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Abstract. Given n i.i.d. copies XI, . .., X, of a random variable 
X with distribution PA, 9 E 8 c g, we are only interested in those 
observations that fall into some set D = D (n) c R' having but a s m d  
probability of occurrence. The truncation set D is assumed to be 
known and non-random. Detloting the distribution of the truncated 
random variable Xl,(X) by P,, we consider the triangular array of 
experiments (Rd, &, (P.&,,), n~ N, and investigate the asymptotic be- 
havior of the n-fold products ((RV, (@)", (P,,,)&,). Under a suitable 
density expansion, Gaussian shifts as well as ~ o i s s m  experiments oc- 
cur in the limit, where the latter case typically occurs when the number 
of expected observations falling in D is bounded. Finally, we inves- 
tigate invariance properties of the occumng Poisson limits. 
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1. INTRODUCTION 

Suppose that XI, . . ., X, are i.id. copies of a real-valued random variable 
X with distribution Pa, where the parameter 9 = (9,, . . ., Sk) belongs to some 
open set O c Rk, and that we are only interested in those observations among 
Xi, . . ., X, which fall into a measurable set D c Rd. Typical examples occur in 
regression analysis and density estimation, in which case D is located in the 
center of the underlying distribution (see, e.g., Falk and Reiss [7], Falk and 
Marohn [6]) or in extreme value analysis, where D is located at the border (see, 
e.g., Resnick [IS], Reiss [17], Falk et al. [4], Falk [2]). In the following the 
truncation set D is assumed to be known and non-random. We are primarily 
interested in the cases where D = D (n) has shrinking probability with increas- 
ing sample size n. Thus, the present approach is not meant in the sense of 
survival analysis, where typically the truncation is random and independent of 
the sample size a (see, e.g., the monograph by Andersen et al. [I]). 
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The present situation can be described by the truncated random variable 
Xl,(X). If P, has a Lebesgue density f,, then Xl,(X) has the distribution 

where hd denotes the d-dimensional Lebesgue measure, and E, the Dirac measure 
at point z E Rd. The distribution P,, has then with respect to Ad + e ,  the density 

We consider the triangular array of rowwise identical expehents (Rd, Bd, 
(P,,: 96 813,  EN, which are called truncation experiments. Denoting the 
n-fold product measure Pn9@. ..@PA, by Pig, we are interested in the asymp- 
totic behavior d the rescaled product experiments 

where the set D = D(n) is a rare event, i.e., P&{D)= 0. Thereby, 

and S, = (Snl, . , ,, 8,3 is a positive sequence in IP usually tending to zero. The 
multiplication is meant componentwise i.e., tan = (t, . . ., tkSnk). Recall that 
the rescaling procedure is in general necessary in order to get a non-degene- 
rated limit experiment. For an appealing review of the local approach we refer 
to the introductory part of Janssen et al. [lo]. 

In recent papers (Fa& [3], Marohn [14]) it was shown that under a cer- 
tain density expansion of D local asymptotic normality (LAN) holds, i.e., the 
sequence (En), converges weakly to a Gaussian shift experiment. This was 
established by direct calculations, i.e., by showing the validity of the LAN 
expansion of the likelihood ratios. 

On the other hand, there exists a well-developed theory of the limit be- 
havior of (rescaled) product experiments (LeCam [ll], Strasser [19], Janssen et 
al. [lo], Janssen [8]). It is known that under fairly general conditions every 
weak accumulation point of product experiments of a triangular array of ex- 
periments is a product of a Gaussian experiment and a Poisson experiment. 
Moreover, under certain conditions, every limit experiment fulfills invariance 
properties, namely translation. invariance and scaIe invariance. This was the 
motivation of the present paper. Applying the theory of statistical experiments, 
we investigate the asymptotic behavior of the product of a truncation experi- 
ment. Describing the local structure by a density expansion, it turns out that 
Gaussian as well as Poisson experiments occur in the limit, where the latter 
typically occur if the number of expected observations falling in D is bounded. 
It was shown in Janssen and Marohn [9] that in extreme value analysis Pois- 
son experiments occur if the local structure is described by means of the (in- 
finitely dimensional) extreme value tangent space. 



