrlzal), v r  > 0. 

Set V =  { z :  zd < 0, 1141 < q Izdl}, where 0 < q < q,. Let r > 0 be such that 
CaSnVnB(0, K ) ] - y  c S  for each y ~ T r , ,  lyl <r .  Set 

R1 = r/2 n dist (Q, Vy A dist (Q ,  BC (0, R)) 

and for W E ~ S ~ B ( Q ,  R1) let 

Using the outer cone property and (c) from the definition of the translation 
property we get 

(8) M , c S  and Nwcin tSc  

for each w e  a S n B  (Q, R,). Set RQ = R1 q/Jm. For every ze B(Q, R d  
there exists z* E R such that (z", z*) E aSn  B(Q,  R,). Moreover, from (8) it follows 
that there is only one such z*. Therefore, we can define a function 
TQ (3 = z*, z E 3 (Q, RQ). Using (8) again we infer that TQ is the Lipschitz 
function with Lipschitz constant A = l/q and 

SnB(Q,  RQ) = { z :  zd > TQ(Z))nB(Q, RQ). 

Lemma 1 is a motivation to consider Lipschitz domains in the context of 
our exit problem. In a sense, Lipschitz domains are the most general domains 
for which Millar's methods may be used to prove the discontinuous exit prop- 
erty 'for typical Lbvy processes. 

LEMMA 2. Let A c Rd be a Borel set. If (Xt)r30 satisfies hypothesis H, its 
resolvent is strong Feller, and there exists x E S such that Px (X,, E A) = 0, then 
Pz (X, ,  E A) = 0 for all z E S. 

Proof.  By the strong Markov property, for each z E S and 6 > 0 we have 

0 = Px(X,,~A) > P~(x,,EA; T(B(z, 8)) < %) 

- - Ex ( P ~ ~ ( ~ B ( X , ,  E A); T (-)) < zs). 

From (3) we get Px (T(B (z, 6)) < 7,) > 0, so there exists w E B (z, 6) such that 
Pw (X,, E A) = 0. This yields that the set (w E S: PW(X,, E A) = 0) is dense in S. 



From continuity of the function z + Pz(X,, E A) we infer that PZ(X,, E A) = O 
for each Z E S .  rn 

Proof  of Theorem 1. Let QfdS. By Lemma 1 there exists XES, an 
open cone Vx with vertex x and numbers R ,  E such that Q E  K n B ( x ,  R) and 
S-x has the translation property relative to K-x, R ,  E. We have 

By Theorem -2 we .get - 
b P O ( X  E~(S-x)n(&-x)nB(O, R)) = 0 

or 

P ~ ( X , , E ~ S ~ ~ , ~ B ( X ,  R)) = 0.  

Lemma 2 yields 

Pz(X, ,~aSnVxnB(x ,R))=O for every ZES. 

By the usual compactness argument, Theorem 1 holds true. 
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