Limits of buncation experiments 7 3 

For the remainder of this section, the notation is introduced and some 
facts concerning statistical experiments are recalled. The reader is referred to 
LeCarn [12], LeCam and Yang [13], Janssen et aI. [10], Strasser [21], and 
Torgersen [22]. 

Let E = (62, d, (P,),,) be a statistical experiments, i.e., (a,  d)  is a measu- 
rable space and (PJwT is a family of probability measures indexed by a set T. 
Sometimes, we simply write (PJ, far E and for binary experiments we use the 
condensed form (P,, Pt). Denote by dP,/dP, the Radon-Nikodym density of the 
absolutely continuous part of Pt with respect to P,. The likelihood process of 
E with base SE T is (dP,/dPs),,,, the distribution is taken with respect to P,. 
Two statistical experiments E = (a1, dl, and F = (a2, d,, (Q,),,) are 
called equivalent (in the notation, E - F) if 

The respective classes are caIIed experiment-types. 
Let A(T)  be the class of all finite non-empty subsets of T. A sequence of 

experiments E, = (a,, d,, (P,,),,), n E N, converges weakly to an experiment 
E = (a, d ,  (P~),,,) {in the notation, E, 4 E) if for every ol E A (T) and every s E CI 

Denote by E, = (a, d,  (P,),,) the restriction of E on ol and by 

the simplex in RE. If p is a o-finite measure on d dominating {P,: t~ a), then 

~ ( E a z ) : = ~ ~ ( $ t r a ~ ,  tea Z E ~ , ,  

is called the Hellinger transform of E,. It is we11 known that E - F i f  and only if 
H (E,) = H (F,), a E T, and that En 4 E weakly if and only if H(E,,,) + H(E,) 
pointwise on S,, a€  A(T).  Denote by 

the Hellinger distance between P, and Pi. Note the relation , 

An experiment is a Gaussian experiment if it is homogeneous and if one 
loghkelihood process is a Gaussian process. The most simple Gaussian ex- 
periment is the Gaussian shijt ( R ~ ,  gk, (N(rt, t)),,*), where N ( p ,  r )  denotes 
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the normal distribution with mean vector zero and covariance matrix r on Rk. 
Let (0, d ,  P) be a probability space and let (S, 93) be a measurable space. 
A measurable mapping N: (9, d ,  P) + (M (S, a), A ( S ,  a)) into the space of 
point measures on (S ,  a) equipped with a suitable u-field A ( S ,  99) is called 
a point process (for details see, e.g., Resnick [I81 and Reiss [17]). Let v be 
a finite measure on (3, 8) and denote by Po(A) the Poisson distribution with 
parameter R > 0. A point process N is called a Poisson process with intensity 
measure v if N (B)  is Po (v (B))-distributed for 3 E a and N (Bl), . . . , N (Bk) are 
independent for every k E N and pairwise disjoint sets BI, . . . , Bk E B. Let 
N1 and N o  be two Poisson processes with (hite) intensity measures vl and vo, 
respectively, on ( S ,  a). If v, has a vo-density h, then 

if p = ~ 2 :  eXK (for the density formula see, e.g., Reiss [17], Theorem 3.1.1). If 
N, is a family of Poisson processes with intensities v,, t E T, then (9 (NJ)tET is 
a compound Poisson experiment. (Here we use the terminology of Milbrodt and 
Strasser [15]. If the v, are a-finite intensity measures, then ( 2 ' ( N , ) ~ , ,  is called 
a Poisson experiment). 

2. RESULTS 

We assume the density expansion 

on D, g = (gl, . . ., g,), where the remainder term rng vanishes asymptotically in 
a certain sense (see condition (3) below). Condition (1) is a slightly stronger 
condition compared to that of Falk [3] and Marohn [4]. Despite the fact that 
there is some similarity of (1) to the concept of L,-differentiability, there is one 
crucial difference: The "tangent" g does not necessarily satisfy J,gdP, ,  = 0. 

In the following we restrict ourselves to the case 9, = 0. From Marohn 
[I41 we adapt the rescaling rate 

and the neglibility condition on the remainder term 
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Moreover, we assume as in Marohn [I41 that 

and that the correlations (conditional on D) satisfy 

for 1 d i, j d k. The following lemma is crucial. It shows once- more that the 
rescaling rate as defined in (2) is suitable, We do not assume that S,, tends to 
zero as n+ a. 

2.1. LEMMA. For s, t € R k  we have 

a(s, t ) : =  lim nd2(Pndn, Pnfa,) = $(s-t)'r(s-t), 
n-+ m 

where r denotes the k x k-matrix 

For i = j we have y i j  = 1. The matrix r was introduced in Marohn [14]. It 
turned out that r is a correlation matrix and therefore positive semidefinite. If 
it is positive definite, then a (5, t) > 0 iff s # t. In this case every weak accumulation 
point of (En), is homogeneous and the corresponding subsequence is contiguous 
(see, e.g., Strasser [21], Theorem 61.3). Moreover, the preceding lemma im- 
plies that the sequence (En), is bounded and infinitesimal in the sense of Defini- 
tion (5.4) in Milbrodt and Strasser [15], and thus every weak accumulation 
point is infinitely divisible. If (P&dn, P2dn) + (Qs, Qt), then 

(6) Iim d i  (pad,, P:t6,j = d i  (Q,, Q ~ )  = 1 - exp ( -9  (s - t)' r (s t)) 
n-r m 

(cf. Milbrodt and Strasser [15], Lemma 5.7 and its proof). 

P r o  of of Lemma 2.1. Applying the Cauchy-Schwarz inequality and 
the Minkowski inequality, by straightforward calculations as in Mqohn [I41 
we obtain 
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1 
= - ( ~ - t y r ( s - t ) + 0 ( 1 )  

8  

and 

Note that P,,,(D) -, 0 for n 4 ao, t ER, which is a consequence of the expansion 

and the assumptions (3) and (4). rn 

THE GAUSSLW CASE 

In this section we give a different proof of LAN to Falk [3] and Marohn 
1141, using the theory of statistical experiments. The following .theorem gives 
a ~ ~ c i e n t  condition for the LAN case of truncation experiments: 

22.  THEOREM. For & > 0 d@ne the sets Anj = { X E D :  (gj(x)l  > ~ / 6 ~ ~ ) ~  
j = 1, ..., k. If for every E > 0 

then 

En,, + ( R ~ ,  gk Y ( N  (T t?  t))teRk) 

with r as in Lemma 2.1. 

Condition (8), which is of Lindeberg type, claims that D has to shrink not 
too fast and that the rescaling rate 6 ,  has to tend to zero, since (8)  implies 
nP (D) + ao, as we will see below, and nPo (Anj) + 0. It turned out that con- 
dition (8) is crucial in order to derive the LAN expansion of the likelihood 
ratios; cf. Falk and Liese E51. Thereby, it was assumed that the number of 
expected observations falling in D tends to infinity, i.e., nP, (D) + co. But this is 
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already a consequence of condition (8). Since 

and the second term becomes arbitrarily small if nP,(D) is bounded, 

we conclude that nPo (D)  4 oo is a necessary condition for (8). This can also be 
seen from a different point of view: If nP, (D) is bounded, then Poisson sequences 
occur as we show in the following. Since only the trivial statistical experiment is 
Gaussian as well as Poisson and under condition (8) the Gaussian limit is non- 
-trivial, we conclude that nPo(D) must converge to i f i t y .  Finally, we remark 
that there is a formal accordance between this result and the well-known ap- 
proximation of the binomial distribution by the Poisson distribution, if the 
probability of occurrence is small, and by the normal distribution, else. 

P r o of of The o re m 2.2. According to Theorem (6.3) and Remark (6.6) 
in Milbrodt and Strasser [15], (En,,), is Gaussian (i.e. every weak accumulation 
point is a Gaussian experiment) if€ for every t~ T and s > 0 

Taking into account relation (7), we have 

Applying the Markov inequality, we get 

by condition (8). The other terms tend also to zero, which is verified by similar 
arguments, and condition (9) is therefore satisfied. Lemma 2.1 implies now the 
weak convergence to a Gaussian experiment with covariance 

K(s, t) = 4(a(s, O)+a(t, 0)-a(s, t)) 

= 4 ( i s f r s  +{tfrt -$(s- t)'r (s- t)) = s f r t  

(see Milbrodt and Strasser [15], Corollary (6.4) and Remark (6.5)). 
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Lemma 2.1 shows that the Gaussian experiment is continuous, translation 
invariant and scale invariant with exponent 2. This holds if and only if the 
Gaussian experiment is a Gaussian shift. This characterization was established 
by Strasser [19], Theorem (4.3). That the Gaussian experiment must be a 
Gaussian shift can also be seen from Lemma (5.1) in Janssen [8] together with 
relation (6). Finally, Theorem 16.2 in Strasser [20] together with relation (6) 
show that the Gaussian shift has no independent increments. 

We now discuss the rate of convergence of the rescding sequence (a,),. First, 
the following fact is recalled. In the i id.  case, LAN can be characterized by the 
rescaling rate. Strasser [19] showed that LAN holds if and only'if the rescaling 
rate is given by n-'/'a,,, where (a,),, is a slowly varying sequence, i.e., 
limn,, a,/% = 1 for every rn EN. In the present situation of non-identically 
distributed random variables (note that the underlying probability measures 
depend on D = D(n)), this rate is no longer expected. Due to the truncation we 
lose information about the unknown parameters and, since the rescaling rate is 
a measure of the increase of precision achieved by enlarging the sample size, the 
rate must be of a lower rate than n-lt2. Typically, the rates are of the order 
n-'taun with a > 2 depending on the choice of D. To illustrate this point, con- 
sider, for example, the Gaussian shift N ( 9 ,  I), 9 E I?, and the set D = [dm, co) with 
d,, + cn . Then expansion (1) holds with g (x) : = g, (x) = x, condition (4) holds 
with a = 1, and condition (8) is fulfilled whenever d,  tends to infinity not too fast. 
Denote by CP the distribution function of the standard normal distribution 
N (0, I), and by q its density. The relation 1 -@(x) - q(x)/x, x -+ a, implies 

nPo (D) N ncp (d,)/d, and 6,' - nd, q (dJ. 

Now, nPo (D) + CQ is fulfilled for the slowly varying functions d,, = log (nll", 
s > 1, and for these we obtain the rates 

with (k), slowly varying. 

THE POISSON CASE 

The following theorem shows that Poisson accumulation points occur if 
the number of expected observations falling in D is bounded. 

2.3. THEOREM. If limsup,,, nPo(D) < coy then every weak accurnuIution 
point of (En,,,), is a compound Poisson experiment. 

Proof. According to Theorem (6.9) in Milbrodt and Strasser [15], (En,,), 
is Poisson (i.e. every weak accumulation point is a Poisson experiment) if and 
only if for every pair (s, t) E T2 

(10) lirn lim sup n 
e+m n + m  
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Now, 

Since the first term is bounded and the second term vanishes as n 4 ca (wheth- 
er nP,(D) is bounded or not, see the proof of Lemma 2-11, condition (10) is 
fulfilled. That every Poisson accumulation point is a compound Poisson ex- 
periment follows now from Theorem (6.1 1) in Milbrodt and Strasser [15], since 

- 

= lim lim sup n Psdn {IdPtaJdPss, - 11 > E) 6 lim lim nPss, (D)  < a. s 
a d o  n + w  r + O  n+ m 

Below we will see that under suitable conditions weak convergence to 
a compound Poisson experiment holds (Theorem 2.5). 

The Gaussian case as well as the Poisson case occur for the rescaling rate 

The crucial point is that in the LAN case the rescaling rate has to converge to 
zero, whereas in the Poisson case the rescaling rate may not necessarily con- 
verge to zero. Indeed, (a,), may be bounded or can even tend to infinity (see the 
examples given below). Recall again that the underlying probability measures 
depend on the sample size n through the set D, which becomes smaller for 
increasing sample sizes.. Hence, it can happen that the statistical information is 
kept constant or even decreases by enlarging the sample size. Moreover, in the 
Gaussian case the first factor in (11) becomes relevant, whereas in the Poisson 
case the second factor in (11) determines the rescaling rate. 

But before giving the examples we have to specify the parameter space. 
Througho-ut we assume that nPo (D) + A E (0, co). Since 

A j=1 

one has to choose t E T with 

If aj 2 0 for j = 1, . . ., k, which covers the most interesting examples, then we 
may choose the cone T = [0, If aj = 0 for j = 1, . . ., k, then T = Rk. 
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For the following examples LAN was established if nPo(D) tends to in- 
finity and D shrinks not too fast (cf. Falk [3], Marohn [14]). If k = 1, we simply 
write g, a instead of gl, a, ,  etc. 

2.4 EXAMPLES. (i) (Normal case) Let Pa = N (9, 1),3 2 0, be the Gaussian 
shift, Denote as before by @ the distribution function of the standard normal 
distribution N(0, 1) and by rp its density. Choose again D = D In) = [d,, m) 
such that nN (0, 1) (D)  = 5 i.e., d, = 9 - I  (1 - A/n). Condition (4) is satisfied with 
a = 1. We have 

6.  = (n1g2dIV(0, 1))-'I2 + m 
- 

D 

since, by integration by parts, 

S D  g2 dN(O, 1) d,  cp (d,) + 1 - @ (d,) v (d,)/d, - - = d, + 1 +  a, 
NIO, 1) ID) 1-@(d3 1 - @ (dm) 

as n +  a. Note that q(x)/x -- 1-@(XI, x + co. It can be shown that 
6,  = 0 ((log n)-'/') (cf. Reiss [16], Example 5.2.4). 

(ii) (Pareto) Let Pa = H g ,  /I > 0, be the Pareto distributions defined by 
Hfl((-a,  x]) = 1-x-fl, x > 1, which play a central role in extreme value 
analysis. Fix fl,, > 0 and let D = [d,, a). Then g (x) = 1 /Po-  log (x) and con- 
dition (4) holds again with a = 1. Now choose D such that mHB, (D) = nd,BO = I, 
i.e., d ,  = (n/I)'/Bo. Integration by parts yields 

ID g2 dHBo - (I/#?; + log2 d,) d,BD 1 
- = - (1 + log2 (n/I)) + a 

4 3 ,  (Dl d;B" 81 
showing that 6, converges to zero. As in the previous example, the rescaling 
sequence (a,), is slowly varying. 

(iii) (Double exponential) Let Pa, ~ E R ,  be the translation family of the 
double exponential distribution with Lebesgue density f (x) = exp (-]xl)/2, 
XER. Choose D = [- d,, d,] .  Then g (x) = sign (x) and condition (4) holds with 
a = 0. We get Poisson limits if nPo (D) is bounded (see also-below) and the 
rescaling rate 6,  = (np0 (D))-'" converges to 1-'1' whenever nPo (D)  + I. 

(iv) (Pareto sMft) Fix some fl > 0 and denote by Po = the Pareto 
distribution with shape parameter fl (see (ii)). Let (Pa)$ be the Pareto shift with 
location parameter 9 2 0. Choose D = [d,, CQ) with d, + oo such that 
nP (D) = 1. Then we have g (x) = (1 + B)/x and condition (4) holds with 

a = (BIU +PI) Jm < 1. 
The rescaling rate tends to infinity, since 
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(v) Denote by Pa, 9 = (gl, 82), the normal distribution with expectation 
9, and variance (1 + 92)-2, Q E 64 = [0 , a)2, i.e. Pa = N (9,, (1 +a,)-'). Choose 
D = [-d,, d,] and let dn + 0. Then expansion (I) is satisfied with gl (x) = x 
and gz (x)  = 1 - x2. Integration by parts yields 

I 

j 92 dN (0, 1) = 2 4  cp (4, S Q$ dN (0, 1) = 2 (1 - d J 2  dn q61d3. 
I D D 

Since 

we see that condition (4) is satisfied with a, = 0 and n2 = I, i.e., 

Moreover, we have 

and, as we have already known, 

(vi) (Regression model) Let us fix vo, ao, Po ER and suppose that 
X = ('V, W) € R 2 ,  where V has a continuous density f near v0 with f (v,) > 0. 
Assume that under 9 = ($I1, s2) €R2 and for v near vo the conditional distri- 
bution of W, given V = v ,  is N (ao + $I1 + (Bo + 92) (v - v,), I), i.e., the regression 
function 

E,(W I V = v )  = ao+91+( /30+Q2) (~-~o)  

is linear in v. Precisely, Pa has the Lebesgue density 

fsi (v3 W) : = f (0) qa (W / v )  

for v near vo and W E  R, where 

6 - PAMS 21.1 
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On D = D (n) = [v ,  -d,, v, + d,] x R, where 0 < d, 0, expansion (1) holds 
if n is large with the tangents 

We obtain Po (D)  -- 2 f (v,) d, and 

Thus, condition (4) holds with a, = a, = 0, i.e., 

and we have a,, - A-112, a,, - 3112/(A1/2dn). 

In contrast to the Gaussian case, Lemma 2.1 does not imply the weak 
convergence of a Poisson sequence in general. This is due to the fact that 
Poisson experiments - in contrast to Gaussian experiments - are not deter- 
mined by its binary subexperiments. But if the class of Poisson experiments is 
restricted to the class of Poisson experiments with independent increments, 
then they are completely described by its binary subexperiments (Strasser [20]). 
Unfortunately, in our present situation of truncation experiments Poisson 
limits with independent increments cannot be expected. For example, the Pois- 
son limit for the normal case as well as for the Pareto case of Examples 2.4 ti) 
and (ii) has no independent increments. To see this crucial point we make use of 
the following characterization (Strasser 1201, Theorem 17.2). The Poisson limit 
of (En), has independent increments iff for every r~ T and E > 0 

whenever s < t < u < v .  We show that condition (12) is violated for the normal 
case. Recall that D is chosen such that nP, (Dl = A. Let 0 < s < t. For n large 
we have 

Now, 

= {X 2 d,: I e x p ( s d n x - ~ ) - e x p  (t6.x-?)I 2 E&}. 
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Since 6 i 1  - i1 I2  d,, we have 

lexp (s6, x - s2 6:/2) -exp (t6, x- t2 6,2/2)1+ exp t)- exp (A- l/%) 

for x = d,. Hence d, E A, for n large and E small, and a monotonicity argument 
shows that A, = [d,, oo) = D. Consequently, condition (12) cannot be satisfied. 
Similar arguments show that also in the Pareto case condition (12) is not fulfilled. 

In the following we establish weak convergence to a Poisson experiment 
and compute the intensity measures. We consider first binary subexperiments 
and the case a,€ { -  1, 1 )  for j = 1, . . ., k (which covers Example 2.4 (i) and (ii)). 
Let (Pi,, e,n) be a binary subexperiment of E n ,  and let, as before, nPo (D) 4 A. 
To study the limit behavior of the likelihood ratio it is convenient to use the 
point process approach, Denote by N,., (-) = xy=, EX, (- n D) the truncated em- 
pirical point process. 

It is easily seen that (Eo, P:td,) - (2' (N,,D I P"oy 3 (Nn,o I P;a,l) with 

if p = E~~ and 0 8 p(D) 6 n (see, e.g., Reiss [17], Example 3.1.2 for the 
density formula). Now we make use of the representation 

where z,, Yl, Y,, . . . (defined on some probability space (52, d, P)) are inde- 
pendent, zn is binomial 3 (n, nPo (I)))-distributed, and Yl , Y,  , . . . are identically 
distributed according to Po (. n D)/Po (D); see, e.g., Reiss [lq, Theorem 1.4.1. It 
remains, therefore, to study the asymptotic behavior of 

Denote by z a Po(R)-distributed random variable. Then 

dl(9(z,IP),Sf'(zIP))+0 as n - r o o  

by the Scheffk lemma. Since zJn- 0 and, by expansion (7), 

(recall that by assumption aj€ (- 1, 11, j = 1 , . . ., k), we conclude that 

k 

'-" 3 exp (- (a1/' + $ sign (aj) tj)' +A). 
j= 1 
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Moreover, 

- 
in P-probability. Note that gj (Y;) + sign (aj) l -  'I2, which follows from 

I (6, n (m - sign (aj) 1- 112)2 d P  

Summarizing the above results we obtain 
k k 

+f sign(oj) t,)' exp (-(,Xu2 ++ sign (aj) tj12-t I) 
j= 1 j=  1 

in P-probability, i.e., (e,, P:,") 5 (Qo , Qt) with 
k 

Qt:= FO((A"'+? C sign(aj)tJ2). 
j= 1 

Since 

we obtain 
k 

d: (Qo, QJ = 1 - ~ X P  (-&( sign(aj) tj)') 
j= 1 

in accordance with relation (6). For Examples 2.4 (i) and (ii) we have 
Q* = Po ((All2 + t/2)2). 

Now, let .us determine the binary Poisson limit for the general case 
aj E [- 1, 11. Let Y be distributed according to Po (. n D)/Po (D). Since only 
a finite number of observations are available as the sample size tends to in- 
finity, we have to claim a weak convergence condition. We assume that 
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in distribution with Z = ( Z , ,  . . ., 2,). (For aj E { - 1, 1) we have already known 
from the above calculations that snjgj (Y) 4 sign (aj)R- 'I2, i.e., 9 (Zj) = hign(ajl .) 
Similar calculations as before show that 

Hence ( c o y  (Q,, Qt), where Q, is the distribution of a goisson pro- 
cess having the (finite) intensity measure 

(see the density formula for Poisson processes). Note that E(Zj) = aj and 
E (2.2,) = yu, which imply v, (Rh) = i + i l t Z  z:=, g t j+  t fr t /4 .  The measure 
v, is absolutely continuous with respect to v,. Again, in accordance with re- 
lation (6), we have d2 (Q,, Qt) = 1 - exp (- tfrt/8). 

The convergence of the finite-dimensional marginal distributions of the 
loglikelihood process (log L,,),,,  to the corresponding marginal distributions 
of (log L,),,, is now seen by the Cramkr-Wold device and the continuous map- 
ping theorem. Since Q, is absolutely continuous with respect to Q,, we have 
proved the following result: 

25.  THEOREM. Asslrnae that nP, (D) + R and that condition (13) is fuIJiIIed. 
Then (En,3, converges weakly to a compound Poisson experiment 

where Nt are Poisson processes with intensity measures (14). 

In the situation of Examples 2.4 (i) and (ii) we have Y(Z) = E,  and the 
intensity measures 

on thi --space S = {l). In Example 2.4 (iii) with a = 0 we have 
Y (g (Y)) = ( E -  + c1)/2, which yields the intensity measures 

v, = +(a1~2+t /2)2~1+~(a1/2-t /2)2~- l  

on S = (- 1, 1). In Example 2.4 (iv) we have 

where W follows the Pareto law HB. Note that the distribution of d i l  Y is 
again Hgl whkh is a well-known property of the Pareto distribution. Now, 
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let us determine the intensity measure for the scale-location model of Exam- 
ple 2.4 (v). Applying l'H6spital's rule and elementary calculations we obtain 

lirn a,, dn = and gl (Y) + A-1i2 U, 
n-'m 

where U is uniformly distributed on [-1, I]. Consequently, we have 
Y (Z1, Z2) = 64 (U)@E~.  Finally, consider the regression model of Example 2.4 
(vi), where Y is distributed according to 

Po ((V, W) E n D)/Po ((V, W) E D) with D = CUO - d,, v&+ d,] x R.  

Straightforward calculations show that 

P,((V, W)E-TSD)/P~((K / , ~ ~ ) + ~ u , @ N ( ~ o ,  1) 

and 

weakly with U as before. Hence 9 (gl (Y), g, (Y)/d,) 4 $p(Z", uZ), where Z" is 
N (0, 1)-distributed, 

The preceding examples have already shown that the Poisson limit E of 
a truncation experiment cannot be scale invariant. Otherwise, the logarithm of 
the Hellinger transform 

has to be a homogeneous function (Strasser [19],  Lemma (2.6)). Elementary 
calculations show that for k = 1 and a = 1 we have 

which -is not homogeneous. 
In conclusion, we see that Poisson limits of truncation experiments are not 

translation invariant and not scale invariant, and they have no independent 
increments. 

We briefly discuss an application in testing theory. Consider the case k = 1, 
a = 1, and let nP, (D)  + A. We want to test the hypothesis P:, against the alter- 
native {P&: t > 0) or, equivalently, Y (N,,D I G) against (Y (N,, I P;d: t > 0). 
The limit experiment is given by (~o((A'j"t/2)~)),~~, which is a one-dimen- 
sional exponential family with strictly monotone likelihood ratios with respect 
to the identity. Thus, the test 
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with c and y such that ST* dPo (A) = Po (A) ((e, a)) + yPo ((c)) = a, is optimal 
for t = 0 against t > 0 at level a. Hence, based on N,,,, and asymptotically 
optimal test at level ct is given by q* (Nn,D). 
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